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1. Introduction. Let G be a group and £ a commutative ring with identity

element. The group ring T of G over £ consists of all formal sums 2^1a(i)g

where gEG, ct(g)ER and a(g) = 0 except for a finite number of g. The oper-

ations of addition, multiplication and multiplication by elements of £ are

defined in the natural manner. Thus, T is a free £-module with a multiplica-

tion induced by the group operation in G. The set of all those sums 2~la(s)i

for which 2~La(g) = 0 is an ideal A of Y, called the fundamental ideal of Y.

If A is any ideal of Y, then

@(A) = {gEG:g=- 1 mod A}

is a normal subgroup of G. The subgroup £„ = ®(An) of G is called the wth

dimension subgroup modulo £ of G. These subgroups are modeled in their

construction on the dimension subgroups of free groups defined by Magnus

[7] and Zassenhaus [8]. Lazard [6] has shown that the dimension subgroups

modulo ZP, the ring of integers modulo the prime p, are characterized by

precisely the same properties, discovered by Zassenhaus, which characterize

the dimension subgroups modulo ZP of a free group. Our main result will show

that a similar situation holds for the construction of Magnus: If £ is a free

group then the dimension subgroups of Magnus are identical with the dimen-

sion subgroups modulo Z, the ring of rational integers, as described above.

Namely, they are exactly the subgroups of the lower central series of £. This

result has previously been proved by Fox [2].

This leads to the conjecture (Cohn [l], Lazard [6]) that the dimension

subgroups modulo Z of any group G are exactly the subgroups of the lower

central series of G. The principal aim of this paper is to verify this conjecture.

Using this result, it will be shown that the factors of the lower central series

may be calculated directly from the group ring.

The author wishes to express his appreciation to Professor Roger Lyndon

for his aid and encouragement.

2. The group ring and the fundamental ideal. Let n: G—>H be a (group)

homomorphism. r/ can be extended to an £-homomorphism of YG into YH by

setting

í [£«(?)«] = I«(f)l(s)'

Jennings [3] has shown the following:
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Lemma 2.1. If n: G—>H is a homomorphism with kernel K, then r¡: Tq—^Th

is an R-homomorphism with kernel I(K), where I(K) is the ideal ofYa generated

by all elements k — 1 for kQK.

Lemma 2.2. If o:G—*l is the trivial homomorphism then its extension

ó: Y-+R has kernel A. Thus A is an ideal. The elements g — 1 for all g9*1 in

G are an R-basis for A.

Proof. The first statement follows from Lemma 2.1 and the definition

of A. Now, suppose ]Ca(g)fi£A. Then ^a(f) =0 and so

H<x(g)g = 2Z<*(g)g - Z«(?) = H<x(g)(g - !)■

Hence, the g—1 span A. On the other hand, if 2^La(ê)(i~ 1) =0 tnen 2^a(¿)¿

— ( ^a(g)) -1=0 and so a(g) =0 for each g. Therefore, the g — 1 are linearly

independent over £.

Theorem 2.3. Let ö: Y—>£ be the canonical homomorphism sending 2^2a(g)g

onto X/*(g)- Let n: T—>£ be any other R-epimorphism. Then there is an auto-

morphism t of V such that v = o-r.

Proof. Since n is an epimorphism, v(l) = 1. Hence, for any gQG, n(g)ri(g~1)

= 1 and so 77(g)-1 exists. Define t: r—T by

r[L«Wil = 2Z<*(g)v(g)g-

It is easily verified that r is an endomorphism of Y. Suppose ^a(g)'7(g)g = 0;

then a(g)n(g)=0 for each g. Since ^(g)-1 exists, a(g)=0 for each g and so

2a(g)g = 0. Thus the kernel of r is (0). Given any 2^La(i)i^^> note that

rtZateMf?)-1«] = 2Z<*(g)g>

and, hence, r is onto. Therefore, r is an automorphism. Moreover,

o-r[2Z<x(g)g] = ô[Y,a(g)ri(g)g] =  E«tóí(?) = v[Jla(g)g]-

Therefore, ö-T = tf.

Corollary 2.4. Let n:Y-+R be any R-epimorphism with kernel A. £Ae»

A^A.

Proof. Let r be the automorphism defined above. If X/*(s)g£A, then

2^L<x(g)y(g) =0, or, in other words,

Ï2<x(g)n(g)g = r(2Z<x(g)g) £ A.

Hence, r(A)CA. Conversely, let 2a(g)g£A. Then 2a(s),/(i!)~1g£A since

vŒ^gM-'g) = 2>(«) = 0.

Also, r(2~2oi(g)r)(g)~1g) = 2^1a(s)g- Therefore, r(A)3A. Hence, t(A) =A and so

A and A are isomorphic.
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A consequence of this result is that A is determined up to isomorphism by

the structure of Y as an £-ring, without any reference to the group G. In

particular, if G and 77 are groups with isomorphic group rings then they also

have isomorphic fundamental ideals.

3. The dimension subgroups. As indicated in the introduction, we define

Dn = Dn(G; R) = {g £ G: g = 1 mod A»}.

It is easily verified that 7>„ is a normal subgroup of G. Since A3A22A32 • • •,

the dimension subgroups form a descending series,

G = £>i 3 Di D D3 D • • • .

This sequence is called the dimension series mod £ of G.

In the sequel, the notation (h, k) = h~lk~lhk is used. By (77, £) is meant

the subgroup of G generated by all commutators (h, k), hEH, kEK. The

lower central series is defined G = Gi, G„+i = (G„, G). A descending sequence

of subgroups J77¿j is said to be a descending central series if (77,-, G)Ç77,+]

for every ¿.If } 77,} is a descending central series of G, then 7£3G< for every *'.

Theorem 3.1. The dimension subgroups of G form a descending central

series of fully invariant subgroups of G. Moreover, (Dn, Dm) QDn+m. Hence,

D„2G„ for every ».

Proof. Verification of (Dn, Dm) QDn+m will show that the series is central.

(Dn, Dm) is generated by all commutators (g„, gm), gnEDn, gmEDm. Since

g„ —l£An and gm— l£Am, the element

gngm  -  gmgn   =   (gn  ~   l)(gm  ~   1)   ~   (gm  ~   l)(gn  ~   1)

belongs to An+m. Therefore

(gn, gm)   =   gn    gm   gngm

=   1  + gn~lgml(gngm  ~  gmgn)

= 1 mod An+m.

Hence, (g„, gm) EDn+m.

Let g be any element of Dn. Then g may be expressed in the form

g = i + E«<ñ(g.7-D.
í-i      y-i

Let 7 be any endomorphism of G. Applying its extension y to both sides of

the above equation gives

y(g) = i + ¿ «, fi (y(gi¡) - i),<-i      y-i
and so y(g) = l mod A" and, thus, 7(g)£7J>„. Therefore, Dn is fully invariant.



1960] ON DIMENSION SUBGROUPS 477

Jennings [5 ] has proved the following result for the dimension subgroups

of a finite p-group modulo a field of characteristic p. His proof is easily

extendible to the general case.

Theorem 3.2. £e/ 27 be any normal subgroup of G and « the largest integer

such that £„377. Then the first « dimension subgroups of G/H are

G/H = £i/27 3 Dt/H D • • • D £„/27.

It is unknown if dimension subgroups, in general, are preserved under

homomorphism.

4. Some isomorphism theorems. The mapping

*: Dn -* An/AB+1,

defined by i(g) = (g — 1)+An+1, is well defined since gQDn if and only if

g— 1£A\ If g and h are in £„, then

i(gh) = (gh - 1) + A»+»

= (g-l) + (h-l) + (g- l)(h - 1) + A»+l

= (g-l) + (h-l) + A-+1 = i(g) + i(h).

Consequently, i is a homomorphism of Dn into the additive group structure

of A"/An+1. The kernel of i is clearly £„+i. Thus, we have proved

Theorem 4.1. There is an imbedding ï of Dn/Dn+i in the additive group

structure of An/An+1.

Corollary 4.2. If the ring R has characteristic m, then the order of every

element of Dn/Dn+i divides m. In other words, £n,Ç£„+1, where D™ denotes the

subgroup of G generated by all mth powers of elements from £„.

Note that the subgroup ï(Dn/Dn+i) of An/An+1 does not necessarily admit

operators from £. However, if we restrict ourselves to the case R = Zm, the

ring of integers mod m (or just the ring of ordinary integers if mi = 0), this

is no longer the case, i.e., ï(Dn/Dm) is a Zm-submodule of An/An+l. In this

case, we shall speak of the dimension subgroups modulo m.

Assume R = Zm. The image of £n under i will be the submodule of

A"/An+1 generated by all cosets (g —1)+An+1, gQDn. Denote the submodule

of T generated by all g— 1, g££„, by Mn. Then the image of £n is

(Mn+An+1)/An+l.

If h— 1 is one of the generators of Mn and 2a(s)s£r, then

(Ä-i)2>(g)g=2>(g)(Ä-i)g
= Z«(g)(* -D(g-D + (Z>(«))(* - i)
= (£«(«))(*- 1) mod A»".
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Thus, 7l7„-rçM„+A»+1. Similarly, r-717„ç;Mn+A»+1. It follows that
Tkf„+An+1 is an ideal of Y. Therefore, Mn+An+l will contain the ideal of Y

generated by Mn, namely I(Dn) (see Lemma 2.1). Hence,

T(7jg ç Mn + A"+l   and   Mn Ç 7(£>„),

and so 7l7n+A"+1 = 7(£'„)-|-A"+1.

Theorem 4.3. Let {Di} be the dimension series mod 7» of G. Then

Dn/Dn+l SÉ (I(Dn) + A»+»)/A*+1.

Define the Lie product in Y in the usual manner: [x, y]=xy — yx. Set

A(1)=A, A(n+1)= [A(n), A]. It is clear that A(">ç:An. Extend the use of the

bracket symbol to include [g]=g —1 for elements of G and extend it toTby

linearity, i.e.,

[E«(«)«I = E«(g)(« - i).
A Lie product in Y is called left normed if it has the form

[[ • • • [[*1, Xi], Xt], • • • ], x„].

Such a product shall be written, more simply, as [xi, x2, • • • , x„]. It is clear

from the definition of A(n) and from the bilinearity of the Lie product that

all such products with Xi = giEG span A(n).

Let (gi, gi, ■ ■ ■ , gn) denote the left normed commutator

(( • • • ((gi, gi), g%), ■ ■ ■), gn).

Lemma 4.4.

(gi, • • • , gn) = 1 + [gi, • • • ,gn] mod An+1.

Proof. The lemma is clearly true for » = 1. Assume it is true for ». Then,

if c»=(gi, • • • , gn) and dn= [gi, • • • , g„], by the induction hypothesis

c„ = l-r-d„ + S, where S£An+1. Hence,

(gl,  •   •   • , gn, gn+l)   = Cn  gn+lCngn+1

= 1 + Cn  gn+l(Cngn+l ~ gn+lCn)

= 1 + Cn'gñU (1  + dn + S)gn+1 -  g„+l(l  + dn + «)}

= 1 + Cn  gn+l[gl,  •   •   •  , gn, gn+l] + 5,

where ô£An+2. Since c^gñ+iEG, it may be replaced by 1+ß, where /3£A.

Then both 5 and |8[gi, • • • , gn+i] belong to AB+S. Therefore,

(gi, • • • , gn+i) ■ 1 + [gi, • • • , gn+i] mod An+2.
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Since G„ is generated by the left normed commutators of weight w, the

mapping i defined above maps Gn onto (A(n) +An+1)/An+l.

Theorem 4.5. £e/ {£<} be the dimension series mod m. Then,

GnDn+l/Dn+l9Ê(AW + A»+1)/A»+1.

Corollary 4.6. If G is any group in which the dimension series mod m

coincides with the lower central series, then

G„/G,+1^(A("' + A«+1)/A»+1.

5. Dimension subgroups modulo Z. In this section it will be shown that

the dimension subgroups modulo the ring Z of rational integers of a group

G coincide with the subgroups of the lower central series of G. We first deal

with the case of a finitely generated group.

Theorem 5.1. Let G be a finitely generated group and T the group ring of G

over Z. Let G = Gi^Gt^G^ • ■ • be the lower central series of G. Then there

is a sequence

A = Ai 2 A¡ D As 2 ■ ■ •

of ideals of Y having the properties

(i) gQGiif and only if g -1 £A¿,

(ii) A'ÇA<.
Therefore, £¿CG¿ and consequently, since {£,} is a descending central series,

Di = Gi.

The proof of this theorem will require the establishment of several pre-

liminary results.

The sequence {G,} induces a weight function w on the elements of G:

w(g) = Max{«: g £ Gn)

with the agreement that w(g) — » if g belongs to all G„. If (g, h) is a commuta-

tor, then

w((g, h)) ^ w(g) + w(h),

since (Gi, Gj)ÇiGi+j. For any element gQG, let £ denote the coset gG^M+i-

Since we are assuming that G is finitely generated, so is each of the factor

groups Gi/Gi+i, (see, e.g., M. Hall [3]). Hence, d/Gi+i is a finitely generated

abelian group and so has a basis of cosets *<y>. From each of these basis cosets

pick a representative Xw). To this collection adjoin the group elements x^j¡

for each x,(j) for which &w) has infinite order. Denote the resulting collection

by <pi. Well order 0, in such a manner that x/Jj, when it is present, is the im-

mediate successor of x«y>. Let cf> = U<£i. Extend the well ordering of the c6¿ to

c6 by putting each member of <p¿ ahead of each member of <pi+i. Let 7 be

the set of all ordinal numbers less than the order type of <p; then tp may be

indexed by 7 in an order preserving manner: <£= {#a}aer-
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For a fixed integer », each element gEG has a unique representation

. _    «(i)  «<s> «(*)
(1) g = Xa(i)Xa(2) • • • xa(i) mod 0»+i,

where

(i) a(l)<a(2)< ■ • ■ <a(k),

(ii)   «l(x0(y))^n,

(iii) 0<e(j)<order of xary),

(iv) not both xa(j) and x~¿ occur.

We shall, for the time being, assume that G„+i=l. Thus, the congruence

(1) becomes an equation.

Consider the set of all families (ha)aei of non-negative integers such that

ha = 0 except for finitely many a£7. (ha)aei will be called a proper family.

If (fta) is a proper family with the additional properties

(a) 0<Aa< order of xa,

(b) x„+i=x~1 implies Aa+i = 0 or ha = 0,

then (ha) is called a basic family. The set of all proper families is ordered

lexicographically, that is, (ka) < (ha) if and only if there is an index cr£7 such

that kT = hT for all r<cr and k,<hc.

Corresponding to each proper family (ha) is a proper product:

p(ha) = n c*. - da"
a

where the factors occur in increasing order from left to right. If (ha) is a basic

family P(ha) will be called a basic product. Note that if ha = 0 for all a,

P(ha) = 1. Using the expression (1) for an element gEG and the identity

XY =1 + (X -1) + (Y-1) + (X- 1)(Y - 1)

it can readily be seen that

(2) g = 1 + e(l)(xaa) - 1) + • . . + e(k)(xa(k) - 1) + • • • ,

a linear combination of basic products. Hence, the basic products span Y.

Proposition A. The basic products are a Z-basis for Y.

Proof. In view of the above remark, it is sufficient to show that the

basic products are linearly independent. Suppose 52d(Aa)£(Aa), a(ha)EZ, is

a linear combination of basic products with at least one a(ha) ^0. Among the

families (ha) for which a(ha) 5^0, there is a maximal one, say (ka). If we

multiply out the products P(ha) and collect terms, we obtain a linear com-

bination of group elements, each expressed in its unique form (1). But then

the element JJ« xjj?, the factors occurring in increasing order of a from left

to right, occurs with coefficient a(ka) 9*0. But the elements of G are linearly

independent over Z. Hence, the given linear combination of basic products is

not zero.
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Although an element 7£r has a unique presentation as a linear com-

bination of basic products, it may, in general, have more than one presenta-

tion as a linear combination of proper products. Any such presentation of y

will be called a proper presentation. To each proper presentation }£»(&„)£ (A„)

is assigned an apparent weight Wa(2~La(ha)P(ha)). For a proper product, set

Wa(P(ha)) = 2>(*a)Aa;

for a linear combination of proper products

Wa(2Za(ha)P(ha)) = Min{ Wa(P(ha)): a(ha) * 0},

Wo(0) =  00.

The absolute weight W(y) of an element y is defined to be the maximum of

the apparent weights of all proper presentations of y.

We now define

Ai= {yET:W(y) ^i}.

Proposition B. A< is a Z-module.

Proof. 0£A¿. If a 7±0 is an integer, then W(ay) = W(y) —i. If y and S£A¿

then each has a proper presentation of apparent weight ^î; hence, 7 + 5 has

a proper presentation of apparent weight =i.

Proposition C. If (gi — l)(g2 — 1) • • • (g* — 1) is such that 2~2w(ij)=i>
then this product belongs to A,-.

Proof. Since G„+i = 1, the proposition is true if each gy£Gn+i. Assume it is

also true if each gy£Gm+i. It is sufficient to prove it is true when each

gy£Gm.

Let

(A) (gi - l)(g2 - 1) • • • (gk - 1)

be a product with w(g,)—m for all j and 2^w(gi)=i- Replace each factor

(ii~l) by its presentation as a linear combination of basic products as in

equation (2). Since w(g,) = w(xa) for each x„ in its unique factorization (1),

the given product (A) can be written as a sum of products of factors (x„ — 1)

where w(xa)=m and, in any product 2~lw(x<*)=i- Thus, the problem is re-

duced to consideration of products of the form

(B) Öl(*a(l)   -   l)Ö2(*a<2)   -   1)0.3   '   ■   '  &(*«(,)   -   í)Qr+l,

where Qj is a product of factors 2—1 with w(z) ^tw-fl and where w(xaU))=m.

If r = 0, then (B) belongs to A< by the induction hypothesis. Assume the

proposition is true for all s<r. Next, we show that we may write (B) in the

form

(x«(d - l)(xa(2) -!)••• (xa(r) - 1)Q + elements of Af,
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where Q is a product of factors z — 1 with w(z) |m + l and where the sum of

the weights of the xaU) and z is ^i. To do this we apply the identity

(Z -  l)(xa -  1)  =   (Xa  -   ï)(xâlZXa  -   1)

+ (xähxjT1 - 1)(Z -  1) + (XahXaZ-1 -  1)

a sufficient number of times to (B). Since z£Gm+i, x^zXaQGm+i and x~lzxaz~l

QG2m+i. Therefore, w(x~1zxa) |m + l and w(x~1zxaz~l)'^2m + l and so the

terms arising from the second and third terms on the right of (I) when (I)

is substituted in (B) belong to A,- by the second induction hypothesis. Thus,

we need only consider products of the form

(C) (*„<!, - l)(xa{2) - 1) • • • (*.w - 1)0,

where w(xau))=m and Q is a product of factors z—1 with w(z)^m + l and

where the sum of the weights of the xa^) and z is ^i.

Next, we rewrite (C) as a sum of terms of the form

(Xß(l)  -   l)(xßm  -   1)   •  •   ■  (Xß(,r)  -   1)Q

plus terms of A,, where the factors xßu) — 1 occur in order of increasing ß(j)

horn left to right and conditions as above are satisfied. To accomplish this,

apply the identity

(* - l)(y - 1) - (y - l)(x - 1)

+ (y-l)(x- l)((x, y) - 1)

+ (*-l)((*,y)-l)

+ ((*, y) - i)

to (C) a sufficient number of times. By the second induction hypothesis,

noting that the sum of the weights does not decrease, we observe that the

terms arising from the third, fourth and fifth terms on the right of (II) when

(II) is substituted in (C) belong to A<. The term arising from the second term

of (II) when it is substituted in (C) may be rewritten, as in (C), so that the

factor ((x, y) — 1) lies to the right of all the factors xau) — 1.

Hence, starting with a product (A) which it was desired to show was in

Ai, we have proved that it is sufficient to consider products of the form

(D) (xaW - l)(xttl2) - 1) • • • (xair) - 1)0

where each w(xau)) = m, the factors *„(,•) — 1 occur in order of increasing a(j),

Q is a product of factors z—1 with w(z) ^m + 1 and the sum of the weights

of the ¡c„y) and the z is =zi. We now apply the same sequence of processes

to the factors z — 1 of Q for which w(z)=m+l, noting that factors « —1 of

weight less than m+ 2 are never introduced. We then do the same thing to the

factors of weight m + 2, etc. Since G„+i= 1, this process terminates in a finite

number of steps. The result of the whole procedure, then, is a linear combina-
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tion of proper products all of weight §:i. Hence, the product (A) is in A*.

Proposition D. A<-AyÇA<+y and, therefore, each A; 75 d» ideal.

Proof. If £(Aa) and P(ka) have weights i and j, respectively, then

P(ha)P(ka) has, by Proposition C, weight =i+j and so belongs to A,-+y. Since

A0 = r, this shows, in particular, that A,- is an ¡deal

Proposition E. A<3A*.

Proof. A* is generated by all the products (gi — 1) • • • (g< — 1). By Proposi-

tion C, each such product belongs to Ai.

Proposition F. g£G< if and only if g— 1£A,-.

Proof. Let gEGi. Then, by Proposition C, g —1£A,-.

Conversely, suppose g — 1£A,-. Consider the representation (1) of g. To

show that gEGi it is sufficient to show that xa(i)£G<. If it can be shown that

every representation of g —1 as a linear combination of proper products

must include either a nonzero term d(xa(i) —1) or a nonzero term d(x~(1) — 1),

d£Z, then TF(xo(i) — 1) =i and so w(xa(i)) =i or xa(i)£G<.

Suppose a given linear combination of proper products is not a linear

combination of basic products. Then it must include a term of the form

(1) cQi(xß - l)(xß-i - í)Qi

or a term of the form

(2) cQi(x9 - l)™Qi

where 7» = order of Xß and Qi contains no factor Xß — l.

The identity (xß — l)(xß~1 — l)=—(xß — l) — (Xßl — l) reduces (1) to

(10 -cQi(xß - l)Qi - cQi(x? - l)Qi.

Call the passage from (1) to (1') operation I.

The identity

<*-if-(5-i)-Z(T)(%-i)'
m— 1  /pi\

=  (xmß-   1)   -m(Xß-l)-Z(   .)(Xß-l)'
y-j V J t

reduces (2) to

-cmQi(Xß - l)Qi -Eel. )Qi(xß - 1)<?2 + cQi(xß - Í)Q2.
í-i    \j /

All but the last term are proper products. The last term must be straightened

as in the proof of Proposition C. Since t» = order Xß, w(xß)>w(xß). Since the
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straightening process never introduces terms of lower weight, cQi(xß — 1)Q2

is zero (if xßn = l) or each term of its straightened form contains a factor

xy — l with w(x/)>w(xa). Thus (2) is replaced by

•"zi    /m\
(2') -cmQi(xß - l)Qt -£c    . )Qi(xß - 1)'Q2 + R

where £ is zero or is a sum of proper products each containing a factor

xy—l, w(xy)>w(xß). Call the passage from (2) to (2') operation II.

It is clear that any linear combination of proper products can be reduced

to a basic linear combination by a finite number of applications of operations

I and II.

Lemma. Let a linear combination of proper products include the terms

ai(xB — 1) and a2(xj1 — 1) where m divides ai — a2, m = order Xß. Apply operation

I or operation II to any term of the linear combination. Let bi and b2 be the new

coefficients of Xß — 1 and x^ — l, respectively, in the resulting linear combination.

Then m also divides bi — b2.

Proof. (I) The only new terms are

-cQi(xy - l)Qt   and    -cQi(xy~l - l)Qt.

The coefficients of xß — 1 and xßl — 1 will be changed if and only if 0/i = Qt = 1

and xy = Xß. In this case, we have i»i = ai — c, bi = a2 — c. Hence,

bi — bi = (di — c) — (at — c) — ai — ai

and, so, is divisible by m.

(II) The only new terms are

■»rj   /m\
-mcQi(xy - l)Qt -Eel. )Qi(xy - 1)'Q2 + R.

y-2     \J /

The coefficients of xß — 1 and x^1 — 1 will be changed if and only if Qi = Q2=l

and Xy = Xß or xy = xß~1. Hence, we will have either

bi = <ii — mc, bi = ai,

or

b2 = at, bt = at — mc.

Therefore, bi — b2 = ai—a2±mc is divisible by m.

Now, let us suppose that there is a proper presentation of g — 1 which does

not include a nonzero multiple of xa(i) —1 or a nonzero multiple of x^l) — 1;

in terms of the lemma, ai = a2 = 0. Then, if »j = order of ia(i), m divides

Oi — a2. By applying operations I and II to bring this representation of g — 1

to the basic form (2), we find that we must have m dividing e(l). But 0<e(l)
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<m. Hence, no such proper presentation exists and so, by the above remarks,

Proposition F is proved.

The proof of Theorem 5.1 is now complete for the case Gn+i = l. Let us

now drop this assumption.

Consider the natural homomorphism

<t>n: G-+GM = G/Gn+i

and its extension to Y,

<5„:r->rB = r/7(G„+i).

The images of the G, under </>„ are just the commutator subgroups G(J' of

G<n) and G„'^1 = 1. For each « construct the sequence of ideals An,¿ having the

properties

(a) gE&f ii and only if g-lEAn,i,
(b) A„,,2Ai, where A„ is the fundamental ideal of Tn.

We now set

A,-  =   H in-HAn.,).
n

A,- is the intersection of ideals and, thus, itself an ideal. If gEGi then <f>n(g)

£G(? and so c5n(g — 1) =<j>n(g) — 1£AB,< for every ». Therefore g — 1 £Aj. Con-

versely, if g —1£A< then c5„(g-l) =t/>„(g) -1£A„,< and, hence, </>„(g)£G(?

for every ». Consequently, gEGt. Furthermore, it is clear that <5n(A')ç:AB,,-

for every w and, thus, that AS'CA<. This completes the proof of Theorem 5.1.

Theorem 5.2. If G is any group and {£\} ZAe dimension series mod Z of

G, then Dn = Gn for every ». (2)

Proof. It has already been shown that GnQDn. Now let gEDn. Then

g— 1£A" and so

g -   1   =   2>.-(g<l -   1)   •   •   •  (gin -   1).

Let T7 be the subgroup of G generated by all the g.y for which a< 5^0. 77 is

finitely generated. Therefore

g £ £„(77; Z) = 77» ç G„.

Consequently, DnQGn and, thus, Dn = Gn.

Theorem 5.3. If Y is the group ring of G over the ring of integers, then

Gn/Gn+l = (AM + A»+1)/A»+1.

(2) The author wishes to thank the referee for pointing out that the general result follows

from the result for finitely generated groups.
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Corollary 5.4. Let G and H be groups. Then G and 77 have isomorphic

group rings over the integers only if the factors of their lower central series are

isomorphic.

As our final result, we indicate the proof of a theorem generalizing a result

of Jennings [4]. Note that the ideals A,- constructed in the proof of Theorem

5.1 must, in fact, be precisely the A*. If G is a finitely generated nilpotent

group then each element of Y must have a definite finite weight i and, hence,

will not belong to A<+I. Thus,

Theorem 5.5. If G is a finitely generated nilpotent group and Y the group

ring of G over Z, then

n a* = (o).
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