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We are here interested primarily in the question of the relation of the

group structure to the topological structure in a compact group. A natural

question that arises here is the question of uniqueness, i.e. is there more than

one compact topology on such a group? We give in §3 a necessary and suffi-

cient condition that the topology be unique in the case of a connected group.

Our considerations proceed from a general structure theorem given in §1. In

§4 we give a structural theorem for compact, connected, abelian groups. The

relations between compactness and connectedness arise constantly in the

above arguments and this relation is definitely established in §2.

I would like to take this opportunity to express my appreciation to Dr.

Ky Fan whose generous assistance made this work possible.

1. In this section we develop a structural theorem for compact, connected

groups. We include a complete proof of the necessary lemmas though the

arguments are standard.

According to [6, p. 282] a compact, connected Lie group G can be ex-

pressed as (Xl"-i XiXT)/P where each Xi is a compact, connected, simply

connected, simple, nonabelian Lie group, £ is a toral group and £ is a finite,

central subgroup of the product. We generalize this result as follows:

Theorem 1.1. If X is a compact, connected group then X can be expressed as

X =(UX,X T*\/P*

where

1. J is a suitable index set.

2. Each group X, is a compact, connected, simply connected, simple non-

abelian Lie group.

3. T* is a compact, connected, abelian group.

4. P* is a O-dimensional invariant subgroup of YL'SJ X,XT*.

We first develop a few preliminary results necessary to prove the above

theorem. If G is a connected compact Lie group written as H?-i X(XT/P

we denote by n the canonical map of JJ?-i XiXTonto G.
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Lemma l.LetG = (U%íXiXT)/P,G, = (J]%1X¡ XT') /£'be two compact,
connected Lie groups and let <p : G—*G' be a continuous homomorphism of G onto

G'. Then n(T) is mapped by <p into n'(T') and t?(lT"_i Xi) is mapped by <p into

Proof. Let ® and ®' be the Lie algebras of G and G' respectively. Then <j>

induces a homomorphism fa: ©—»©'. Now v(T) is evidently the connected

component of the center of G and thus corresponds to the center SB of ®,

which is the maximal ideal satisfying [x, y] = 0 for x£$8, y£®. Since <j> is

onto, # is onto and for any z£®', z = fay), and fax), x£33, [<j5(x), <?(y)]

= $([x, y]) =0. Consequently $(x) belongs to the center, 58', of &', which of

course corresponds to i)'(T'). If 31 denotes the Lie algebra of rç(IT"-i Xi) then

[31, 31] = 31 and in fact [®, &] = 31. Then if 31' is the Lie algebra of v'(llti X¡),
31'= [31', 31']= [#(31), ¿(31)] = <?[3I, 3l] = i(3l) and the lemma follows from the
canonical correspondence of Lie groups and their Lie algebras.

Lemma 2. With the hypothesis as in Lemma 1, <t> induces a continuous homo-

morphism, fa of n<*-i XiXT/(TC\P) into ü/li X} X T'/(TT\P') and the map
<p~ is the product map of two maps fa: H?-i Xi —* J\l-i X¡, &: T/(T C\ P)
-+T'/(TT\P').

Proof. Set 4>i=(^\n(Y\Xi))v. By Lemma 1, fa maps II"-1 Xi onto
^(ITj-i Xí)- Since til-i x'i is locally isomorphic to ij'(Il"-i xf), 0i defines
a local homomorphism of H?=i Xi into Ylf-i^i- Now H?_i Xi is simply

connected and there exists a unique extension fa: H?_i X,~>II"_i Xj.

Similarly, we have a local homomorphism fa defined byci> from T/(TC\P) into

T'/(TT\P'). It is easily seen that the natural extension fa is well defined on

these groups. The product of the two homomorphisms t>i and fa is the desired

homomorphism fa

Lemma 3. With the situation as above, we have fa¡ = n'fa

Proof. It is evident from the construction of 4> that this is true locally and

since the groups are connected this relation holds globally.

Proof of Theorem 1.1. Let X he a given compact, connected group. Let

{Xa, 0«}Œ£s be an inverse system of compact, connected Lie groups with

inverse limit X and c/>£ : Xß->Xa a continuous homomorphism onto for each

pair a, ßQS, a<ß [3, p. 99]. For each aQS we choose a fixed representation

n x*.« x Ta

Applying Lemmas 1 and 2 we obtain an inverse system {Xa, $£} of com-

pact, connected Lie groups with Xa= lT?Íi Xi,aXTa/(Tar\Pa), and $„ the

homomorphism induced by $£. Since each Xa is compact, the inverse limit
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Xx is also compact. Furthermore, we have each Xa the direct product of an

abelian and a non-abelian group and the homomorphisms c>£ are product

homomorphisms. It follows that Xx is the direct product Xx = Xlm X X\, where

Í1. is the inverse limit of the sequence { H?-i Xi¡a, q\ßa\ WXiia}aç,s and X\

is the inverse limit of { Ta/(Tar\Pa), cïf | Ta/(Tar\Pa) }afes. Clearly, X\ is a

compact, connected abelian group. In order to simplify the notation, we

henceforth denote the group YLï'i Xi,a by Ya and c>£| Ya by <S£. According

to Lemma 3, we have a map w of the inverse system {Xa, <£„} into {Xa, <p„}

and this map induces a continuous homomorphism n„ of XK into X. Since

the kernel of each na is finite and the kernel of nx is the inverse limit of the

kernels of na, the kernel of ti«, is 0-dimensional.

We study now the group X1«, which is the inverse limit of the system

{ Ya, «Sfjaes. For this purpose consider the kernel B of the homomorphism

$,'■ Yß—>Ya. Since #£ is onto we have Ya= Yß/B. It follows from the simple

connectivity of Ya that £ is a connected, compact, invariant subgroup of Yß.

By the unique decomposition of a simply-connected compact Lie group by its

connected invariant subgroups we have B = H^T"" Xki,ß. Then $„ induces

an isomorphism of a factor Yl"Zi Xtj,ß onto F„. Again by the uniqueness of

decomposition factors go to factors and isomorphically since these factors are

simple and simply connected.

Let S' denote the index set consisting of pairs (i, a), aES, 1 =^i = na. We

define the following equivalence relation £ on S' :

(i, a) = (j, ß) mod £,

if there exists 7£5 and k, l—k^ny with a<7, ß<y and

<l>a(Xk,y)   =  Xi,a,

(1-1) y
$ß(Xk.y)   =  Xj,ß.

Using £ we define the index set J to be the set of equivalence classes in

S'. With each vEJ we associate the simple Lie group X, which is isomorphic

to each of the groups X<t0, (*, ct)Ev. We will now define for each vEJ and

aES a homomorphism $>": X,—*Ya satisfying

(1.2) *r =■#!*?, a<ß.

Let «o be an arbitrary, fixed element of 5 which has a factor X,-,„0,

(i, ao)Ev. Define $"°: X,—»Fa„to be any isomorphism which carries X, onto

the factor Z,,„0 of Fao. If yES and c*o<7, define <£?: X,-*Xy by

(1.3) *: = (iio)"1*:0.

The inverse (<?„ )-1 is well defined as we are in one of the factors. Now if

ßES, then we define $% in the following fashion. There exists yES such that

ojo<7, ß<y. Then we set
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(1.4) *í = <t>W,.

It is not difficult to show that this definition does not depend on 7 and that

(1.2) is satisfied.

Having defined i>" for all pairs (v, a) we define the map $": \[vej -XV-»F„

to be the product homomorphism of $", vEJ. (1.2) allows us to pass to the

limit to obtain i»": Yl'SJ Xy-^XlK. It is easily seen that <£°° is an isomorphism

onto.

2. We point out here some relations between compactness and connected-

ness in a topological group. It will be shown that the connected component

of the identity of a compact group will be the same subgroup in any compact,

group topology put on that group and can in fact be algebraically character-

ized.

Theorem 2.1. Let G be a compact group. Let Gn= {x"| x£G| for each posi-

tive ». £Ae« ZAe connected component Go of the identity in G is precisely ()ñ~i Gn.

Proof. It is well known that Go£n,T-i Gn if G is a Lie group or if G is

abelian. It follows easily from the decomposition Theorem 1.1 that Go

Cn»-i GjCrC-i Gn. Let d£n»-i G" and denote by p: G^G/Go the canonical
homomorphism. We will show p(a) is the identity of G/Go. Since G/Go is

0-dimensional, there exists arbitrarily small open subgroups T7„, vEJ, [5,

p. 56] of G/Go such that (G/Go)/T7„ are finite groups, and consequently there

exists », such that for all aEG/Go, an'EHr. Since d£fln=i G", there exists

yEG such that y"* = a. Then p(a) =p(yn") =p(y)n* is in T7r. Consequently

p(a)EC\reJ H, = e, the identity of G/Go. Thus aEGo and G0 = n"-i G".
3. We propose to study here some of the relations between the group

structure and the topology of compact groups. Since we will be considering

a group and various topologies on that group, we will use the following con-

ventions. We denote an abstract group by G, X, etc. We write G(6) for the

topological group with underlying group G and topology £. W,ej Xv((ír) will

mean the product group in the usual product topology. If a: G—>X is a

homomorphism, then a considered as a (not necessarily continuous) function

from G(S) to X((üi) will be denoted by a(S, 61). We mention that if there

is no possibility of confusion we will lapse into the usual notation. In this

section our main interest will be the uniqueness of a compact topology on a

group. We will see that uniqueness largely depends on the center.

Theorem 3.1. Let G(6) be a compact, connected group with a totally discon-

nected center. If Si is another topology such that G(Si) is a compact topological

group, then Si coincides with S.

We first show some preliminary results that will lead the way to the proof

of the above theorem.

It is easily seen that the hypothesis on the center and the decomposition
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theorem of the preceding section provide a representation of G((S) as:

(3.1) G«S) = II X,(H,)/P(fS)

where for each »»£7, X,((&,) is a simple, simply connected, compact Lie group

and £(Ë) is a 0-dimensional, central subgroup. We now establish:

Lemma 3.2. £e/ G(6) = ILej X,(($.,) where Xv((&r), vQJ, is as above and

furthermore has a degenerate center, then Theorem 3.1 is true for G((S).

Proof. Let (Si also be a topology such that G(fëi) is a compact group. Con-

sider the projection p,: G—>XV. We will first show that the kernel of p, is a

closed subgroup of G(Si). Set £„= {xQG\xß = e, p9*v\. For each yQB, define

the continuous function fa: G(6i)—>G(Si) by fa(x) =xyx~ly~l. Since fa is con-

tinuous, the set £„= {xQG\fa,(x) = e], e the identity of G, is a closed set.

Now consider the closed set E = C\yeBpEy. Clearly an element of G is in £ if

and only if its i*th component is in the center of Xy. Since we have assumed

this center to be degenerate, it follows that the kernel of py is precisely E and

hence closed. Then pv induces from Si a compact topology on Xr. According

to [6, p. 782], the only invariant subgroups of X, are contained in the center

which is trivial. It follows that this topology gives X, as a simple, compact,

connected Lie group. Applying the results of [8, p. 784] which state that

there is only one such topology on X„ we have the induced topology on X,

from G(6i) the same as <£,. Define p(6i, 6): G((Si)->G((S) by u(x)={p,(x)}.

Since each coordinate function p, is continuous p is continuous. As a function

p is the identity and it follows from the compactness of G(fëi) that 6i coincides

with (£.

We return now to the general case. Referring to (3.1) we define £M(S)

to be the image of £((£) under the projection JJ_,ej X,((£?) —>X^((SM). Ap-

parently £„(6), pQJ, is a finite subgroup of Xß contained in the center C„ of

X,. Define X„'(£,) =X,(e,)/C,(£). Set X(ÇS)*=l[X,(<i,). The underlying
group X apparently has as its center C= \\,ej C, and C will be closed in

any admissible topology on X. Since PQ\\P,QC we have the following

commutative diagram

X

(3.2) ^\^

G-* X/C = II Xi.
a ,eJ

For aQX, let d = aP be in the center of G. Then for all dQX, dad_1QP.

Regarding d—*dad~l as a continuous function on X(0i), the connectedness of

X(S) gives a connected subset of £ which then must be a and hence aQC

and consequently the center of G is n(C), and is then closed in any admissible

topology on G. Clearly r¡(C) is the kernel of a.
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Now let Si be a topology such that G(Si) is a compact group. Since the

kernel of a is a closed subgroup, a induces a compact topology on X/C. Now

X/C is easily seen to be a group described in the hypothesis of Lemma 3.2.

Then this induced topology gives X/C as Wv&j X¡ (S») and in the diagram

(3.2) we have a(Si, S) and p\S, S) continuous. We wish to show now that

tj(S, Si) is continuous.

Since the group 77(C) is the kernel of the continuous map a(Si, S),

77(C) (Si) is a compact group. It follows from Theorem 2.1 that tj(C)(Si) is a

O-dimensional, compact group. Then 77(C) (Si) has arbitrarily small open, in-

variant subgroups {Hl}ß£M. Consequently we have the continuous homo-

morphisms <pß: G(Si)/77¿(Si)—>G(Si)/ti(C)(Si) =X/C and each homomor-
phism c/>M has a finite kernel. Since X(S) is simply connected the continuous

function )3(S, S) can be covered by a unique continuous function nß:X(<§.)

—>G(Si)/T7¿(Si) such that 770(e) = e (e here the identity of both groups) and

4>Mn=ß [5, p. 235]. We show first that v? is a homomorphism. Indeed, for

all x, y £ X, MvÁxy)-r,,(y)-%(x)-i) = ß(xy)ß(y)-lß(x)-'- = e. Hence

VAxy)vAy)~'1Vß(x)~l is in the kernel of c/v Since /„(x, y) =vÁxy)vÁy)~%(x)~l

is clearly continuous on X"(S)XA*(S) the image under fß is connected and

hence reduces to the point e. If tf: G(Si)/77/(Si)-»G(Si)/77;(Si) for 77;. £77¿,
it follows from the uniqueness of r/M that 77„ = p^'n^. Now {G(Si)/T7¿(Si),d^'}^eM

forms an inverse system whose inverse limit is easily seen to be G(Si). The

above relations show that {nß} provide a map of A"(S) into this inverse

limit and defines a continuous limit homomorphism tí«: X"(S)—>G(Si). Since

«TV/m = ß we see easily that arjx= ß.

It follows from av„ = ß = an that tj00(x) =tj(x)-c(x) and c(x) is in the center,

7/(C). Since for each xEX c(x) is a central element, c is an algebraic homo-

morphism of X into 77(C). Let £ be the image of X under c. If £ is not trivial

we could choose an invariant subgroup T7¿ of 77(C) such that r/(C)/77¿ is

finite and H^C^Rt^R. Then R/RC^H^e and we should then have a proper

invariant subgroup of X whose factor group is finite. This would contradict

Theorem 2.1 and consequently vx=t]. Since 77 is then continuous we see that

the topology Si on G is induced by the topology S on A" which is just the

topology S on G, and hence the theorem.

4. We consider in this section the case of abelian groups. We prove first

a general structure theorem and point out some examples which contrast

this case with the case of the last section.

Theorem 4.1. Let G be a compact, connected abelian group. Then

G = H + K (topological direct sum),

where H is a compact, connected group in which the elements of finite order in G

are dense, and K is a topological direct product of a certain number of copies of
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the character group of the rational numbers (the rational numbers considered here

in the discrete topology).

Proof. Let 27' denote the subgroup of elements of finite order in G, and 27

the closure of 27' in G. Since G is connected and compact, the group G is

divisible [4, p. 55] and then clearly 27' is a divisible group. It is easily seen

that the closure of a divisible group in a compact group is divisible since

x—>»•# is a continuous function, and consequently 27 is divisible. According

to [4, p. 8 ] 27 is then algebraically a direct summand of G and we have

(4.1) G = H + K (algebraic direct sum),

and furthermore K is divisible since G is. Then the underlying group of the

topological group G/27 is isomorphic to K. Since H'QH, HC\K = 0, K has no

nontrivial elements of finite order and consequently £ is a vector space over

the rational numbers [4, p. 10]. Since the topological group G/27 is compact

and connected, its character group, X, has no elements of finite order.

Furthermore, X is divisible. For if/: G/27—»C, where Cis the circle in its usual

topology, is a continuous homomorphism, then the continuous homomor-

phism g: G/27—>C defined by g(x) =f(x/n) shows that X is divisible. Now
X can be considered as the subgroup of the character group G^ of G which

annihilates 27, and since X is a divisible group, X is a direct summand of G^\

Then we have

(4.2) G~ = X + P.

By duality, 27 is the character group of G^/X=P. It follows from (4.2)

that the character group of G~, which is of course G, decomposes into the

topological direct sum of two closed subgroups which have for their char-

acter groups X and £ respectively. Clearly the character group of X contains

no elements of finite order since X is divisible. Since the topological direct

summand of G corresponding to the character group of £ must contain all

the elements of finite order it must be 77. That the character group of X has

the prescribed form follows from the representation X = ¿Iß^N £M-

Remarks. With respect to the development of III, we give the following

examples to show that in the abelian case nothing like uniqueness prevails,

even up to topological isomorphism.

1. Let {pn\ be some ordering of the primes. Consider the inverse system

{Sn , a„} where for each n, S\ is topologically isomorphic to the usual circle

group, S1, and a«: S„—»Si-i is given by an(x) = pnx. The inverse limit can be

seen to be algebraically isomorphic to S1 but cannot be topologically iso-

morphic to S1.

2. Let K be the character group of a finite or countable direct sum of

copies of the rational numbers in the discrete topology. Then S*+K (topo-

logical direct sum) is algebraically isomorphic to S1 (see [2; 3; 4]).
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