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1. Introduction. In this paper, we prove the following

Exact imbedding theorem. Every abelian category (whose objects form a

set) admits an additive imbedding into the category of abelian groups which

carries exact sequences into exact sequences.

As a consequence of this theorem, every object A of ft has "elements"—

namely, the elements of the image A' of A under the imbedding—and all the

usual propositions and constructions performed by means of "diagram chas-

ing" may be carried out in an arbitrary abelian category precisely as in the

category of abelian groups.

In fact, if we identify ft with its image ft' under the imbedding, then a

sequence is exact in ft if and only if it is an exact sequence of abelian groups.

The kernel, cokernel, image, and coimage of a map / of ft are the kernel,

cokernel, image, and coimage of / in the category of abelian groups; the map

/ is an epimorphism, monomorphism, or isomorphism if and only if it has the

corresponding property considered as a map of abelian groups. The direct

product of finitely many objects of ft is their direct product as abelian groups.

If -4£ft, then every subobject [4] of A is a subgroup of A, and the intersec-

tion (or sum) of finitely many subobjects of A is their ordinary intersection

(or sum) ; the direct (or inverse) image of a subobject of A by a map of ft

is the usual set-theoretic direct (or inverse) image. Moreover, if

Ao~* Ai<- Ai —* A3<^- ■ ■ • —* ̂42„+i
fo        gi        f\        gi h

are maps in ft, and the set-theoretic composite fngñ1 ■ ■ • gïlfo is a well-

defined function Ao—>A2n+i, then this composite is the image of a unique

map of ft, this map of ft being independent of the exact imbedding ft—>S

chosen.

In particular, many of the proofs and constructions in [2] remain valid

in an abstract abelian category—e.g., the Five Lemma, the construction of

connecting homomorphisms, etc.

If the abelian category ft is not a set, then each of its objects is repre-

sented under the imbedding by a group that need not be a set.

I am very grateful to Professor S. Eilenberg for the encouragement and

patience he has shown during the writing of this paper.

2. Exhaustive systems. In §§2-4, ft denotes a fixed set-theoretically legiti-

mate abelian category, and S the category of abelian groups.
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An exhaustive system of monomorphisms in an abelian category a is a non-

empty direct system (Ait a^iQD, of monomorphisms in ft such that

(E) If iQD and/: -4¿—>£ is a monomorphism then there exists j^i such

that a,j =/.

Lemma 1. If (Ait atJ) is an exhaustive system of monomorphisms in Q, then

(1.1) If f,f : A'—*A are maps in Q, and jV/' then there exists iQD such that

Hom(f,Ai)9¿rlom(f',Ai).
(1.2) Iff: A-^B is a monomorphism, iQD and g: A-^Ai a map then there

exists j^i in D and k: B-*A¡ such that kf — aag.

Proof. (1.1). Let iQD and g: Ai—*A ®A{ be the injection. Then by (E)

there exists i^i in D such that a;y = g. But then A¡ = A @A{. Let h: A-^Aj be

the injection. Then Hom(/, .4,) and Hom(/', .4,) disagree on Â£Hom(.4, A/),

so that Hom(/, A/)9±Wom(f', A,).
Proof. (1.2). Let (C, y) be the cokernel of the map .4—*£ @Ai with coordi-

nates/, -g.

Ai C

A

\       7/*

b e Ai

/      \
-* B

f

Then if h is the composite £—>£©.4¿—>C, and k the composite A¿—>£®Ai—*C,

we have kf=hg, and k is a monomorphism. By (E), there exists j^i such that

aa = h. Then kf=aag, as required. Q.E.D.
3. The basic construction. In this section, we shall prove

Theorem 1. If a is an abelian category then there exists an exhaustive sys-

tem of monomorphisms in Ct.

We first obtain some preliminary results.

Lemma 1. If (Ai, «y)<jei is a directed system of monomorphisms in ft,

ioQI, and f: Ai0-^>B is a monomorphism, then there exists a directed system of

monomorphisms (Ait a¡y)<,¿€i' extending (Ai, a<>),-,yer and a j^i in P such that

a,7=/.

Proof. Let 7 be the directed subset of 2 consisting of all i ^ in. Let 7* be

a set equipotent to 7 and disjoint from 2, and let j—*j* he a bijection from

7 onto 7*. Let P = IUJ* be the directed set containing 7 as a directed subset

such that, for/, kQJ,j*^k* iftj^k; for jQJ and iQI,j*$i, and iúj* iff
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For jE J, let Aj* be the cokernel of the map -4,0—*Aj@B with coordinates

the maps «,•„;■: Ai„—>Aj and —f:Ai„—>B. Then we have a commutative dia-

gram of monomorphisms :

B-> A?

fX        Î .
A*-*A,

The assignment j—*Af is functorial, so that for j^k in 7, we have a mono-

morphism a/,*«: Aj'—tAk* in ft. If jEJ, iEL and i^j* in 7', then define cti,?

to be the composite Ai—*"nAj—*Af. Then (.4,-, a<y)i/ei' is a direct family of

monomorphisms in ft extending (^4<, ctq)i,jGi, and a,0,,„•=/. Q.E.D.

Lemma 2. 7/ (^4j, a^)<,yer is a díreeí system of monomorphisms in ft, /Ae»

/Aere e#75/5 d direc/ system (A,-, otij)tjev 0/ monomorphisms extending (A,-, a¿/) j,y6r

5«cA /Ad/, whenever î£7 and f: Aí-+B is a monomorphism in ft, ¿Aere exwís

jè* t» 7' m/A a,-,- =/.

Proof. Let £ be the set of all pairs (k, f) where &£7 and / is a monomor-

phism of ft with domain Ak. Well-order £ by a relation :g. For each (k,f)EP,

define a directed family (-4,-, o,*y)*,,/e/,W) of monomorphisms as follows:

Having defined (Ai,ctij)i,jeilk, n for (k',f) <(k,f), put D(kJ)

= 7WU(ife',/<)«*,/) I(k-.r)- Then apply Lemma 1 to the family (Ai, a«/)«,/«^;

let (-4,-, ctij)ij£ilk/) be the family obtained.

Put 7' = U(t,/)6P 7(t,/). Then the family (i4¿, a^ijei' has the desired prop-

erties. Q.E.D.

Proposition 1. If (Ait cti,)i,je.D is any direct system of monomorphisms in

ft, then there exists an exhaustive system of monomorphisms (Ai, ay)<,yei>' ex-

tending (Ai, CCij)ijeD.

Proof. For each non-negative integer q, let (-4,-, a,;)¿,ysDg be defined in-

ductively by:

Do = D. Having defined (Ai, oti¡)i,jeDq, let (Ait atJ)i;,i€Bj+1 be the direct

system obtained by applying Lemma 2 to (Ai, ay)<,yex>9.

Putting T7' = U,ao D„, we see that (Ai, abijen1 is an exhaustive system of

monomorphisms. Q.E.D.

Proof of Theorem 1. Let D be a directed set consisting of a single element

i. Let Ai be any object of ft, and a¿,< be the identity map of Ai. Then

(Ai, ctii)ijeD is a directed system of monomorphisms of ft. Proposition 1 com-

pletes the proof.

Remark. Note that the cardinal number of the indexing set of the ex-

haustive systems we have constructed is that of the set of monomorphisms

of ft. (This is so even if ft is not a set.)

4. The limiting process. Let (.4;, on/) he an exhaustive system of mono-
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morphisms in the abelian category Ct, indexed by the directed set D. Define

a functor

F: Ct* -> 8 by F (A) = lim Hom(A, Ai),       £(/) = lim Hom(£. At).
->i -U

Then it is easy to see that £, being the direct limit of additive, left-exact

functors mapping into 8, is itself left-exact and additive.

Lemma 1. The functor F is an exact imbedding^) from Ct* into 8.

Proof. If A 9*A' in «, then for each iQD, Uom(A, Ai)r\Uom(A',Ai) = 0-
Hence, the abelian groups F(A) and £04') are disjoint and therefore distinct-

If /i, f2: A'—>A are maps in Ct, then by (1.1) there exists iQD such that

Hom(/i, Ai)9áHom(f2, A,). The canonical maps: Hom(.4, -4,)—*F(A),

Horn(.4', Ai)—>F(A'), being the direct limit of monomorphisms in the cate-

gory 8, are monomorphisms. Hence, considering the commutative diagrams

Fifi)
F(A)-—-> F(A')

î Î
Hom(/i, Au

HomU, At)-—--* YLom(A', A,)

for j= 1, 2, we see that £(/i) 9£F(f2). Hence, F is an imbedding.

If /: B—>A is an epimorphism in Ct*, then £(/): F(B)—*F(A) is an epi-

morphism of abelian groups. In fact, if gQF(A), then let g£Hom(i4, A/)

represent g. Then f: A—>B is a monomorphism and g:A-+A, is a map;

choose j^i in D and k: B-+A,- as in (1.2). Then kf=aag, i.e., Hom(/, A,)k

= Hom(A, aa)g. Let kQF(B) be the element of F(B) represented by k. Then

chasing elements in the commutative diagram:

F(f)
k QF(B)-—->F(A) 3 g

Hom(/, Af)
k Q Hom(B, AH-► Hom(¿, A¡)

Kom(A, Ai) 3 g

/ Hom(^4, an)

we see that F(f)(k) =g, as required.

Since we have already observed that £ is left exact, the theorem follows.

Q.E.D.
Applying Theorem 1 and Lemma 1 to the dual category ft*, we see that

a admits an (additive) exact imbedding into 8, which proves the Exact Im-

bedding Theorem.
5. Generalizations. It should be clear that the proof of the Exact Im-

(') Recall that an imbedding from a category Ct into a category 63 is an isomorphism from Ct

onto a subcategory of 03.
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bedding Theorem can be extended to arbitrary categories. In this section,

we state such a generalization.

If /, g: .¡4—>£ are maps in the category Ct, then the equalizer £(/, g) of

/ and g (when defined) is the biggest subobject of A on which/ and g agree.

In an additive category, £(/, g) = Ker(/—g), Ker(/)=£(/, 0), so that

"equalizer" is a generalization of "kernel" to arbitrary categories.

Theorem. 7e/ dbe a set-theoretically legitimate category closed under direct

products of two objects and equalizers of two maps. Then the following three

conditions are equivalent:

1. Ct admits an imbedding into the category of nonempty sets preserving

monomorphisms, epimorphisms, equalizers, and finite direct products.

2. Ct admits an imbedding into the category of nonempty sets preserving epi-

morphisms, equalizers, and finite direct products.

3. Every diagram:

C

lg
A-+ B

with g an epimorphism can be imbedded in a commutative diagram :

D-> C

hi       lg

A -♦ B

with h an epimorphism. Moreover, the canonical map, AXB—+A, is an epi-

morphism.

In addition, if the category Ct is pointed or additive, then we may assume that

the imbeddings in 1 and 2 take values in the category of pointed sets or abelian

groups.

6. Element techniques in an abstract abelian category. In this section,

we prove the assertions made in §1 about exact imbeddings into 8. We con-

sider only abelian categories.

It is easy to see that, in an abelian category, if f=ki with k a monomor-

phism and i an epimorphism, then k is an image and i is a coimage of/. This

is seen by considering the commutative diagram :

K->A —-—> B-> L•1X1
7<-r

a
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where K, L and £ are, respectively, the kernel, cokernel, and image of/, and

a is uniquely determined.

Theorem 2. £e/ £ be an exact imbedding from the abelian category ft into

the abelian category (B. £Aew a sequence (1) .4i—*"A2—¿A3 is exact in ft if and

only if the image sequence is exact in (B.

Proof. Necessity is clear; let us prove sufficiency. Suppose that £(.4i)

-^F^F(A2)-+F^F(A3) is exact in (B. Then/g = 0. Hence, if ¿ = kernel(/) in

ft, then there exists * such that g = ki. But £(£)= kernel £(/)= image F(g)

in (B; since Fig) = F(k)F(i), it follows that £(7) is the coimage of Fig), whence

i is an epimorphism in ft; clearly k is a monomorphism in ft. Since g = ki it

follows that & = image(g), and (1) is exact in ft. Q.E.D.

Henceforth, fixing an exact imbedding into 8 for each abelian category,

we use freely the set-theoretic properties of objects and maps in abelian cate-

gories.

If A, ££ft, then an iadditive) relation R: A-+B is a subobject £ of

A XB. If £: .4—>£ and S: B—»C are relations, then their composite SR is the

image under the projection AXBXBXC-*AXC of (RXS)n>(A XAXQ,
where A is the diagonal of BXB. Since this coincides with the set-theoretic

definition, composition of relations is associative.

Similarly, one defines the inverse relation £_1, and proves that (£-1)-1

= £.

If /: A—>£ is a map in ft, then the image of the map .4—>.4X£ with

coordinates eA, f is the graph Rf oí f; it is the ordinary set-theoretic graph.

Hence, /—»£/ is one-to-one and preserves composites. We identify the map /

with its graph £/.

The relation £ is a (graph of some) map if and only if the composite

£—».4 XB-+A is an isomorphism. Hence, if £: ft—>(B is an exact imbedding of

abelian categories, then £ is a map if and only if £(£) is a map.

If in the abelian category ft,

.    fo    .    «i    .    /i    .    gi fn
A0 —> Ai <— A2 -» j43<— • • • -> A2n+i

are maps and the relation £/n(£„n)_l • • • (£ei)_1£/o is the graph of a map,

then this map: A0—»-42„+i is called their inverse-composite and is denoted

fng~l ■ ■ ■ grlfo: Ao->A2n+i.

Using the Exact Imbedding Theorem and Theorem 2, we obtain:

Theorem 3 (Axiomatic definition of inverse composite). A complete

characterization of the inverse-composite fngñ1 • ■ ■ grlfo of maps

a   f°  a   El a   f1        f"    A
Ao —> Ai <— Ai —> • • • —> 42n+i

in an abelian category is given by:
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(ICI) 7« the category 8 of abelian groups, the inverse-composite fng~l • • •

gr'/o is defined if and only if the corresponding set-theoretic composite is a single-

valued function defined on all of A o ; in which case the two coincide.

(IC2) If F: Ct—»GJ is an exact imbedding of abelian categories, then the

inverse-composite fngñ1 • • • gafáis defined in Q, if and only if F(fn)F(gn)~1 • • •

F(gi)~1F(f0) is defined in (B; in which case, £(/„gn_1 • • • gf'/o) = £(/») £(gn)~1

• • ■ £(gi)-1£(/o).

Combining Theorems 2 and 3, we obtain all the properties of exact im-

beddings asserted in the Introduction.

Added in proof (October 25, 1960). The theorem of §5 can be used to char-

acterize abelian categories:

Corollary. If Ct is an additive category such that kernels, cokernels and

finite direct products exist, then Ct is abelian iff the following three conditions

hold:
(1) Every diagram: C

lg
A->£

with g an epimorphism can be imbedded in a commutative diagram :

D->C

hi lg

A->B

with h an epimorphism.

(2) Every diagram:

C

U
A<-B

with g a monomorphism can be imbedded in a commutative diagram:

D<-C

*î     n
A<-B

with h a monomorphism.

(3) A map that is both an epimorphism and a monomorphism is an isomor-

phism.

Proof. In view of (1) and the theorem of §5, Ct admits an additive imbed-

ding A—*A', g—>g' into 8 preserving kernels and epimorphisms, and hence

also coimages. Hence, iif—kzh is the canonical factorization of a map/of Ct,
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then A' = Coim(/') in 8; since f = k'z'h', we must have k'z' = Im(/l); whence

k'z', z' and therefore z are monomorphisms in, respectively, 8, 8 and Ct. Apply-

ing (2) to the dual category Ct*, we see that z is an epimorphism. Hence by

(3) 2 is an isomorphism. Q.E.D.
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