MODULES WITH DESCENDING CHAIN CONDITION

BY
EBEN MATLIS

Introduction. Throughout this discussion the ring R will be a commuta-
tive, Noetherian ring with unit. The study of modules over such a ring has,
heretofore, been largely confined to the study of finitely generated modules.
The purpose of this paper is to introduce the study of modules with descend-
ing chain condition (D.C.C.), and their natural generalization—modules
with  maximal orders. Among the main tools in the study of these modules
are the analysis of injective modules carried out in [4], and the theory of
duality for complete, local rings developed there. The results of the present
paper guarantee the existence of a sufficient quantity of modules with D.C.C.
and provide a basis for a link between the theory of such modules and the
theory of finitely generated ones. The Koszul complex, with its dual nature,
plays an important role in establishing this link.

In §1 we introduce the functors X and X . By considering these functors
we are able to give characterizations of modules with maximal orders; and
decompose them uniquely into direct sums, where each summand depends
on only a single maximal ideal. We then prove a transition theorem which
enables us to pass to rings of quotients and their completions. A key result
of this section is the theorem that if 4 is an R-module with D.C.C., and if I
is an ideal of R,'then T4 = A4 if and only if there exists an element r& I such
that #4 =A. This is the dual of a standard result for finitely generated mod-
ules.

In §2 we introduce the concepts of cosequences and dimension, pri-
marily for modules with D.C.C. These concepts are naturally dual to the
concepts of sequences and codimension for finitely generated modules. The
cohomology of the Koszul complex is exploited to provide results concerning
cosequences that are dual to those obtained for sequences in [2] from the
homology of the Koszul complex. Furthermore, a relationship is determined
between cosequences and injective dimension that is dual to the relationship
between sequences and projective dimension found in [1]. The two theories
are actually equivalent, yield the same global information about the ring R,
and either theory may be used to determine the other. In fact, the dependence
of the codimension of R on its maximal ideals finds its strongest expression
in the above mentioned duality.

In §3 we examine the projective dimension of modules with maximal
orders. We also generalize a theorem of D. Rees [5], and obtain a direct
connection between modules with maximal orders and »(R) =inf codim Ry,,
where M, ranges over all maximal ideals of R.
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We will use the following notation throughout this paper: let A4 be an
R-module; then we will define E(4) to be the injective envelope of 4 [4];
we will denote the projective dimension of A by hdr 4, and the injective
dimension of 4 by indg 4; we will let Anng A ={rER|rA=0}; and if I is
an ideal of R, then Anny I= {xGAIIx=0}.

1. The functors X and Xy.

DEFINITIONS. Let A be an R-module and define X(4)= {xEAIevery
prime ideal containing Anng(x) is maximal }. We shall call X (4) the maximal
component of A. If A =X(A), we shall say that A has maximal orders. Let M
be a maximal ideal of R and define X »(4) = {x€A4 | Mrx =0 for some integer
n>0}. We shall call X »(4) the M-primary component of A. If A =Xu(4),
we shall say that A s an M-primary module.

It is easily seen that both X(4) and X x(A4) are submodules of 4. Let
M’ be another maximal ideal of R. Then we have the following: X?=X,
ﬁ=Xu, XXuy=Xu=XuX, and ﬁnally XuXu=0=XuXu. Let B be
another R-module, and f: A—B an R-homomorphism. We then define
X(f): X(4)—>X(B) (respectively, X »(f): Xu(A)—X u(B)) to be the restric-
tion of f to X(4) (respectively, the restriction of f to X »(4)).

ProrosiTiON 1. (1) X and X are covariant, left-exact, additive functors.

(2) X and Xy commute with the taking of injective envelopes and direct
limits.

(3) X(4/X(A))=0and Xu(A/Xu(4))=0.

Proof. The proof of the proposition is direct, and we leave its verification
to the reader.

PROPOSITION 2. Let M be a maximal ideal of R, and let R be the completion
of Ry. Then if A is an M-primary R-module, we have natural isomorphisms:

A2 AQ@r Ry~ A ®r Ru.

Proof. Let ¢: A—A @Ry be the canonical homomorphism given by ¢(x)
=x®1, where xEA. Since 4 is M-primary, it is uniquely divisible by the
elements of R— M. It follows readily that 4 is an Ry-module, and that ¢ is
an isomorphism.

Now A ®rRu = AQr(Ru®ryRu) = (A ®rRy) ®ry Ry = A @y Ry
Thus we can assume that R is a local ring with maximal ideal M and com-
pletion R. We make 4 into an R-module in the following way. Let #€R and
x€A. There is an integer k>0 such that M*x=0. Let {r.} be a Cauchy se-
quence in R such that r,—#. Then we can find an integer N >0 such that
ro—rmE M*, whenever p, m= N. We define 7x=ryx; and it is easily checked
that this makes 4 into an R-module.

We now define f: A—>A®zR by f(x)=x®1; and g: A®rR—4 by
g(x®7) =#x. It is clear that gf is the identity on A. We must show that fg
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is the identity on 4 @ zR; i.e., we must show that 7x®1=x®#. Now we can
find an integer = N such that #—r; & RM*. Then #=r;+ 3 i;m;, where ;;ER
and m;E M*. Then we have 7x®1=r;x®1=xQr;; and we also have x®+
=(x®7;)+(x® X im)=xQ®r)+ 2 (mx®i)=xQr;, Thus 7x®1=xQ7
and so fg is the identity on 4 ® xR, and we have A=~A4 ®zR.

PrOPOSITION 3. Let A be an R-module. Then the following are equivalent:

(1) A has D.C.C.

(2) A is a submodule of E,® - - - ®E,, where E;=E(R/M,) with M; a
maximal ideal of R.

(3) A has maximal orders and finitely generated socle.

Proof. (1)=(2). Since 4 has D.C.C,, it is an essential extension of its
socle S, which must be finitely generated. Thus E(4)=E(S); and since S
is a direct sum of a finite number of simple modules, we have E(S)
=E,® - - - ®E,, where E;=E(R/M;) with M; a maximal ideal of R.

(2)=(1). Let M be a maximal ideal of R and E=E(R/M). It is sufficient
to prove that E has D.C.C. as an R-module. If B is any R-submodule of E,
then B=Xy(B). Thus by Proposition 2, B is also an Ry-module, where
Ry is the completion of Ry. Hence the lattice of R-submodules of E is
identical with the lattice of Ry-submodules of E. Since E has D.C.C. as an
Ru-module [4, Corollary 4.3], E also has D.C.C. as an R-module.

(2) and (1)=>(3). For by (1), 4 has a finitely generated socle; and by (2),
A has maximal orders.

(3)=(2). It is sufficient to prove that A is an essential extension of its
socle S. Let x#0& A4, and let M be a maximal ideal belonging to Annz(x).
Then there exists an element & R such that r & Anng(x), but Mr CAnng(x).
Thus rx#0 and rxES. Hence 4 is an essential extension of S.

THEOREM 1. Let A be an R-module. Then the following are equivalent:

(1) A has maximal orders.

(2) A is an essential extension of its socle.

(3) A is a submodule of a direct sum of R-modules of the form E(R/M.),
where the M.'s are maximal ideals of R.

(4) A=Y ®Xu,(A), where the M,'s range over all of the maximal ideals
of R.

(5) Every finitely generated submodule of A has finite length.

(6) A is the sum of its submodules with D.C.C.

(7) A s a direct limit of R-modules with D.C.C.

Proof. The proofs that (1)=(2) and (2)=>(3) are virtually the same as
those found in Proposition 3. The implications (5)=(6) and (6)=(7) are
obvious. Thus we will prove that (3)=(4), (4)=(5), and (7)=(1).

(3)=(4). Let B = E(4). It follows from [4, Theorem 3.3] that
B=) ®Xu,(B). Itis clear that X, (4) =ANXx,(B). Now let xE4; then
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x=m+ - - - +%xn, where x,EXu, (B). We will prove that each x;€4 by
induction on #. The assertion is trivial for n=1. Hence assume that n>1,
and that we have proved the case n—1. Now Anng(x:) +MN}-; Annz(x;) =R.
Hence 1=my+m,;, where mEAnng(x;) and myENJ., Anng(x;). Thus
x1=(my+mz) %y =mpxy =mx S A. Therefore x,+ - - - +x,EA4. By the induc-
tion hypothesis, x;€4 for j=2, - - -, n. Thus x,€4ANXx, (B) =X, (4)
for t=1, - - -, n. Hence A = E@Xu‘,(A).

(4)=(5). Let C be a finitely generated submodule of 4. Then the socle
of Cis finitely generated. It is clear that C has maximal orders. Therefore, by
Proposition 3, C has D.C.C. Thus C has finite length.

(7)=(1). By Proposition 3 every R-module with D.C.C. has maximal
orders. Since, by Proposition 1, X commutes with direct limits, it follows
that 4 has maximal orders.

COROLLARY. Let A be an R-module. Then we have the following:

(1) X(4)= Y ®Xu,(A), where M, ranges over all of the maximal ideals
of R; i.e., we have the functorial equation X = 3 ® X u,,.

(2) X (A) is the unique maximal essential extension in A of the socle of A.

(3) X(A) 1s the sum of all submodules of A with D.C.C., and A/X(A) has
no nonzero submodules with D.C.C.

Proof. (1) This is an immediate consequence of Theorem 1.

(2) Let S be the socle of 4, and let C be a submodule of 4 which is an
essential extension of S. Then by Theorem 1, C=X(C); and of course
X(C)CX(4). In particular S is the socle of X(4); and since X(X(4))
=X (A4), X(A4) is an essential extension of S by Theorem 1.

(3) This follows directly from Theorem 1 and Propositions 1 and 3.

DEFINITION. Let 4 be an R-module with D.C.C., and let M be a maximal
ideal of R. We shall say that M belongs to A, if X 4(A)#0. It then follows from
Theorem 1 that there are only a finite number of maximal ideals of R that
belong to A. If M, --.-, M, are these maximal ideals, then
A=271, ®Xu,(A).

Now let My, - - -, M, be a finite set of maximal ideals of R, and let S
be the complement in R of U;.; M;. Then Rg is a Zariski ring, and we shall
denote its completion by Rs. If Ry, is the completion of Ry, then Rg
=>7", ®Ruy,. Let E;=E(R/M,),and E=E,® - - - ®E,.

ProrosITION 4. Let A be an R-module. Then:
(1) X(4)®@rRs= Y %) ®Xu,(A)=X(4) ®xRs.

(2) Homga(X(4), E) = Homz,(X(4) ®x Rs, E)

=~ E ® Hom;ﬂli(XMd(A)’ Ei)-

t=1
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(3) If X(A) has D.C.C., then Homg(X (A), E) is a finitely generated Rs-
module.

Proof. (1) Let M be a maximal ideal of R. Then clearly Ry @ rRs=Rx,
if M is one of the M;'s; and Ry ® gRs=0 otherwise. Thus by Proposition 2
and Theorem 1 we have:

X(4) ®r Rs =2 (X, & Xu(4)) ®rRs= Y & (Xm.(A) ®r Ru,) ®r R5)

o~ i ® (Xu,(A4) ®r Ry,) = i @ Xu,(4).

i=1 1=l

Since Rg = D .y ®Ry,, a similar argument shows that X(4) ®z Rs
2301 ®Xw,(4) also.

(2) By (1), E is an Rg-module. Applying [3, Proposition 2.5.2'], we have
Homgy(X(4) ® rRs, E)=~Homgr(X(4), Homz,(Rs, E)=~Homg(X(4), E).
Also by (1), we have X(4) ® pRs= E,-l @ X u,(4); from which it follows
easily that Homz,(X (4) ® rRs, E)=2 1 ®Homg, (X, (4), E,).

(3) If X(A4) has D.C.C., then so does X u,(4); and thus by [4, Corollary
4.3], Homg, (X M,(A) E;) is a finitely generated Ru,-module. Thus by (2),
Hompz(X(A4), E) is a finitely generated Rs-module.

Theorem 2 is the dual of the following well-known result for finitely gen-
erated modules. Let B be a finitely generated R-module and I an ideal of R.
Then Annp I70 if and only if every sequence 0—B—'B is not exact for
every r&I. Before proving Theorem 2 we shall need a lemma.

LEMMA 1. Let R be a Zariski ring with completion R. Let I be an ideal of
Rand Py, - - -, Py ideals of R. Then I CUj, P; if and only +f RICU}., P;

Proof. Since I CRI, the implication in one direction is trivial. On the
other hand, assume that I CU}., P;. Let #€RI; then there exists a Cauchy
sequence {7} of elements of I such that r,—7. Since there are an infinite
number of 7,’s in UL, P;, and only a finite number of P;’s, there exists a sub-
sequence {r./} of {r.} and a P, such that 7,/ € P, for all #. Since ./ —#, and
since P, is closed in R, it follows that #€ P,.. Thus RICU}.,P;.

THEOREM 2. Let A be an R-module with D.C.C., and let I be an ideal of R.
Then IA =A if and only if there exists an element r &I such that rA =A.

Proof. If there exists r& I such that 4 =4, then of course T4 =A4. Hence
assume that A =A. By Theorem 1 there exist maximal ideals M, - - -, M,
of R such that A=Y 7, X, (A4). Let S be the complement in R of UL, M;.
Then by Proposition 4, 4 =RsA, and so A =(RsI}A. If the theorem is true
for Zariski rings, then there exists t&€Rsl such that tA=A. Since A4 is
uniquely divisible by the elements of S, we can assume that t&€I, and the
theorem is proved. Hence we can assume that R is a Zariski ring with max-
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imal ideals M, - - -, M, and completion R. Let E= E}'., D E;, where
E;=E(R/M,). ’

By Proposition 4, A=~4 ® xR and Homg(4, E) is a finitely generated
R-module. Let Py, - - -, P; be the prime ideals of R associated with

Homg(A4, E). Suppose that rA#A for every r&EI. We will show that
I Cqu P;. For let s€I. Then 4/sA#0, and so there exists a nonzero R-
homomorphism 4/sA—E. Then the composition A—A4/sA—E gives a non-
zero element f€Homg(4, E) such that sf=0. Therefore, s€Uj., P;; and
hence ICU}., P;. It follows from the lemma that RICU}.; P;. Therefore
there is a nonzero element g€EHomz(4, E) such that RIg=0. Thus g(4)
=g(RIA)=RIg(A) =0, and so g=0. This contradiction proves that there
exists an element 7& I such that r4 =A4.

PROPOSITION 5. Let C be a finitely generated R-module, and A an R-module
with maximal orders. Then Extr(C, A)* and Tor®(C, A) have maximal orders
also. If A has D.C.C., then so have Extg(C, A) and TorZ(C, A).

Proof. Let F be a finitely generated, free R-module such that F—»C—0
is exact. Then 0—Homg(C, A)—>Hompg(F, A) and F®r4A—C @ rA—0 are
both exact. Clearly both Homg(F, A) and F®rA have maximal orders; and
thus both Homg(C, A) and C®rA have maximal orders. Since C has a
projective resolution consisting of finitely generated R-modules, it follows
readily from these remarks that both Extz(C, 4) and Tor?(C, 4) have max-
imal orders.

If A has D.C.C., then the same sort of argument proves the second state-
ment of the theorem.

2. Cosequences and dimension.

DEFINITION. Let A be an E-module and x,, - - -, x, elements of R. Then

we shall say that x;, - - -, x, is an A-cosequence if:
£

1) Anng (%1, - -+, 2i-1) > Anng (%1, - - -, %5-1) 0
is exact for =1, - - -, s (we use the convention that (x;, - - -, ;1) =0, if
1—1=0).
(2) AnnA (x;, ceey, x,) # 0.

If Iis an ideal of R, we shall say that x,, - - -, x, is an A-cosequence in
I whenever (%, - - -, x,) CI. We shall call x;, - - -, x, a maximal 4-cose-
quence in I if %y, + + -, x,, ¥ is not an A-cosequence for any y&I. Since R is

Noetherian, it is clear that any A-cosequence (in I) can be extended to a
maximal A-cosequence (in I). We note for the sake of reference that Anny I
is naturally isomorphic to Homg(R/I, 4).

We shall use the terms 4-sequence and codimg 4 as defined in [1] with-
out any further comment.
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PROPOSITION 6. Let R be a complete, local ring with maximal ideal M and
E=E(R/M). If B is an R-module we shall define B*=Hompg(B, E). Let A be
an R-module with D.C.C. Then:

(1) hdr A*=indzr 4.

(2) If C is any finitely generated R-module, then

Hompg(C, A)* = A* ®@r C.

(3) The elements x,, - - - , x,ER are an A-cosequence if and only if theyare
an A*-sequence.

Proof.

(1) By Proposition 4, A* is a finitely generated R-module. Thus we can
find a free resolution of 4*:

o= Fp—> - 5 F 5 Fy— A*—> 0,

where each F; is a finitely generated free R-module. Then F} is an injective
R-module. Since A**=24 by [4, Corollary 4.3], we obtain an injective resolu-
tion of 4:

0> A—>Ff>F¥>...F*>.

It follows that indg 4 Shdr 4*.
On the other hand, by Proposition 3, we can find an injective resolution
of A:

0—->4—->By—>B;—>---—B,—> -,

where each B, is a direct sum of a finite number of copies of E. Then by [4,
Theorem 4.2], Bf is a free Rmodule; and so we obtain a free resolution of 4 *:

c++—>BFf> ... > Bf > Bf > 4A*—0.

Therefore, hdg A*<indz 4.

(2) Since A** =~ A, we have Homgr(4* ®r C, E) = Homg(C, 4**)
=~Homg(C, 4). Therefore, Homg(C, A)* = (A*®rC)**. Since A*®xC is
finitely generated, we have by [4, Corollary 4.3] that (4*® zC)**=~A*Q@xC.
Thus Homg(C, A)*=~A*Q®rC.

(3) Let I; = (x1, -, x;). Then by (2) we have (Anny I))*
~Homg(R/I;, A)*=A*Q@rR/I;=2A*/I;A*. Since (Anny I,)**=~Ann, I; by
[4, Corollary 4.3], we also have Anny I,=(4*/I;,A*)*. It follows that

Xit1
0> A*/I;A* — A*/I;4*

is exact if and only if

Xit1
Anm I.'—-—) AnnA I,'—i 0
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is exact. We also have that A*/I,A*#0 if and only if Anny I,70. Hence
%1, - * -, %, is an A *-sequence if and only if it is an A-cosequence.

THEOREM 3. Let R be a local ring with maximal ideal M and E=E(R/M).
Then xy, « * + , x,€R is an R-sequence if and only if it is an E-cosequence.

Proof. Let R be the completion of R. Since Homg(E, E)=R by [4, Theo-
rem 3.7], it follows from Proposition 6 that x4, - - -, x, is an E-cosequence if
and only if it is an R-sequence. Since ROR(xy, - + «, x;) = (%1, - * -, %), it is
easily seen that x;, - - -, x, is an R-sequence if and only if it is an R-sequence.

DEFINITION. Let A be an R-module, and let x4, - - -, x, be elements of R.
Using the notation of [2] we define 4,. 1,...,, to be the Koszul complex of A,
and Hj(A4.:1,.-..) to be the jth homology module of this complex. We now
define the cohomology modules of this complex by Hi(A:1,....)
=Hc—-i(Az: 1, —,n)-

The proof of the following proposition may be found in [2, Proposition
1.1] and [2, Proposition 1.5].

PRrROPOSITION 7. Let A be an R-module, and xi, - - -, x, be elements of R.
Then:
) HY(A:.1,....) = Anng(xy, - -+, %);
H(Aza,....) =2 A/(%1, - - -, 2)4;
and
H?(Az:1,....) =0  forp <Oandp > s.

(2) If C is a complex and xE R, then we have an exact sequence:

6n
- HY(C.) — HA(C) = HC) » H*(C) = - - -,

where 8" is multiplication by (—1)x.
(3) If 00A'—>A—A""—>0 is an exact sequence of R-modules, then we have
an exact sequence:

e Hi(Ap,...0) > H(Aza,...) > Hi(Ap,...0) > HF (A, 0) — - - -
@) (x,---,x)H(z1,...,)=0.

Theorems 4 and 5 are dualized versions of [2, Proposition 2.8] and [2,
Theorem 1.7].

THEOREM 4. Let A be an R-module with D.C.C., and let N be the intersection
of the maximal ideals belonging to A. Let x,, - - - , x, be elements of N. Then the
following are equivalent:

(1) x1, - - -, x, ts an A-cosequence.

(2) H?(A::1,...,.) =0 for p=0.

3) H'(4::1,....,)=0.
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Proof. (1)=(2). The proof will be by induction on s. The case s=0 is
trivial; hence let s=¢41, where t=0. By induction we have H?(4,. 1,...,;) =0
for p0. Then by Proposition 7 we have an exact sequence:

Xet1
Anng(xy,  + -, %) — Anna(xy, - - -, x) > H (A4z1,... 001) = 0.

Since the first map is an epimorphism by assumption, it follows that
H'(A:: 1,...,.+1) =0. By Proposition 7 we have an exact sequence for p>0:

H?(Ap,....0) > H (4., ... 000) — H”'H(Az;l,. cot).

Since the end modules are zero by induction, H?*1(4,. 1,...,.41) =0 also.

(2)=(3). This is trivial.

(3)=(1). The proof will be by induction on s. For s=1 we have the exact
sequence: H°(4)—*H%(A)—H'(A,). Since H*(A)=A and H'(A.)=0, this is
actually the exact sequence: 4—?4 —0. Because x&E N, we have Ann,(x) #0;
and thus x is an 4-cosequence.

Assume we have proved the case s=¢,and let s=¢+1. Since H'(4,.1,...,t41)
=0, and x.41& N, we conclude from the exact sequence:

Xe41
Hl(Az;l, . .,¢+1) - Hl(Az;l,. . .,g) — Hl(Azgl'o . .,g)

that H'(4;; 1,...,1) =0. Hence by induction, x;, - - -, x, is an 4-cosequence.
By Proposition 7 we have the exact sequence:
Xet1
Anng(xq, - - -, %) — Anng(xy, - - -, %) — 0.

And since (x1, * - -, %)) CN, we have Anng(xy, - - -, %.41)#0. Thus
X1, © + +, %41 is an A-cosequence.

COROLLARY 2 (SEE [2, COROLLARY 2.9]). With the notation of Theorem 4
let = be any permutation of 1, - - -, s. Then xy, - - -, x, is an A-cosequence if
and only if x.q), * * -, Xz 15 an A-cosequence.

COROLLARY 3 (SEE [2, ProPosITION 2.10]). Let R be a local ring with max-
imal M and E=E(R/M). Let x, - - -, X, be a minimal generating set of M.
Then R is regular if and only if H'(E,. 1,...,n) =0.

Proof. H'(E,; 1,...,») =0 if and only if %y, - - -, x, is an E-cosequence by
Theorem 4, if and only if xy, - - -, x. is an R-sequence by Theorem 3, if and
only if R is regular.

THEOREM 5. Let A be an R-module with D.C.C., and let J be an ideal of R
such that Anng J#0. Let xy, - - -, x, be a maximal A-cosequence in J; and let
I=(y1, -+, yu) be an ideal in J such that J* CI+Anng A for some integer
k>0. Then s+q=mn, where q is the largest integer such that H4(A,.,... ) #O0.
Further, iof J C I+ Anngp A, then HY(Ay 1,....n) =2 Anng(xy, - - -, x,)/1
‘Anng(xy, - - -, x,).
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Proof. The proof will be by induction on s. If s=0, then since Anny J#0,
it must be true that for every x&J (hence for every x€I) the sequence
A—*4—0is not exact. But this is precisely the situation covered by Theorem
2. Thus A##IA; and therefore H*(4,: 1,...,,)=2A/IA 0.

Assume the theorem is true for s=¢=0, and let s=¢+1. Let B=Ann4(xy);
then clearly x,, - - -, x, is a maximal B-cosequence in J. Thus by induction
the theorem is true for B. From the exact sequence:

x
(1) 05B—> A5 450

we obtain by Proposition 7 the exact sequence:

@) HY(Ay.....)) 3 H(Aynr,....0) = HH(Bys,...n) = 0.

If He+(B,.y,...,n) =0, then HY(A,.1,....») =%1H%(A4,: 1,....s). By Proposition 7
we have TH(Ay: 1,...,n) =0=(Anng A)H*(A,. 1,...n),and so J* H*(A,: 1,...,a)
=0. Therefore H%(4y: 1,...,») =2{H%(A,: 1,...,n) =0, which contradicts the as-
sumption. Hence H**(B,. 1,...,») #0. On the other hand it follows from the
exact sequence (1) and Proposition 7 that H?(B,.,,...,») =0 for p>g+1.
Thus by the induction hypothesis, t+(g+1) =#; and so s+g=n.

If JCI+Anng A, then x,H%(A4,.,....,)=0; and so from the exact se-
quence (2) and induction we obtain

HQ(AV?I-""") = Hﬂl(By:l.-n,n) = Anng(xz, cety, x.)/IoAnnB(xz’ .« e x')

=~ Anng(xy, © - ¢, %)/I-Anng(xy, - - -, x,).

This concludes the proof of the theorem.

DEFINITION. Let A be an R-module with D.C.C., and J an ideal of R.
Then we define the J-dimension of A by dim; A =sup of the length of the 4-
cosequences in J.

COROLLARY 4 (SEE [2, COROLLARY 1.8]). Let A be an R-module with
D.C.C., and J an ideal of R such that Anny J#0. Then all maximal A-cose-
quences in J have the same length and dimy A < . Furthermore, if I is an ideal
contained in J such that JCI+Anng A, then for any two maximal A-cose-
quences in J, %1, - - -+, x,and x{, - - -, x,;, we have:

Anng(xy, - - -, %)/ -Anng(xy, - - -, %)
= Anng(xy, - - -, 2))/I-Anng(xf, - - -, x/).
ProPposITION 8. Let R be a local ring with maximal ideal M, completion R,
and let M be the maximal ideal of R. Let A be an M-primary R-module. Then:

(1) Indg A=Indz 4.
(2) If A has D.C.C., then dimy A =dimyg A.

Proof. (1) If E=E(R/M), then E is also the injective envelope of R/M
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over R by [4, Theorem 3. 6] Therefore, an M-primary, injective R-module
is an M-primary injective R-module, and vice versa. Thus an injective resolu-
tion of 4 as an R-module is the same as an injective resolution of 4 as an
R-module.

(2) Let M=(y, - - -, yu), and ¢ thelargest integer such that H*(4,:1,...,»)
#0. Then by Theorem 5, dimy A=n—gq. Since M=R(y,, - - -, y,,), and
since Ay 1,...,» is the same complex, whether considered over R or R, it
follows from Theorem 5 that dimg A =n—q also.

THEOREM 6. Let R be a local ring with maximal ideal M and E=E(R/M).

Let n=dimy E. Let A be an R-module with D.C.C., and %, - - -, x,ER an
A-cosequence. Then:

(1) indg Anna(xy, -« -, %) =s+indz 4.

(2) If indg A< , then s+indr A =n; and equality holds if and only if
X1, ¢ ¢+, X, 15 @ maximal A-cosequence.

(3) - If indg A < o, then dimy A +indr A =n.

4) If 0-A4'>A—A"—>0 is an exact sequence of R-modules such that
dimy A’ <dimy A, then dimy A" =1+dimy 4'.

(5) indg R/M=gl. dim R=hdr R/M.

Proof. This theorem could be proved directly, but for the sake of brevity
we will give a proof using the results of [1]. It is clear from Proposition 8 that
we can assume without loss of generality that R is a complete, local ring.

(1) Using Proposition 6 and [1, Proposijtion 1.4], we have

indg Anng(xy, - - -, %)

= hdr A*/(x1, + - -, %,)A* = s + hdr A* = 5 + indg A.

{2) By [1, Theorem 3.7] and Theorem 3, s + indzk 4 = s + hdg 4A*
<codimy R=dimy E=mn; and equality holds if and only if x,, - - -, x, is a
maximal 4 *-sequence if and only if x, - - -, x, is a maximal 4-cosequence.

(3) This is a direct result of (2).

(4) This is proved by dualizing [1, Proposition 3.6].

(5) Since (R/M)*=~R/M, we have by Proposition 6 that indg R/M
=hdg R/M=gl. dim R, where the last equality comes from [3, Theorem
8.6.2'].

3. Codimension; and the homological dimension of X(4).

PROPOSITION 9. Let B be an R-module. Then Extg(S, B) =0 for all simple
R-modules S and all i £n if and only if Exty(X(4), B) =0 for all R-modules A
and all i1 <n.

Proof. In one direction the implication is trivial. Hence we will assume
that Ext}(S, B) =0 for all simple R-modules S and all ¢<n. Let A be an
R-module with finite length. Then there exists a submodule 4’ of 4 such
that A” =A/A’ is simple. We have an exact sequence:
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Extz(4”, B) — Extr(A4, B) — Extr(4’, B).

By induction on the length of 4, the end modules are zero for 2 £ n. Therefore,
Exth(4, B) =0 for all <7 and all R-modules 4 of finite length.

Now let A =X(A4), and make an induction on the integer 7. Let 2=0. Sup-
pose Homg(A4, B)#0. Then B contains a simple submodule S, and
Homg(S, B) #0. This contradicts the assumption, and therefore Homg(4, B)
=0. We now assume the proposition true for :—1.

By Theorem 1, A4 is a direct limit of R-modules of finite length. Thus
there exists an R-module C which is a direct sum of R-modules of finite
length, and a submodule D of C, such that A=2C/D. Hence we have the
exact sequence:

Extp (D, B) — Extz(4, B) — Extg(C, B).

The first module is zero by induction, and the last module is zero by the case
already proved. Hence Ext}(4, B) =0 for :<n.

ProrosiTION 10. Let M be a maximal ideal of R, A an M-primary R-mod-
ule, and B an R-module. Let Ry be the completion of Ry. Then:

(1) Ext}(4, B)=~Ext}, (4, B®rRu)=Ext, (4, B®zRu);

(2) Tor®(4, B)=~Tor® (A, BQrRu)=Tor (A, BQrRu); for every inte-
ger n.

Proof. Let C be an M-primary R-module of finite length. Then Ext}(C, B)
is an M-primary R-module; and hence Ext}(C, B)=Ext%(C, B) » by Proposi-
tion 2. Thus by [3, Chapter 6, Exercise 11], we have Ext}, (C, Bx)
~Exty(C, B). It is clear that the latter isomorphism extends to the case
where C is a direct sum of M-primary R-modules of finite length.

By Theorem 1, A is a direct limit of M-primary R-modules of finite
length. Hence there exists an R-module C which is a direct sum of M-primary
R-modules of finite length, and a submodule D of C, such that A=~C/D.
Thus we have a commutative diagram:

n-1

Extz' (C, B) — Exts (D, B) —— Extr(4, B) —— Extz(C, B) —— Extg(D, B)
Nl f2l fsl ful S5l

Extry (C, Bu) — Extry(D, Bu) — Extry(4, By) — Extry (C, Bu) — Exty(D, Bu).

The rows of this diagram are exact; and fi, fi are isomorphisms by the previ-
ous remarks. If we define Ext*=0 for k<0, we can begin our induction with
k= —1, and thus we can make the induction assumption that f, is also an
isomorphism. It follows from the “5-lemma” that f; is a monomorphism. The
generality of this remark shows that fs is also a monomorphism. Then an-
other application of the “S-lemma” shows that f; is an epimorphism. Thus
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we have proved that Extg(4, B)= Exty, (4, BQrRy) for every integer n. A

repetition of theabove argument proves that Ext}(4, B)EExt%"(A ,BQrRx);
and a similar argument establishes the validity of the last statement of the
proposition.

COROLLARY 5. Let A, B be arbitrary R-modules. Then:

Extz(X(4), B) = [] Extry (Xu.(4), B ® Ru.)
= ] Extky (Xu.(4), B @z Ru,),

Torn(X(4), B)& ¥ & Tor,"*(Xu,(4), B ®= Ru,)
= Z ® Torf""(XMa(A), B ®r Ru,)

¢y

0]

for all integers n; and where the M,'s range over all of the maximal ideals of R.

COROLLARY 6. Let A be an arbitrary R-module. Then hdg X(4)
=sup hdry,  Xu (A4), where the M.'s range over all of the maximal ideals of R.

DEerINITION. We define »(R) =inf codim Ra,, where the M.'s range over
all of the maximal ideals of R.

THEOREM 7. »(R) >n if and only if Extg(X(4), R) =0 for all R-modules A
and for all 1<n. And in this case Exta(X(4), F)=0 for all free R-modules F
and for all i< n.

Proof. If Exth(R/M, R) =0 for all i <n, where M is a maximal ideal of R,
then by Proposition 10, Extg, (R/M, Ry) =0 for all 1<n. Thus by [5, Theo-
rem 1.3], codim Ry>n. Thus if Exth(X(4), R)=0 for all i<n, we have
v(R) >n.

Conversely, assume that v(R) >#n. Let F be a free R-module. Then a
trivial modification of the proof of [5, Theorem 1.3] shows that

Extry (Ru./MoRoty, Fu,) =0 foralli < n

and for all maximal ideals M, of R. Hence Extk(R/ M., F)=0 for all 1<n
and for all maximal ideals M. of R, by Proposition 10. Therefore,
Exty(X(A4), F)=0 for all <% by Proposition 9.

COROLLARY 7. Let R be a local ring with maximal ideal M. Then R is regular
and gl. dim R=n if and only if hdr A =n for all M-primary R-modules A.

Proof. If hdg R/M =n, then gl. dim R=n and R is regular by [1, Theo-
rem 1.10]. Conversely, suppose gl. dim R=#n. Then by [1, Theorem 1.9] we
have codim R=n. Let 4 be an M-primary R-module. Then by Theorem 7,
Extg(A4, F) =0 for all i Sn—1 and for every free R-module F. But Ext}(4, B)
=0 for all m=n+1 and all R-modules B. Thus hdr 4 =n.
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