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Introduction. Throughout this discussion the ring £ will be a commuta-

tive, Noetherian ring with unit. The study of modules over such a ring has,

heretofore, been largely confined to the study of finitely generated modules.

The purpose of this paper is to introduce the study of modules with descend-

ing chain condition (D.C.C.), and their natural generalization—modules

with maximal orders. Among the main tools in the study of these modules

are the analysis of injective modules carried out in [4], and the theory of

duality for complete, local rings developed there. The results of the present

paper guarantee the existence of a sufficient quantity of modules with D.C.C.

and provide a basis for a link between the theory of such modules and the

theory of finitely generated ones. The Koszul complex, with its dual nature,

plays an important role in establishing this link.

In §1 we introduce the functors X and XM- By considering these functors

we are able to give characterizations of modules with maximal orders; and

decompose them uniquely into direct sums, where each summand depends

on only a single maximal ideal. We then prove a transition theorem which

enables us to pass to rings of quotients and their completions. A key result

of this section is the theorem that if A is an £-module with D.C.C, and if 2

is an ideal of £, then 74 =A if and only if there exists an element r£7 such

that rA=A. This is the dual of a standard result for finitely generated mod-

ules.

In §2 we introduce the concepts of cosequences and dimension, pri-

marily for modules with D.C.C. These concepts are naturally dual to the

concepts of sequences and codimension for finitely generated modules. The

cohomology of the Koszul complex is exploited to provide results concerning

cosequences that are dual to those obtained for sequences in [2] from the

homology of the Koszul complex. Furthermore, a relationship is determined

between cosequences and injective dimension that is dual to the relationship

between sequences and projective dimension found in [l]. The two theories

are actually equivalent, yield the same global information about the ring £,

and either theory may be used to determine the other. In fact, the dependence

of the codimension of £ on its maximal ideals finds its strongest expression

in the above mentioned duality.

In §3 we examine the projective dimension of modules with maximal

orders. We also generalize a theorem of D. Rees [5], and obtain a direct

connection between modules with maximal orders and v(R) =inf codim Rm„,

where Ma ranges over all maximal ideals of £.
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We will use the following notation throughout this paper: let A be an

£-module; then we will define £(.4) to be the injective envelope of A [4];

we will denote the projective dimension of A by has A, and the injective

dimension of A by ind« A ; we will let Ann« A = {r££| r.4 =0} ; and if 7 is

an ideal of £, then Ann¿ 7= {x£.4|7x = 0}.

1. The functors X and XM-

Definitions. Let A be an £-module and define X(A)= {x£.4| every

prime ideal containing Ann«(x) is maximal}. We shall call X(A) the maximal

component of A. If A =X(A), we shall say that A has maximal orders. Let 717

be a maximal ideal of £ and define XM(A) = {x£.41 Af"x = 0 for some integer

m>0}. We shall call ^"^(.4) the M-primary component of A. Ii A=XM(A),

we shall say that A is an M-primary module.

It is easily seen that both X(A) and XM(A) are submodules of A. Let

M' he another maximal ideal of £. Then we have the following: X2 = X,

X¡f = Xm, XXm = Xm = XmX, and finally XmXm- = 0 = Xm'Xm. Let B be
another £-module, and /: A—>£ an £-homomorphism. We then define

X(f): X(A)-*X(B) (respectively, XM(f): XU(A)-+XM(B)) to be the restric-

tion of/ to X(A) (respectively, the restriction of/ to Xm(A)).

Proposition 1. (1) X and XM are covariant, left-exact, additive functors.

(2) X and XM commute with the taking of injective envelopes and direct

limits.

(3) X(A/X(A)) = 0 and Xm(A/Xm(A)) = 0.

Proof. The proof of the proposition is direct, and we leave its verification

to the reader.

Proposition 2. Let M be a maximal ideal of R, and let Rm be the completion

of Rm- Then if A is an M-primary R-module, we have natural isomorphisms:

A^A®RRMÇ*A ®rRm.

Proof. Let <¡>: A—*A ®rRm be the canonical homomorphism given by <f>(x)

= x®l, where x£.4. Since A is 717-primary, it is uniquely divisible by the

elements of £ — 717. It follows readily that A is an £.jf-module, and that <f» is

an isomorphism.

Now A ®RRM ^A®R(RM®rmRm) ^ (A ®RRM) ®rmRm Sé A ®BjiRM.

Thus we can assume that £ is a local ring with maximal ideal 717 and com-

pletion £. We make A into an £-module in the following way. Let r££ and

x£.4. There is an integer k>0 such that 7fcf*x = 0. Let {r„} be a Cauchy se-

quence in £ such that rn-^f. Then we can find an integer T\f>0 such that

rP—rmEMk, whenever p, m — N. We define fx = r¡ix; and it is easily checked

that this makes A into an £-module.

We now define f: A—*A®rR by /(x)=x®l; and g : A ® RR—>A by
g(x®f) = fx. It is clear that gf is the identity on A. We must show that fg
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is the identity on A ®rR; i.e., we must show that fx® 1 = x®f. Now we can

find an integer j ^ N such that f — riQRMk. Then f = r¡+ ^<<m<, where t,QR

and miQMk. Then we have fx®l =riX®l=x®rj; and we also have x®f

= (x®ri) + (x®2^,timi) = (x®ri) + 2~2(tniX®ii)=x®ri. Thus fx®l=x®f,

and so fg is the identity on A ®rR, and we have A=A ®rR.

Proposition 3. Let A be an R-module. Then the following are equivalent:

(1) A has D.C.C.
(2) A is a submodule of £i© • • • ffi£B, where £¿ = £(£/M,) with Mi a

maximal ideal of R.

(3) A has maximal orders and finitely generated socle.

Proof. (1)=>(2). Since A has D.C.C, it is an essential extension of its

socle S, which must be finitely generated. Thus E(A)=E(S); and since S

is a direct sum of a finite number of simple modules, we have E(S)

= £i© • • • ©£„, where E( = E(R/Mi) with M¡ a maximal ideal of £.

(2)=»(1). Let M be a maximal ideal of £ and £ = £(£/M). It is sufficient

to prove that £ has D.C.C. as an £-module. If B is any £-submodule of E,

then B=Xm(B). Thus by Proposition 2, B is also an ^-module, where

Um is the completion of Rm- Hence the lattice of £-submodules of £ is

identical with the lattice of Äjif-submodules of £. Since £ has D.C.C. as an

£M-module [4, Corollary 4.3], £ also has D.C.C. as an £-module.

(2) and (1)=>(3). For by (1), A has a finitely generated socle; and by (2),

A has maximal orders.

(3)=>(2). It is sufficient to prove that A is an essential extension of its

socle S. Let X9*0QA, and let M he a maximal ideal belonging to Auur(x).

Then there exists an element r££ such that r£Annje(x), but Mr QAnnR(x).

Thus rx9*0 and rxQS. Hence A is an essential extension of S.

Theorem 1. £ei A be an R-module. Then the following are equivalent:

(1) A has maximal orders.

(2) A is an essential extension of its socle.

(3) A is a submodule of a direct sum of R-modules of the form E(R/Ma),

where the Ma's are maximal ideals of R.

(4) A = 2^2®XMa(A), where the Ma's range over all of the maximal ideals

of R.
(5) Every finitely generated submodule of A has finite length.

(6) A is the sum of its submodules with D.C.C.

(7) A is a direct limit of R-modules with D.C.C.

Proof. The proofs that (1)=»(2) and (2)=»(3) are virtually the same as

those found in Proposition 3. The implications (5)=>(6) and (6)=>(7) are

obvious. Thus we will prove that (3)=>(4), (4)=>(5), and (7)=*(1).

(3)=>(4). Let B = E(A). It follows from [4, Theorem 3.3] that

B = 22®XMa(B). It is clear that XMa(A) =Ai\XMa(B). Now let xQA ; then
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x = xi+ • • • +x„, where x,EXMai(B). We will prove that each XiEA by

induction on ». The assertion is trivial for « = 1. Hence assume that «>1,

and that we have proved the case »—1. Now AnnB(xi)+D7_2 AnnB(xy)=£.

Hence l=Wi-f-7»2, where 7»i£AnnB(xi) and 7»2£njL2 Annie(x;). Thus

xi = (mi+m2)xi = miXi = mixEA. Therefore x2+ • • • +x„£.4. By the induc-

tion hypothesis, x,£.4 for 7 = 2, •••,«. Thus x,EAC\XM<ti(B) = XMa.(A)

for 7 = 1, ••-,». Hence A= 2^®XMa(A).

(4)=>(5). Let C be a finitely generated submodule of A. Then the socle

of C is finitely generated. It is clear that C has maximal orders. Therefore, by

Proposition 3, C has D.C.C. Thus C has finite length.

(7)=>(1). By Proposition 3 every £-module with D.C.C. has maximal

orders. Since, by Proposition 1, X commutes with direct limits, it follows

that A has maximal orders.

Corollary. Let A be an R-module. Then we have the following :

(1) X(A)= 2~L®XMa(A), where Ma ranges over all of the maximal ideals

of R; i.e., we have the functorial equation X = 2~2@XMa.

(2) X(A) is the unique maximal essential extension in A of the socle of A.

(3) X(A) is the sum of all submodules of A with D.C.C, and A/X(A) has
no nonzero submodules with D.C.C.

Proof. (1) This is an immediate consequence of Theorem 1.

(2) Let 5 be the socle of A, and let C be a submodule of A which is an

essential extension of S. Then by Theorem 1, C = X(C); and of course

X(QEX(A). In particular S is the socle of X(A); and since X(X(A))

= X(A), X(A) is an essential extension of S by Theorem 1.

(3) This follows directly from Theorem 1 and Propositions 1 and 3.

Definition. Let A be an £-module with D.C.C, and let 717 be a maximal

ideal of £. We shall say that 717 belongs to A, if XM(A) ?±0. It then follows from

Theorem 1 that there are only a finite number of maximal ideals of £ that

belong to A. If Mi, • • • , Mn are these maximal ideals, then

A=2ZU ®XMi(A).
Now let ikfi, • • • , Mn he a finite set of maximal ideals of £, and let S

be the complement in £ of U"_i A7,-. Then Rs is a Zariski ring, and we shall

denote its completion by Rs- If £at< is the completion of Rmv then Rs

= Z?=i ®Rmí- Let Ei = E(R/Mi), and £ = £i8 • • • 0£„.

Proposition 4. Let A be an R-module. Then :

(1) X(A)®rRs^J^-i ®XMi(A)^X(A)®RRs.

(2) HomR(X(A), E) ^ Homgs(X(.4) ®s Rs, E)

n

^Z® Hom^X^U), Ei).
<—i
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(3) If X(A) has D.C.C, then HomB(X(^4), £) is a finitely generated Rs-

module.

Proof. (1) Let M be a maximal ideal of £. Then clearly Rm®rRs=Rm,

if M is one of the Mis; and Rm®rRs = 0 otherwise. Thus by Proposition 2

and Theorem 1 we have:

X(A) ®rRs^(2Z® XMm(A)) ®rRs^2Z® ((XmM) ®r RMa) ®r Rs)

n n

Ê* Z © (XMi(A) ®r RMt) ̂  E © XMi(A).
»-1 i-l

Since  Rs = E"-i ®Rmv  a similar  argument   shows   that   X(A) ®r Rs

^Z?-i ®XMi(A) also._
(2) By (1), E is an £s-module. Applying [3, Proposition 2.5.2'], we have

HomB-s(X(A)®RRs, £)^HomÄ_(X(^), Hom¿s(£s, £)^HomB(X(^), £).

Also by (1), we have X(A)®RRs=Jl"-i ®XMi(A); from which it follows

easily that rlom&s(X(A)®RRs, £)^E?-i ®HomRM.(XMi(A), Ei).

(3) If X(A) has D.C.C, then so does XMi(A); and thus by [4, Corollary

4.3], Wom^^X m ¡(A), £,) is a finitely generated £Afi-module. Thus by (2),

rlomR(X(A), E) is a finitely generated £s-module.

Theorem 2 is the dual of the following well-known result for finitely gen-

erated modules. Let £ be a finitely generated £-module and 2 an ideal of £.

Then AnnB 7^0 if and only if every sequence 0—»£—>r£ is not exact for

every r£7. Before proving Theorem 2 we shall need a lemma.

Lemma 1. £ef R be a Zariski ring with completion R. Let I be an ideal of

R and Pi, •••,£* ideals of R. Then 7£Ui_i £, if and only if £7 £11*.! £y.

Proof. Since IQRI, the implication in one direction is trivial. On the

other hand, assume that IQdj-i Pi. Let fQRI; then there exists a Cauchy

sequence {r„} of elements of 7 such that rn-^f. Since there are an infinite

number of r„'s in U*_i P¡, and only a finite number of £/s, there exists a sub-

sequence {rn' } of {rn} and a Pm such that r„' ££m for all «. Since r„'—*f, and

since Pm is closed in R, it follows that fQPm. Thus £2£ll *_i£¿.

Theorem 2. £e/^4 be an R-module with D.C.C, and let I bean ideal of R.

Then IA=A if and only if there exists an element rQI such that rA=A.

Proof. If there exists rQI such that rA=A, then of course IA =A. Hence

assume that IA =A. By Theorem 1 there exist maximal ideals ilii, • • • , Mn

of £ such that A = E"-i XMi(A). Let S he the complement in £ of U"=1 Mf.

Then by Proposition 4, A =RSA, and so A = (RsI)A. If the theorem is true

for Zariski rings, then there exists tQRsI such that tA=A. Since A is

uniquely divisible by the elements of S, we can assume that i£7, and the

theorem is proved. Hence we can assume that £ is a Zariski ring with max-
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imal ideals A7i, • • • ,  717„ and completion R. Let £= 2"-i ®Eit where

Ei=E(R/Mi).
By Proposition 4, AÇ^A®rR and HomRiA, £) is a finitely generated

£-module. Let Pi, ■ • ■ , Pk be the prime ideals of £ associated with

Homß(^4, E). Suppose that rA^A for every r£7. We will show that

7CU*_!£y. For let 5£7. Then 4/5^4^0, and so there exists a nonzero £-

homomorphism A/sA-^E. Then the composition A-*A/sA-*E gives a non-

zero element /£Horn«(A, E) such that 5/=0. Therefore, 5£U*_i £y; and

hence 7£U*_1 £y. It follows from the lemma that £7£U*_i £y. Therefore

there is a nonzero element g£Homß(.4, E) such that Rlg = 0. Thus g(.4)

= g(RIA) = RIg(A)=0, and so g = 0. This contradiction proves that there

exists an element r£7 such that rA=A.

Proposition 5. Let C be a finitely generated R-module, and A an R-module

with maximal orders. Then ExtR(C, A)" and TorR(C, A) have maximal orders

also. If A has D.C.C, then so have Extß(C, A) and Tor¡J(C, .4).

Proof. Let £ be a finitely generated, free £-module such that F—*C—»0

is exact. Then 0—>HomB(C, .4)—>Hom/i(£, .4) and F®rA^>C®rA-^>0 are

both exact. Clearly both Homje(£, .4) and F®rA have maximal orders; and

thus both Hornee, A) and C®K.4 have maximal orders. Since C has a

projective resolution consisting of finitely generated £-modules, it follows

readily from these remarks that both Ext»(C, A) and Torfi(C, A) have max-

imal orders.

If A has D.C.C, then the same sort of argument proves the second state-

ment of the theorem.

2. Cosequences and dimension.

Definition. Let A be an £-module and Xi, • • • , x, elements of £. Then

we shall say that Xi, • • • , x, is an A-cosequence if:

Xi
(1) Ann¿ (xi, ■ • ■ , x,_i) -> Ann¿ (xh • • • , x,_i) —> 0

is exact for i=l, • • • , s (we use the convention that (xi, • • • , x,_i) = 0, if

¿-1 = 0).

(2) Ann¿ (x,, • • • , x.) * 0.

If 7 is an ideal of £, we shall say that Xi, • • • , x, is an .4-cosequence in

7 whenever (xi, • • • , x,)£7. We shall call Xi, • • • , x, a maximal .4-cose-

quence in 7 if Xi, • • • , x„ y is not an .4-cosequence for any y£7. Since £ is

Noetherian, it is clear that any .4-cosequence (in 7) can be extended to a

maximal .4-cosequence (in 7). We note for the sake of reference that Ann¿ 7

is naturally isomorphic to Hoitir(£/7, A).

We shall use the terms A -sequence and codim« A as defined in [l] with-

out any further comment.
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Proposition 6. Let R be a complete, local ring with maximal ideal M and

E = E(R/M). If B is an R-module we shall define B* = HomÄ(£, £). Let A be
an R-module with D.C.C. Then:

(1) hdRA* = indBA.

(2) If C is any finitely generated R-module, then

Homs(C, A)* 9É A* ®R C.

(3) The elements xi, • • • , x,QR are an A-cosequence if and only if they are

an A "-sequence.

Proof.
(1) By Proposition 4, A* is a finitely generated £-module. Thus we can

find a free resolution of A*:

•■•-*£„ -» • • • -* £i -> Fo -* A* -> 0,

where each £,• is a finitely generated free £-module. Then £* is an injective

£-module. Since A**^A by [4, Corollary 4.3], we obtain an injective resolu-

tion of A :

0 -» A -» F„* -» Ff -»->P,*-»---.

It follows that inda A ^hd« A*.

On the other hand, by Proposition 3, we can find an injective resolution

oiA:

0 -* A -> Bo -* Bi -» • • • -» £„ -» • • • ,

where each £, is a direct sum of a finite number of copies of E. Then by [4,

Theorem 4.2 ], B* is a free £-module ; and so we obtain a free resolution of ^4 * :

-* B* -»-» £i* -» £o* -» 4* -» 0.

Therefore, hd« .4 * ;£ ind« A.

(2) Since 4**^.4, we have HomR(A* ®R C, E) £árlomR(C, A**)

S¿Homfi(C, A). Therefore, Homfi(C, A)* & (A*®RC)**. Since A*®RC is

finitely generated, we have by [4, Corollary 4.3] that (A*®RC)**=A*®rC

Thus Homfi(C, A)*^A*®RC

(3) Let Ii = (xi, • • • , xi). Then by (2) we have (Ann¿ 7c)*

^Homfi(£/£, A)*^A*®RR/ImA*/IiA*. Since (Ann¿ 7,)**^Annil £ by
[4, Corollary 4.3], we also have KnnÁ I&(A*/7<A*)*. It follows that

0 -» A*/hA* Ä ¿*/7,4*

is exact if and only if

Xi+l
Ann^ I i-* Annx 7, —> 0
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is exact. We also have that A*/I,A*¿¿0 ii and only if Ann a 7,^0. Hence

Xi, • • • , x, is an .4*-sequence if and only if it is an .4-cosequence.

Theorem 3. Let Rbe a local ring with maximal ideal M and £ = £(£/717).

TAera Xi, • • • , x,££ is an R-sequence if and only if it is an E-cosequence.

Proof. Let £ be the completion of £. Since HomB(£, E)=R by [4, Theo-

rem 3.7], it follows from Proposition 6 that xi, • • • , x, is an £-cosequence if

and only if it is an £-sequence. Since £C\£(xi, • • • , x.) = (xi, • • • , x<), it is

easily seen that Xi, • • • , x, is an £-sequence if and only if it is an £-sequence.

Definition. Let A be an £-module, and let Xi, • • • , x, be elements of £.

Using the notation of [2] we define Ax: i,..... to be the Koszul complex of A,

and Hj(Ax: i,...,,) to be the jZA homology module of this complex. We now

define the cohomology modules of this complex by T7'(.4i: i,...,,)

= H,-i(Ax:i,...„).

The proof of the following proposition may be found in [2, Proposition

l.l] and [2, Proposition 1.5].

Proposition 7. Let A be an R-module, and xi, • • • , x, be elements of R.

Then:

(1) H\AX;i,...,,) S Amu(xi, • • • , x,);

H'(Ax..i,...,,)^A/(Xl, ■ ■ ■ ,x,)A;

and

77"(^x: i,...,.) = 0       for p <0and p > s.

(2) If C is a complex and x££, ZAe» we have an exact sequence:

S"
-> H"(CX) -* H«(C) -> 77»(C) -* Hn+l(Cx) -*■■■,

where 5n is multiplication by ( —l)nx.

(3) If 0—>A'—>A—>A"—>0 is an exact sequence of R-modules, then we have

an exact sequence:

->HKA.-.i,...,.)^Hi(Ax..i,...,.)-+Hi(A"..i,...,,)-^W+\Ax..i....,,)^- ■-.

(4) (x!, • ■ •,x.)T7(^i:i,...,,)=0.

Theorems 4 and 5 are dualized versions of [2, Proposition 2.8] and [2,

Theorem 1.7].

Theorem 4. Let A be an R-module with D.C.C, and let N be the intersection

of the maximal ideals belonging to A. Let xi, • ■ • , x, be elements of TV. £Aew the

following are equivalent :

(1) xi, • • • , x, is an A-cosequence.

(2) H*(Ax..i,...,.)=0forp*0.

(3)     W(AX;l,...,.)=0.
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Proof. (1)=>(2). The proof will be by induction on s. The case 5 = 0 is

trivial; hence let s = /+l, where t^O. By induction we have H"(Ax: i, •••,<) =0

for p9*0. Then by Proposition 7 we have an exact sequence:

Xt+l
AmuOti, ■ ■ ■ , xi)-► Amu(xi, • • • , xt) —► Hl(Ax-i,.. .,t+i) —> 0.

Since  the  first  map  is an epimorphism  by  assumption,  it follows  that

Hl(AX; i,.. .,(+i) =0. By Proposition 7 we have an exact sequence for p>0:

H»(Az:i,...,t) ^ H»+l(Ax:i,...,t+i) -+ H^A,:!,. ..,,).

Since the end modules are zero by induction, Hp+l(Ax: i,...,<+i)=0 also.

(2)=*(3). This is trivial.

(3)=*(1). The proof will be by induction on j. For 5= 1 we have the exact

sequence: H°(A)-^XH'>(A)^H1(AX). Since 27°(^)=^ and H1(Ax) = 0, this is

actually the exact sequence: A—>XA—>0. Because xQN, we have Auua(x) 5^0:

and thus x is an .4-cosequence.

Assume we have proved the case s = t, and let s = t+1. Since 271 (A x. i,..., i+1)

= 0, and Xt+iQN, we conclude from the exact sequence:

ni(AX:i,...,t+i)-*Hi(Ax:i,...,t)^Xn(Ax:i,...,t)

• , Xt is an A -cosequence.

• , xt) -► 0.

And  since   (xi, • • • ,  xt+i)QN,  we  have  Annxfai, • • • ,  xt+i)9*0.   Thus

xi, • • • , Xt+i is an A -cosequence.

Corollary 2 (See [2, Corollary 2.9]). With the notation of Theorem 4

let it be any permutation of 1, • • • , s. Then Xi, • • • , x, is an A-cosequence if

and only if x,(d, • • • , x,(,) ts an A-cosequence.

Corollary 3 (See [2, Proposition 2.10]). 7e/£ bea local ring with max-

imal M and E = E(R/M). Let xi, ■ ■ ■ , xn be a minimal generating set of M.

Then R is regular if and only if Hl(Ex: it ...,„) =0.

Proof. Hl(Ex. i,...,«) =0 if and only if Xi, • • • , xH is an £-cosequence by

Theorem 4, if and only if Xi, • • • , xn is an £-sequence by Theorem 3, if and

only if £ is regular.

Theorem 5. £e£ A be an R-module with D.C.C, and let J be an ideal of R

such that Ann¿ 7=^0. Let xi, • • • , x, be a maximal A-cosequence in 7; and let

7=(yi, • • • , yn) be an ideal in J such that 7*£7+Ann/e A for some integer

k>0. Then s+q = n, where q is the largest integer such that Hq(Av:i,...,n)9*0.

Further, if J Q I + AnnB A, then Hv(Ar i,...,„) ~ Ann^i, • • • , xs)/I

•Ann^(xi, • • • , x,).

that Hl(Ax-, i,...,()=0. Hence by induction, xi, •

By Proposition 7 we have the exact sequence:

Xt+l
AnnA(xi, • • • , xt)-> Ann^zi, • •
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Proof. The proof will be by induction on s. If 5 = 0, then since Ann¿ 7^0,

it must be true that for every x£7 (hence for every x£7) the sequence

A—*XA—»0 is not exact. But this is precisely the situation covered by Theorem

2. Thus A j¿ I A ; and therefore HniAy: i,.. .,n)^A/IA ^ 0.

Assume the theorem is true for 5 = t = 0, and let 5 = Z+1. Let T3 = Anni(xi);

then clearly x2, • • • , x, is a maximal 5-cosequence in 7. Thus by induction

the theorem is true for B. From the exact sequence:

(1) 0^>B-*A^A-+0

we obtain by Proposition 7 the exact sequence:

(2) H'iAy.i,...,n)^ H*iAy:i,...,n) ^> H<+liBv:i,...,n) ^>0.

Ii 77«+1(£„: i,.. .,„) = 0, then Hq(Av: i,.. .,„) =Xi77«(^ï: i,.. .,B). By Proposition 7

we have IH"iAr. i,.. .,„) =0 = (Ann« A)H"iAr. i,.. .,„), and so 7*7i«(^4„: x,.. .,„)
= 0. Therefore HqiAv. i,.. .,„) =xÎ77s(i4ï: i,.. .,„) = 0, which contradicts the as-

sumption. Hence Hq+1(By: i,...,»)^0. On the other hand it follows from the

exact sequence (1) and Proposition 7 that H"(BV. i,...,„) = 0 for p>q+l.

Thus by the induction hypothesis, t+(q+l) =«; and so s+q = n.

If 7£7+AnnB^4, then Xi779(.4ï: i,...,n)=0; and so from the exact se-

quence (2) and induction we obtain

B"(Ay.i,....„) ^ H*+l(BV:i,...,,) ÊË Ann*(x2, • • • , x.)/7-AnnB(x2, • • • x.)

^ Ann¿(xi, • • • , *,)/7-Ann¿(xi, • • • , x,).

This concludes the proof of the theorem.

Definition. Let A be an £-module with D.C.C, and 7 an ideal of R.

Then we define the J-dimension of A by dim/ A =sup of the length of the A-

cosequences in 7.

Corollary 4 (See [2, Corollary 1.8]). Let A be an R-module with

D.C.C, and J an ideal of R such that Ann^ 7^0. £Ae» all maximal A-cose-

quences in J have the same length and dimj A< °o. Furthermore, if I is an ideal

contained in J such that J£7+Ann« A, then for any two maximal A-cose-

quences in J, xi, • ■ ■ , x, and x{, • • ■ , x/, we have:

Amu(xi, • • • , x,)/7-AnnA(*i, • • • , x.)

^ Amu(x/, • • • , x.')/7-Ann4(xi, • • • , x,').

Proposition 8. Let Rbe a local ring with maximal ideal 717, completion R,

and let M be the maximal ideal of R. Let A be an M-primary R-module. Then:

(1) lndRA = lndRA.

(2) If A has D.C.C, then dim^r A =dimfi A.

Proof. (1) If E = EiR/M), then E is also the injective envelope of R/H
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over £ by [4, Theorem 3.6]. Therefore, an M-primary, injective £-module

is an Jl7-primary injective £-module, and vice versa. Thus an injective resolu-

tion of A as an £-module is the same as an injective resolution of A as an

£-module.

(2) LetM=(yi, • ■ • , y„),andg the largest integer such that H"(AV; i,...,«)

9*0. Then by Theorem 5, dimMA=n—q. Since M = R(yi, • • • , y„), and

since Ay. i,...,n is the same complex, whether considered over £ or R, it

follows from Theorem 5 that dims A =« — q also.

Theorem 6. Let Rbe a local ring with maximal ideal M and E = E(R/M).

Let « = dim.jf £. Let A be an R-module with D.C.C, and xi, • • • , x,QR an

A-cosequence. Then:

(1) indß Amu(;ci, • • • , x,) =s+ind«i4.
(2) If indß A< », then s+indR A ^»; and equality holds if and only if

Xi, • • • , x, is a maximal A-cosequence.

(3) If inds A < », then dimM A +indB A = n.
(4) If 0—*A'—*A-+A"—*0 is an exact sequence of R-modules such that

dimM A' <dimM A, then dimM A" = l+dimM A'.

(5) indK R/M=gl. dim £ = hdB R/M.

Proof. This theorem could be proved directly, but for the sake of brevity

we will give a proo'f using the results of [l ]. It is clear from Proposition 8 that

we can assume without loss of generality that £ is a complete, local ring.

(1) Using Proposition 6 and [l, Proposition 1.4], we have

inds Ann¿(*i, ■ ■ • , x,)

= hdR A*/(xi, • ■ ■ , x,)A* = 5 + hds A* = s + inds A.

{2) By [l, Theorem 3.7] and Theorem 3, s + ind« A = s + hdR A*

iScodimjf £ = dimjif £ = «; and equality holds if and only if xi, • • • , x, is a

maximal .4*-sequence if and only If X\, • • • , x. is a maximal A -cosequence.

(3) This is a direct result of (2).

(4) This is proved by dualizing [l, Proposition 3.6].

(5) Since (R/M)*^R/M, we have by Proposition 6 that ind« R/M

= hdfi£/Af=gl. dim £, where the last equality comes from [3, Theorem

8.6.2'].
3. Codimension; and the homological dimension of X(A).

Proposition 9. Let B be an R-module. Then ExtB(5, B) =0 for all simple

R-modules S and allién if and only if ExtB(.X"(.4), B) = 0 for all R-modules A

and all i ^ w.

Proof. In one direction the implication is trivial. Hence we will assume

that ExtsGS, 23) =0 for all simple £-modules S and all i^n. Let A be an

£-module with finite length. Then there exists a submodule A' of A such

that A" = A/A' is simple. We have an exact sequence:
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ExtR(A", B) -* ExtR(A, B) -► ExtR(A', B).

By induction on the length of A, the end modules are zero for i a». Therefore,

ExtB(.4, B) =0 for all i^n and all £-modules A of finite length.

Now let A =X(A), and make an induction on the integer i. Let 7 = 0. Sup-

pose HomR(A, B)?¿0. Then B contains a simple submodule S, and

HomÄ(5, B) ,¿0. This contradicts the assumption, and therefore HomB(.4, B)

= 0. We now assume the proposition true for *—1.

By Theorem 1, A is a direct limit of £-modules of finite length. Thus

there exists an £-module C which is a direct sum of £-modules of finite

length, and a submodule D of C, such that A = C/D. Hence we have the

exact sequence:

ExtÄ_1(£, B) -» ExtR(A, B) -> Exts(C, B).

The first module is zero by induction, and the last module is zero by the case

already proved. Hence ExtÄ(.4, B) =0 for i = n.

Proposition 10. Let M be a maximal ideal of R, A an M-primary R-mod-

ule, and B an R-module. Let Rm be the completion of Rm- Then:

(1) ExtnB(A, B)^Ext"Ru(A, B®RRM)^Extlu(A, B®RRM);

(2) Tor„*(A, B)^Tor^"(A, B®RRM)^Tor^(A, B®RRM);for every inte-

ger n.

Proof. Let C be an M-primary £-module of finite length. Then Extfi(C, B)

is an M-primary £-module; and hence ExtB(C, £)=ExtÄ(C, B)M by Proposi-

tion 2. Thus by [3, Chapter 6, Exercise ll], we have Ext%M(C, BM)

=Ext%(C, £). It is clear that the latter isomorphism extends to the case

where C is a direct sum of M-primary £-modules of finite length.

By Theorem 1, A is a direct limit of M-primary £-moduIes of finite

length. Hence there exists an £-module C which is a direct sum of M-primary

£-modules of finite length, and a submodule D of C, such that A = C/D.

Thus we have a commutative diagram:

ExtV (C,B)->Extîr'(A5)-*ExtßU, B)-► Ext£(C, B)-► Extg(D, B)

fil hi hi fil hl

ExtlM(C, Bu) -> ExtBM(D, BM) -* ExtBMU, Bu) -* Ext^C, BM) -* Extlu(D, BM).

The rows of this diagram are exact; and/i,/i are isomorphisms by the previ-

ous remarks. If we define Ext* = 0 for k<0, we can begin our induction with

fe=—1, and thus we can make the induction assumption that/2 is also an

isomorphism. It follows from the "5-lemma" that/3 is a monomorphism. The

generality of this remark shows that /6 is also a monomorphism. Then an-

other application of the "5-lemma" shows that ft is an epimorphism. Thus
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we have proved that Exts(A, £)= ExtBji(A, B®rRm) for every integer «. A

repetition of the above argument proves that ExtR(A,B)^ExtRli(A,B®RRM) ;

and a similar argument establishes the validity of the last statement of the

proposition.

Corollary 5. Let A, B be arbitrary R-modules. Then:

ExtR(X(A), B) at nExt**„(*"aU), B ®* Ru.)

S HExtlMa(XMa(A), £ ®xR~Ma),

Totn(X(A), B) S 22 © Tor^Xjr.M), £ ®« RMa)

S E © Tor^X^M), £ ®B Xjr.)

/or a// integers n; and where the Ma's range over all of the maximal ideals of R.

Corollary 6. £e¿ A be an arbitrary R-module. Then hdB X(A)

= sup hdRMa Xmo(A), where the MJs range over all of the maximal ideals of R.

Definition. We define v(R) = inf codim Rm , where the Ma's range over

all of the maximal ideals of £.

Theorem 7. v(R) > « if and only if ExtB(X(.4), £) = 0 for all R-modules A

and for all i^n. And in this case ExtR(X(A), F)=0 for all free R-modules F

and for all i ^ w.

Proof. If ExtB(£/il7, £) =0 for all i^n, where M is a maximal ideal of £,

then by Proposition 10, ExtRu(R/M, RM) =0 for all i tin. Thus by [5, Theo-

rem 1.3], codim £jkf>«. Thus if ExtR(X(A), £) = 0 for all i^n, we have

v(R)>n.
Conversely, assume that v(R)>n. Let £ be a free £-module. Then a

trivial modification of the proof of [5, Theorem 1.3] shows that

Ext*Hjf<i(.Rjf./Jf«A*., FMa) = 0       for all i g »

and for all maximal ideals Ma oí R. Hence ExtR(R/Ma, F)=0 for all i^n

and for all maximal ideals Ma of £, by Proposition 10. Therefore,

ExtiR(X(A), £) =0 for all *á» by Proposition 9.

Corollary 7. Let Rbea local ring with maximal ideal M. Then R is regular

and gl. dim £ = « if and only if hdB A =« for all M-primary R-modules A.

Proof. If hdB R/M=n, then gl. dim £ = » and £ is regular by [l, Theo-

rem 1.10]. Conversely, suppose gl. dim £ = «. Then by [l, Theorem 1.9] we

have codim £ = «. Let A be an M-primary £-module. Then by Theorem 7,

ExtBG4, £) = 0 for alH ^ « -1 and for every free £-module £. But Extj?(.4, B)

= 0 for all w^«+l and all £-modules B. Thus hdB A =«.

(1)

(2)
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