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Introduction. The following problem was considered by Gibbs [l]. Al-

though his comments on it were intuitive in nature, they contain what ap-

pears to be the essential idea behind the solution. The problem goes as fol-

lows: Given an ensemble of mechanical systems, each of which is an ideal

gas in a box, with all the boxes alike, we can define the ensemble entropy S by

—/
p log pdV

where k is Boltzmann's constant, p, the system density in configuration space,

and V the 2«-dimensional Lebesgue measure in the 2»-dimensional configura-

tion space. Gibbs proved that 5 so defined has properties which, for certain

functions p, are analogous to those of thermodynamical entropy. If, however,

we can expect 5 to behave like thermodynamical entropy, then if, at time

Z = Zo, the containers belonging to the gas systems in the aforementioned en-

semble are all suddenly and simultaneously doubled in volume (e.g. by re-

moval of partitions, etc.), the quantity 5 should, in the period OZo, ap-

proach a value that is greater than its value at time Z = Zo. Such a change in

the value of S appears to be impossible since, by Liouville's theorem, S as

defined above is a constant of motion for the ensemble.

Gibbs removed this difficulty in a way which is most easily understood

by examining a special case. Let each of the systems in the ensemble be, in-

stead of an ideal gas, a single degree of freedom rigid rotator. Configuration

space now has two dimensions, q and p, the angular displacement and

momentum respectively. We adopt the convention that T^q> —it. We sup-

pose that at time Z = 0 the system density is given by

.      v        U(P)    when    0 = q > - t,

P00>'?)=1   0      when    ,fc,>0

where f(p) is some measurable function of p alone. The item of major interest

will be the manner in which the region 0'=q> — it maps, as time proceeds,

into the region ir^q> —tt as a result of the transformation specified by the

laws of mechanics. The various images of this region for various times

Z = 0, 1, 2, 4, 8, 16 are shown in Figure 1. It is clear from Figure 1 how the

ensemble of systems under consideration approaches ensemble equilibrium.

It is even possible to write down a final "equilibrium density,"
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PÁP, q) = f(p)/2       for x è q > - t.

A precise definition of equilibrium density will be developed in this paper.

The usual procedure for dealing mathematically with this aspect of sta-

tistical mechanics [2] is to work not with the actual density function as it

develops through time from po(p, q), but with the "coarse grained density"

defined by

P(p, q) =- f pdV
™V       V(E)J e

where £ is a cube of given nonzero volume V(E) and with center at (p, q).

In reference [2] an argument is given to show that the quantity S, where

S = - k f Plog PdV

cannot decrease in time during passage to equilibrium. Considering the special

case above, it is clear that it will sometimes increase.

The procedure of defining a coarse grained density and stating important

theorems in terms of it seems unnatural. This paper deals with the passage

to equilibrium in a rigorous manner, and avoids any reliance on the coarse

grained density concept. Unfortunately, there remain important outstanding

questions whose answers must wait for far deeper understanding of the equa-

tions of mechanics than has been achieved up to the present time.

It will be apparent from this treatment that the mathematical expression

of the approach to equilibrium is very similar to what is normally referred

to as "weak convergence" by mathematicians. This is in partial agreement

with a conjecture by H. Grad [3]. It has been so far impossible to establish

reasonable conditions which assure weak convergence in the strictest sense.

Heavier reliance on the laws of mechanics seems to be necessary if such a

thing is to be proved.

1. Definition of the measure space. Let M be the set of all possible static

positions of a given «-degree of freedom mechanical system. We assume M

to be an « dimensional, CK, Lindelöf manifold in which the coordinate values

over a given coordinate neighborhood are denoted by qi, ■ • • , q„.

Let Fq be the dual space to the tangent space at qQM. Let £ = Uí6at £4

be the corresponding vector bundle over M. We define the "elementary

canonical coordinate systems" in B as follows. Let (c\l, fa) be a coordinate

system in M. For ££11, with <¡>(q) = (oi, • • • , gn)££", let X be in £,. Then

X has the coordinates (qu • • • , qn; pi, • • ■ , pn)QR2n, where

Pi=X(Í~)' (*= !,•••,»)
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where d/dqi is the natural basis for the tangent space at q in the (11, <f>) co-

ordinate system. The coordinate neighborhoods in B are, by the definition

of a vector bundle, the sets of the form 1) = 11,6^ Fq, where 11 is a coordinate

neighborhood in M.

Definition. Let (V, n) be an elementary canonical coordinate system in

B. Let XEV. Let/ and g be differentiable functions defined on 13. We define

the "Poisson bracket," [/, g] of / and g with respect to (V, n) at X by

"■«■-¿(rir-jrf) "<-i\oç<   dpi      dpi   dqi/

where the g,-, pi are the coordinate values in the (V, v) system, and where the

partial derivatives are evaluated at X.

Remark. Let (Vi, tji) and (1)», ij2) be two elementary canonical coordinate

systems in B, with "Uif^l)* nonempty. Let the coordinate values in the

(l)i, t/i) system be (çjn, • • • , gi»; pn, ■ • • , pin). Then the Poisson brackets

[ ,  ] of the qu, pu with respect to (132,172) at XEVifWi satisfy the relations,

[qui qui = 0»     [?w> Pu] = hi,     [Pu, Pii] = 0.

It is well known that these relations imply that [f, g] with respect to

(Ui, 7ji) at XEViCWi is equal to [f, g] with respect to (T)2, w2) at X. We can

therefore define a more general coordinate system in B.

Definition. Given a coordinate system in B, (W, u), let its 2» coordinate

values be denoted by (Qi, • • • , Qn; Pi, • • • , Pn). We call ("W, u) a canonical

coordinate system in B if, for any elementary canonical coordinate system

(1>, »;) with V?f~\V nonempty, p,orrl is C°° in wOon'W), and the Poisson

brackets of the Ç», £y with respect to the (V, v) system at XEVÍW? satisfy

the relations

[Qi, Qi\ = 0,      [Qi, P¡] = s»,      [Pi, PA = 0.

It is clear from this definition that the Poisson bracket of two functions /

and g has the same value in any canonical coordinate system.

From their construction, the canonical coordinate systems cover B.

A theorem due to Poincaré states that if (Wi, pî) and (Wü, pt) are two

canonical coordinate systems in B with WiHWn nonempty, then the square

of the determinant of the transformation pi o pï1 from Pí(V?iÍ~\V?í) to

AtiCWiH'Ws) is unity. This follows directly from the above definition of

canonical coordinates. This enables us to define a measure on 73 in a simple

way. Let £££ be contained entirely in some canonical coordinate neighbor-

hood W, belonging to the system (W, p). We will say that £ is measurable if

p(E) ££2" is Borel measurable in £2b. The Lindelof property of M allows the

extension of this definition to any set in B. If ££*W, its measure is the Borel

measure of/*(£). The corresponding measure, definable through the Lindelöf
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property of M, oí any measurable set in B will be denoted by V, and called

the Borel measure over B.

2. Further definitions and assumptions.

Definition. Let XQB. There is exactly one C7£J17 such that XQFq. We

denote by -X that element YQFt for which X+ F=0.
Definition. Let EQB. We denote by £* that set in B for which XQE

ii and only if -XQE*.
Definition. Let £i and E2 he measurable subsets of B. We define

£iA£2 = (£i - £2) W (£2 - £1).

The quantity F(£iA£2) has important properties which are discussed in

[5, Chapter VIII]. Two trivial ones, useful for proving some remarks to

follow, are

F(£iA£2) = F(£i U £2) - F(£i Cl £2),

F(£iA£2) = F(£i - £2) + F(£2 - £1).

Let ß = — ß be a measurable set in B. For real 1^0, let/( be a mapping of

ß into ß. We impose the following conditions on ft.

(A) E is measurable if and only if/r'(£) is. E is measurable if and only if

ft(E) is.

(B) F(£) = F(/t(£)).
(C) Let s^O, i^O. Then for all measurable E£ß,/,+,(£) =/,(/.(£)).

(D) There is an increasing sequence {£„} of measurable sets, each of

finite F(£„), such that U„ £„ = ß and, for all fZO, V(FnAft(Fn)) = 0.
Condition (D) is obviously true for systems whose Hamiltonians are such

that the set {X: |27(X)| <»} is of finite measure for each w. There are many

systems of this type. There are also important cases, however, where such

sets are not of finite measure. In the case of a particle moving in a spherical

gravitational field, for example, the set {X: a<H(X) <ß\ is not of finite

measure for any a<ß. If we choose for ß the set {77<0}, corresponding to

bound orbits, the existence of a sequence {£„} can be proved.

We now make the following remarks without proof. They make possible

the approximate extension of conditions (A) to (D) to all values of s and t.

Remark (1). Conditions (A) and (D) imply that F(ßA/,(ß))=0 for all

t^O.
Remark (2). Condition (A) and Remark (1) imply that V(EAft(fr1(E)))

= 0 for all t^O.
Remark (3). Remark (2) and Conditions (A) and (B) imply that V(E)

= V(frKE)).
Remark (4). Conditions (A) and (B) imply that V(EAF) = 0 if

V(ft(E)Aft(F))=0.
Remark (5). Remark (4) and Condition (A) imply that V(EAfr1(ft(E)))

= 0.
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Remark (6). Remark (5) and Conditions (A) and (B) imply that

V(ft(E)Aft(F)) = F(£A£),

V(ft(E)r\ft(F)) = V(EC\F).

Remark (7). Remark (6) and Condition (C) imply that F(/0(£)A£) = 0.

Remark (8). Define/_,(£) =/r1(£) for t>0. Then Condition (C) and

Remarks (2), (3), (5), (6) and (7) imply that V(f,(ft(E))Af,+t(E)) = 0 for all
real s and /.

Remark (9). Condition (D), Remark (3) and Remark (5) imply that

F(£^V.(^))=0foralU.
In these remarks, it is to be understood that £ and £ are Borel measurable

subsets of ß. We now append one further condition to Conditions (A)-(D).

Condition (E). F(/,(£*)A(/_i(£))*)=0 for all t and measurable £.

This condition is a form of what is commonly referred to in classical

mechanics as the principle of reversibility of time. The condition as it is

stated here is a consequence of the symmetry of the Hamiltonian under

change of sign of the momentum coordinates in any elementary canonical

coordinate system.

Definition. We will use the notation, ft(E)=Et.

Given a class {/»} of mappings of ß into ß satisfying conditions (A)

through (E) above, we can, from a given totally o-finite absolutely continuous

measure 2 over ß define a class of measures {it}, which are also totally

tr-finite and absolutely continuous, by

It(E) = 2(£_().

This definition is equivalent to

It(Ei) = 7(£),

and for this reason, we call {It} the conservative class of measures generated

by 7.
Remark (10). There exists a measurable function p^O defined on ß with

the property

7((£) = f    pdV,
J E_t

for all measurable E. The function p is the Radon-Nikodym derivative of 7

with respect to V.

Remark (11). Condition (B) and the absolute continuity of 7 imply

that if 7 is totally finite, {It} is a uniformly absolutely continuous class of

totally finite measures.

3. Theorems on equilibrium. The following pair of lemmas from measure

theory will be found useful in what follows. They will not be proved in this

paper.
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Lemma (A). Let vbea totally a-finite measure. Let {Mt} be a class of totally

finite measures which is uniformly absolutely continuous and such that, for

some totally finite absolutely continuous measure M(£), lim._M M((£) = M(£)

for each v-measurable E. If f is a non-negative measurable function such that

{fsfdMt} is a uniformly absolutely continuous class of totally finite measures,

then for every set E of finite v-measure, fefdM exists and

lira,   f fdMt = f fdM.

Lemma (B). Let v be a total measure. Let S be a finite, finitely additive set

function defined on the v-measurable sets, such that if F is v-measurable and

v(F) < a>, zAe» 5 is an absolutely continuous measure on the a-ring of v-meas-

urable subsets of F. If there exists a nondecreasing sequence {F„} of v-measurable

sets of finite v suck that U„£» = ß = Zfte entire space, and such that lim»^» 8(£„)

= 5(fi), then o is an absolutely continuous measure on the v-measurable sets.

Definition. Let £ be a F-measurable subset of Ö. For each t, we define

pt(E, G) = V(E, r\ G)

for all F-measurable G£ß. If they exist, we define

At_„(£, G) = lim p-t(E, G), and pK(E, G) = lim p,(E, G).
(—.06 |—.00

Remark (l). If F(£)<°o, then pt(E, G) is the uniformly absolutely

continuous conservative class of totally finite measures generated by 7(G)

= V(EC\G).
Proof.Using Remarks (3) and (5) of §2, we have,

pt(E, G) = V(Et r\G) = F(£ C\ G_«) = 7(G_().

Remark (2). p-x(E, G) exists for all measurable £ of finite F-measure

and all measurable G if and only if p„(E, G) does.

Proof. We use the fact that V(G) = V(G*) for all measurable G, and that

(Fi\G)* = (F*)r\(G*). By Condition (E), §2, F((£*),A(£_i)*) = 0. There-
fore, m-((£, G) = F(£_tnC) = F((£_()*HG*) = F((£*)(HG*) =pt(E*, G*).
This proves the remark.

Theorem I. For each absolutely continuous a-finite measure I, let {7<} be the

conservative class of measures generated by I. The function pK(E, G) exists for

each E of finite measure if and only if 7to=limt..00 7. is, for arbitrary totally

finite absolutely continuous measure I, an absolutely continuous totally finite

measure on the V-measurable subsets of ß.

Proof. Assume that px(E, G) exists. Then by Remark (2) above, so does

/*_„(£, G). Let ££ß be F-measurable. We have by Remark (10) §2, 7,(£)

=fB-,pdV, for some measurable p^O. The function p is integrable by total
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finiteness of 2. By Remark (11) J7»} is a uniformally absolutely continuous

class of totally finite measures. Let p-¡(£, G) be regarded as a measure of G,

which we denote by p-t(G). We then have, 7,(£) =fapdp-t. We consider two

cases:

(i) EQFn for some integer n, where £n are the sets of condition (D) of §2.

(ii) E is not contained in £„ for any «.

Case (i). £££„ implies £«£(£„)« and that V(E) < <x>. Therefore pt(G)=0

for all V-measurable subsets G of ß —(£„)<. Therefore

7«(£) = I pdp-t =  I   pdp-t.
J <*»>_« J fn

Since, by Remark (1) above, pt is a uniformly absolutely continuous class of

totally finite measures, and since p((ß) Û F(£„) <<x>, pK is a totally finite

measure over the F-measurable sets, andsolim(_007((£) exists by Lemma A.

Case (ii). £ = U„£r\£„. We know, by Case (i) that lim,,« 7,(£n£„)
exists for each «. Further, because 7« is totally finite, lim,,..,,, 7t(£C\£„) also

exists. Let n^m. Then

| It(E H F„) - It(E H Fm) I  = It(E H (£„ - Fm)) £ I,(Fn - Fm)

= | £(£„) - It(Fm) |   =  | 7(F„) - I(Fm) | .

But, by total finiteness of 7, 7(£„) converges, so that 2<(£C\£„) converges

uniformly in n for all t. Therefore lim^» 7<(£) exists and we can conclude

that

7M(£) = lim 7,(£) = lim   lim It(E C\ Fn) = lim   lim 7,(£ Cl £„)
t—» • |—* oc     n—>«o n-* »    i—» ao

= limI„(Er\Fn).
n—*«o

Letting £ = ß, this gives lirnn^.«, 700(£n)=70(1(ß). Now 7«, is finitely additive

and totally finite. Further, by uniform absolute continuity of 7t, 7W is an

absolutely continuous measure over £n for each ». Since U„£„ = ß, Lemma B

applies and 7«, is an absolutely continuous totally finite measure on the V-

measurable subsets of ß. The rest of the proof of the theorem follows directly

from Remark (1) above.

Whether or not pK(E,G) exists in the sense of Theorem I for the majority

of systems considered in mechanics is a question which the author has so far

been unable to answer. It appears to be true for nearly all separable systems.

There are, however, exceptions, one of which is the harmonic oscillator.

Separable systems for which pm does not always exist in some appropriately

chosen ß do seem, as Gibbs indicates, to be very exceptional. The existence

of p«, can be proved, for example, in the case of the rigid rotator and in the

case of the ideal gas in a rectangular box.
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We now restrict the class of systems considered in this paper by one more

condition on /..

Condition (F). px(E, G) exists for each measurable £ of finite measure

and each measurable G, where £ and G are contained in ß.

From Theorem I it is now possible to conclude, by the Radon-Nikodym

theorem that there exists a non-negative integrable function Pa,(X) for which

.(£)=rPadV.
B

We call I*(E) the equilibrium measure, and p*(X) an equilibrium density.

It is easily seen that two equilibrium densities corresponding to a given 7 are

almost everywhere identical.

Remark (3). 7„(£,) = 700(£) for all real 5 and measurable ££ß.

Interpreting Remark (3) in terms of pm we have, for s = 0,

f p„(X)dV = f P„(X)dV = f p„(f.(X))dV
J b Jb, J b

so that pM(X)=pxl(f,(X)) almost everywhere for s = 0. In this sense, px(X)

is almost a constant of motion. This is as close as we can come within the

scope of this paper to proving that p„ satisfies Liouville's equation for equi-

librium.
The next theorem gives information about the way in which certain

ensemble averages at equilibrium are related to the corresponding quantities

calculated for finite values of Z. For a discussion of this aspect in special cases

see a paper by H. Frisch [4]. The author feels that this theorem can be

greatly improved upon, but that in order to do so, one must use more of the

information contained in the equations of mechanics than is contained in

Conditions (A)-(F) of this paper.

Theorem II. Let g be a measurable, non-negative function defined over ß.

Let I be a totally finite absolutely continuous measure over ß. If there exists a

measurable function <p(X) defined over ß with the following properties:

(i) d> = & almost everywhere on ß;

(ii)  V({X: a-=<b(X) <ß}) < °° for each positive a and ß;

(iii) (b(ft(X)) =<b(X)for all X£ß, and t = 0;
and

(iv) fapdl exists ;
then fagdlt and fogdIK exist and

lim   J gdlt = j  gdlx

where 7. is the conservative measure generated by I.
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Proof. By Remark (11) §2 and Theorem I, {i,) is a uniformly absolutely

continuous class of finite measures with lim(.M 7. = 7«,, where IK is a totally

finite measure on the F-measurable subsets of ß. Let p be the Radon-

Nikodym derivative of 7. Then since (p(ft(X)) =<f>(X),

/gdl, g f failt = f    fail = |     ,ppdV g f fall.
e Je J e_, «^ jf_, •'a

Therefore, by Condition (B), and the integrability of <f> with respect to 7,

{fsgdlt} is a uniformly absolutely continuous class of finite measures for

i^O. Therefore, if G is a set of finite F-measure, fcigdlx exists and

lim   I  gdl, =  I  gd7«,
I-»«   J g J g

by Lemma A above. Let G,= {X: l/i^<f>(X) <i} for positive integral i. By

hypothesis F(C) < oo. Therefore the limits

lim   I   gdl, =  I   gdlw

lim   I   gd7, g  I gd7,
t-KÙ      J  Gj J  Q

exist. Since <t>(ft(X)) =<t>(X), (Gi)-, = Gi and therefore, if i§ife,

i r g¿7( - f gdi\ = I f gd7(| g r .¿.¿7,

=     j   </>d7, -  I   <^¿7i   =    I   4>dl - j   <¡>dl
\J Qi J Gk I IJ Gi J Gk

Since {foifail} converges for i—+ oo, {fondit} converges uniformly for

all t. Therefore,

lim   j   gdl.

exists and

/gdl„ = lim   lim   I   gd2i = lim   lim        g¿7(.
¡¡ í—»«O        (—»00    «/   04 t->°°       {->*>     J   Gi

Since O^g^fa g = 0 on ß —Un Gn, and therefore

lim        gdlt =  I  gd7(       for I í I   á *.
i-> » J Gj J n

This proves the theorem.
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Theorem II would be more satisfactory without the requirement that <b

exist for a given g. If such an extended theorem is false, counter examples

within the domain of classical mechanics are very difficult to find and are

probably not simple. The author has yet to find any, and has, furthermore,

actually proved the extended theorem for the rigid rotator. No discussion of

this rather special case will be given here, except the remark that Theorem II

above does not seem to be a very helpful stepping stone to the extended

form.

In order to prove the next theorem, we note an inequality whose proof

depends only on the simplest properties of convex sets. This inequality is

found in Inequalities by Hardy, Littlewood and Polya. For another applica-

tion of it, see also [6]. Let <p(x) be a real convex function of a real variable x.

Given any finite sets {x(} oí real values of x from the domain of <p, and {X,}

of positive real numbers,

*(?7*)S?T
<p(xí),

where X= J^.X,-. Note that x log x is convex for x>0. Let £ be a F-meas-

urable set of finite measure. If p is integrable over £ and if p(X) log p(X) is

also, then it is easy to prove from the above inequality, an analogous one

for integrals.

(1) ( ^-) log ( ^-) Ú —*— f p(X) log P(X)dV
\V(E)/    *\V(E)J      V(E)JEK

where 7(£)=/Äp(X)dF.

Let 7 be an absolutely continuous totally finite measure on the F-meas-

urable subsets of ß. We have, by Remark (10) §2, an integrable function p0

such that 7(£) =fEpodV. By definition of p«, we also have 7e0(£) =fEpxdV.

Theorem III. Let fapolog p<¡dV exist. Then the integral fapx log pxdV

exists in the extended sense and

/P» log pJV á I po log podF.

Proof. It is convenient to define

5o(£) - f po log podF,
J B

S„(E) = f P« log P»dV.

We wish to show that S„(£) is an extended valued set function and that
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5w(ß) ^50(ß). From inequality (1) above, we have

I(E-t) \     So(E-,)     So(E-,)

F(£_«)       F(£)\ V(E) J    S V F(£) /     V F(£_() /    * \ F(£_«) /

Let i, j, k, and » be positive integers. Let £*,= {X: l/j^px(X) <ife/ji} and

let, for each j and k,

Él = {X: i/nj è Pk(X) <(i+ l)/nj\.

Let x* be the characteristic function of 2£J. Define fhe simple functions

n*-l

gl(X;t)= 22xni(X)\i(t)
Ml

where X?(0 is defined by

(^w^)  when m:)>0)
\V(EÏ)/    *\V(E»)/

0 when   F(£<) = 0.

From inequality (2), we have X?(i) gS0((£?)_()/F(£?). It is an easy matter

to verify that, for almost all XQEk„

lim   lim ¿(X; t) = p„(X) log p„(X).
n—* =c     '—>ae

Since, by integrability of p*(X), Ek¡ is of finite measure, Lebesgue's bounded

convergence theorem gives

lim   f     lim gnk(X; t)dV = 5„(£ty).
»—» SO     J Ej,f   Í—» ",

By Remark (3), §3, pa(ft(X)) =pK(X) almost everywhere in ß for all i^O.

Therefore F(£*,A(£«)_,) =0. Therefore S„((£ty)-,) =S0(Eki).

Since Ekj can be otherwise written as

n*-l

Eki=   U  El
t—n

we have

n*-l

(Ek})-, -   U  (J&_,

and because B^C\E¡ is empty for ¿5*/, the definition of Sq(E) gives
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nk-l

£ So((E'U) •= So((EkJU) = S„(Eki).

We now have,

Sa(Eki) - lim   f     lim gl(X; t)dV
%—> oo    J gk.   I-» oo

nJfc—1

= lim   lim   2 ^(£")X"W

nk-l

= lim   lim   X) So((E*d-t)
n-*«o    «-.o»    j.,

= lim   lim So(£y) = So(£*,).
n—.oe    (—»oo

Now, since lim»..., So(£*,) exists by hypothesis and since Sx(Ekj) is a non-

decreasing function of k for k >j, the above inequality gives

lim S„(Ekj) á lim 5o(£*y).
k—► » Jb—»oo

Since Uj*_i £*i is the set on which PooCX") log Poo(A) ^0, this proves that SK(G)

is bounded from above. Therefore SX(G) is an extended valued set function.

Let £,= {X:pM(X)^l/j}. Then the preceding inequality gives

S„(Ei) g So(Ei).

The theorem follows by letting j—+<».

By referring back to the case of the rigid rotator, it is easily seen that

there are cases where strict inequality holds.

Remark. Since x log x is bounded from below, the proof of Theorem III

and Condition (D), §2, imply that if p0 = 0 almost everywhere in ß — £„ for

some », 5„(ß) exists as a finite number if S0(ß) does.

There is no possibility of proving the existence of Soo(ß) as a finite num-

ber. A counter example can be given. Consider the case of the rigid rotator.

We define the initial measure by means of the density function po in the fol-

lowing way. Let

g(P) =
Pdogp)*'2

Then po(X) is given by

0     when   p ^ e   and   \q\ = r,

0     when   p > e   and    — x Ú q<rr — g(p),

.1/2   when   p>e   and       1 > q ^ r - g(P).

Po(X) =



522 CLIFFORD C. BROWN

It is easily seen by direct calculation that fapo(X)dV— 1, and 50(ß) = —log 2.

The equilibrium density, however, is almost everywhere equal to

(g(P)/4*   when   p > e,
Poo(X) = <

(      0 when   p s e

for which S«,(ß) can be found by direct calculation to be negatively infinite.
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