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1. Introduction. In this paper we prove a structure theorem for reduced

countably generated 7?-mod ules of finite rank, where 7? is a complete discrete

valuation ring (e.g., the p-adic integers). In addition, we obtain an existence

theorem for such modules of rank 1. These two theorems are applied to can-

cellation, direct summand, and unique factorization problems. Our results are

generalizations of theorems of Kaplansky-Mackey [2] and Rotman [3].

We observe that classification of modules up to isomorphism is not ap-

propriate for mixed modules. Instead, we use a slightly weaker relation, al-

most isomorphism (which we define below). For example, although it is not

true that a direct summánd of a completely decomposable module is again

completely decomposable, it is often true that the summand is almost iso-

morphic to a completely decomposable module.

2. Prerequisites. We give a summary of basic definitions in this section.

A detailed account may be found in [l].

R is a discrete valuation ring (DVR) if it is a local principal ideal domain.

R becomes a topological ring by defining the neighborhoods of 0 to be the

powers of the prime ideal ip) ; 7? is complete if it is complete as a metric space.

An arbitrary sequence in 7? either contains a convergent subsequence or con-

tains a subsequence whose terms are of the form unpk, where k is a fixed non-

negative integer and the m„'s are incongruent units (i.e., the difference of any

two u„'s is also a unit). Henceforth R shall denote a complete DVR, and

module shall mean unitary 7?-module.

A module M is divisible if pM= M; M is reduced if M contains no divisible

submodules (except JO}). Define a decreasing transfinite chain of submod-

ules of M as follows :p0M= M. Let a be an ordinal : if a = ß +1, p"M = p(p9M) ;

if a is a limit ordinal, paM=C\ß<a pßM. If M is reduced, there is a least ordinal

X such that p^M =0; X is the length of M. If x is a nonzero element of M,

there is an ordinal a such that xEp"M and xEPa+1M. a is the height of x,

denoted hix). If x = 0, hix) = °°, where « is larger than any ordinal. The Ulm

sequence of x, denoted Ux, is the sequence of ordinals and <x>'s, hipnx). Let 5

be a submodule of M, and let xES. Since 5 has its own decreasing chain of

submodules, we may measure the height of x in S, hsix), as well as its height

in M ; clearly hs(x) ^h(x). S is a pure submodule in case hs(x) =h(x) for all

xES.
Let Ma be the submodule of Jlf consisting of all elements in M oí order
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(p) and height ^a. The quotient module Ma/Ma+i is a vector space over

R/(p) ; its dimension is the ath Ulm invariant of M, denoted/(M; a) or simply

f(a).

A basis of M is a maximal independent subset. The roMft of M is the

cardinality of a basis. Note that if M is torsion, rank M =0. (This notion of

rank is called the torsion-free rank by some authors.)

If A is a subset of a module M, {A} is the submodule of M generated

by .4.
3. Structure and existence theorems.

Definition. A KM module is a reduced countably generated module of

finite rank(').

Our proof of the structure theorem for KM modules is an adaptation of

the proof of Kaplansky and Mackey. They discovered that two KM modules

of rank 1 are isomorphic if and only if they have the same Ulm invariants and

elements of infinite order have equivalent Ulm sequences; (we shall define

an equivalence relation below which will reduce to Kaplansky and Mackey's

definition in the rank 1 case). In order to generalize their result, it is first

necessary to generalize their second invariant.

Let xi, • ■ ■ , x, be an ordered basis of M, and let Ra be the cartesian prod-

uct of i copies of R. Now xi, ■ ■ ■ , x, determines an ordinal valued function on

R" by g(ri, • • ■ , ra)=h(^lrixi). Let x{, • • • , x, be another ordered basis

of M, and let g' be the function it determines. Since rank M = s, there is an

i by i nonsingular matrix (atJ) over R such that pmx[ = ^*_i a^Xj. Hence,

given rit • • • , rsGR, 23i=i £">'<*/ = ]Cî-i£'-i >"**«%, and so

(1) g'(Pm(ri, ■ ■ ■ , r.)) = g((ru • • ■ , r,)(a,y)),

where the argument of the right side is obtained by matrix multiplication.

Definition. Two ordinal valued functions g and g' on Rs are equivalent

in case they satisfy (1).

This relation is an equivalence relation, and the equivalence class of any

g determined by an ordered basis of M clearly depends only on M. We denote

this equivalence class by S(M). If rank M=\, S(M) is the invariant of

Kaplansky and Mackey.

We can now state our structure theorem.

Theorem 1. Two KM modules M and M' are isomorphic if and only if

they have the same Ulm invariants and S(M) = S(M').

In order to prove this theorem, we use the following definitions and

lemmas.

Definition. Let 5 be a submodule of M. An element xGM is S-proper if

h(x) ^ft(x-f-i) for every sGS. M has the coset property if every coset x + S

contains an 5-proper element, whenever S is finitely generated.

(') This is called a semi-KM module in [3].
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Lemma 1. Let M and M' be reduced countably generated modules of finite

rank. If each has the coset property, then M~M' if and only if they have the

same Ulm invariants and S(M) = S(M').

Proof. [3, Theorem 4.3].

Lemma 2. Every KM module has the coset property.

Proof. Let 5 be a finitely generated submodule and let xEM. If xES,

then 0 has maximal height in the coset x+S. Hence we may assume x(£S.

Since 5 is finitely generated, it is the direct sum of cyclic modules. The proof

will be an induction on the number e of cyclic summands.

Let c— 1, so that S = Ry. We may assume we have a sequence x+any such

that h(x+a„y)=an is strictly increasing. Our task is to find an a£7? such

that h(x+ay)^an for all w. Now h(bny]=an, where bn = an+i —an. Hence

hibn+iy) >hibny). If ipmM) is the smallest ideal containing bn, then wi(w+l)

>w(w), i.e., w(w)—>oo, and so bn—>0. Hence {an\ is a Cauchy sequence.

Therefore an—»a, since 7? is complete. Thus

(2) x + ay = x + any + (a — an)y.

If there is an w such that Ä((a— an)y) =ß<an, then hix+ay) =ß, and (2) im-

plies hiia—ak)y) =ß for large k. Therefore, for large k, all a—ak are associates,

contradicting a — ak—»0. Hence /i((a—an)y) =a„ for all w, and hix+ay) ^a„,

for all n. Thus x+ay is the desired element.

For the inductive step, suppose Â(x+a„iy1+ • • • +a„<:y1!) =«» is strictly

increasing.

Case 1. {a„i} contains no convergent subsequence.

We may assume further that {ani\ consists of incongruent units. Now

h(a„+i i(x + 52ffln<y.-) - ani(x + 53a»+ny,-)) = «„ = h((an+i i — ani)x + ^bniy,),

where bni = an+i iani — a„ian+i¿ and i = 2. Since an+i i — ani is a unit, and since

multiplication by a unit does not alter heights, we may assume it is 1. But

there are now only c —1 y's occurring, and so the inductive hypothesis ap-

plies. Hence there is an sE 53<ï2 RyiES such that h(x + s) =a„, for all w. The

desired element is x + s.

Case 2. Each sequence {an,j contains a convergent subsequence.

By dropping to a subsequence we may assume ani—>ai for all i. Now

(3) x + 53 «<y< = (x + 52 amyd + 53 (a< ~ an,)y¿.

If there is an w such that /z(5^(a¿ — 0>»)y,) =/3<an, then A(x+ 53aC») =ß and

(3) implies Ä( 53(a¿—o"')3'¿) =0 for large n. We show this last equation is im-

possible by proving the following statement.

(*)  If bni—>0, then it is impossible that A( 53™=i &n¿y¿) is independent of n.

We prove (*) by induction on m. If m = i, (*) was proved in the initial

step of the induction. Define dn = bni/bn. Since b„i—»0, we may assume

dnEÍP")- Hence we have
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/    m \ /    m m \/m \

ft( £ buy i J = AÍ 2 &»»y< "~ 12 dnbuyA = hi 2 (bni - dnbu)yiY

Since eni = bni — dnbi—»0, the inductive hypothesis yields ft( XX2 ««¿yO is not

independent of n. This contradiction completes the proof.

Theorem 1 may be restated without mentioning S(M).

Definition. Two modules M and M' are almost isomorphic in case there

exist torsion modules T and V such that M®T~M'®V.

Theorem 1'. Two KM modules M and M' are isomorphic if and only if

they are almost isomorphic and they have isomorphic torsion submodules.

Proof. The necessity is trivial. For the sufficiency, suppose M ® T

~ M' ® T'. Let Xi, ■ • • , x, be an ordered maximal independent subset of M,

and let yi, • • • , y, be an ordered maximal independent subset of M@T.

There exists an integer ft^O such that pkyiGM for all i. Hence Xi, • • • , x,

and pkyi, ■ ■ ■ ,pkys determine equivalent ordinal functions. But pkyi, • ■ ■ ,pky,

and yi, • • • , y« also determine equivalent ordinal functions. Hence S(M)

= S(M®T). Similarly S(M')=S(M'®T'). Therefore S(M) = S(M'), since

M®T and M'®T' are isomorphic. Since M and M' have the same Ulm

invariants, the result now follows from Theorem 1.

Incidentally, we have also shown that two KM modules M and M' are

almost isomorphic if and only if S(M) =S(M').

We now have two ways of classifying modules—up to isomorphism and

up to almost isomorphism. Thus there are two possible existence theorems:

we may prescribe S(M) and the torsion submodule (the fine existence theo-

rem), or we may only prescribe S(M) (the crude existence theorem). Clearly

the fine existence theorem is stronger than the crude one, but we present

both because of the simplicity of the proof of the latter. Note that if rank

M= 1, S(M) is just the equivalence class of the Ulm sequence of any element

in M of infinite order.

Let M be a KM module, xGM; let g(M) by the Ulm sequence of x and

let/(a) be the Ulm invariants of M.

Definition, g has a gap at n if g(M + l) >g(M) + l.

The following lemma of Kaplansky provides a link between/(a) and [g],

where [g] is the equivalence class of g.

Lemma 3. If g has a gap at n, f(g(n))^0.

Proof. [1, Lemma 22].

Motivated by Lemma 3, we make the following definition.

Definition. Let/ be a function from the ordinals to the cardinals, and let

g be a monotone increasing sequence of ordinals (which may be « from some

point on). The functions / and g are consistent if f(g(n)) 5^0 whenever g has

a gap at n.
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Lemma 4. Let f be the Ulm invariants of M, and let g be consistent with f. If

g(w + l) = oo, then there exists an xEM with Ux = g.

Proof, [l, Lemma 24].

Theorem 2(2) (Crude existence theorem). Let g{n) be a monotone

increasing sequence of countable ordinals. Then there exists a reduced countably

generated module M of rank 1 such that 5(M) = [g]. Any two such modules are

almost isomorphic.

Proof. Let T be a reduced torsion module whose Ulm invariants / are

consistent with g. (T exists by the Ulm-Zippin Theorem). Let II denote the

product of countably many copies of T. By Lemma 4, for each n there is an

XnET whose Ulm sequence is g(0), g(l), ■ • • , g(»), <», », • • • . Set

*= (Xn) ; ix is the element in II whose wth coordinate is xn). Now x has infinite

order and Ux — g. Let N= {y£IT: ryERx for some r£7?, r depending on y\.

A7 is a pure submodule of II of rank 1 which contains x. But N is not countably

generated. However for each «, there are countably many elements yna which

exhibit the fact that hipnx) =g(w). Let M be the submodule of N generated

by the yna for all w and a; M is the desired module.

Suppose M' is another module satisfying the conditions of the theorem.

Let V(V) be the torsion submodule of M(M'). Then S(M© V) =S(M)

= S(M')=SiM'@V) and V®V'~V'@V. Hence M®V'~M'@V, and M
and M' are almost isomorphic.

Notice that in the above proof we have no control over the torsion sub-

module of the constructed module. Prescription of the torsion submodule is

the cause of the difficulty in proving the fine existence theorem.

Let M be a reduced module with torsion submodule T. If the length of T

is X, then the length of M = X or X+w since p*M is a reduced torsion-free

module. If / is a function from the ordinals to the countable cardinals, the

length off shall be the least ordinal X such that /(a) = 0 for a = X. Such a func-

tion is a Zippin function if, between any two limits ordinals <X, there are

infinitely many a such that/(a) ?¿0. (/ is the set of Ulm invariants of a tor-

sion module if and only if / is a Zippin function.)

Theorem 3 (Fine existence theorem). Let S be a Zippin Sanction of

length X, where X is a countable ordinal. Let g be a monotone increasing sequence,

gin) <X+w, such that S and g are consistent. Then there exists a KM module M

öS rank 1 such that SÍM) = [g] and /(M ; a) =/(a).

Proof. There are three cases to consider: (1) g(w) =X+w for all n (the

prolonged case) ; (2) g(w) <X and g has finitely many gaps; (3) g(w) <X and g

has infinitely many gaps.

(2) Note that the completeness of R is not used in either of our existence theorems; hence

our theorems are more general than stated. However, we do not know if the prescribed in-

variants form a complete set of invariants when R is incomplete.
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We first dispose of case (2), assuming the existence of prolonged modules.

Since g has only finitely many gaps, we may assume g(M) =p + n, all n, where

p<X is a limit ordinal(3). We may write /=/i+/2, where the /< are Zippin

functions and the length of fi = p. Let 7\ be the torsion module with Ulm

invariants/,- and let M' be the KM module of rank 1 with torsion submodule

Ti and S(M') = [g]. Then M=M'®T2 is the desired module.

We now construct prolonged modules. For ft = 1, 2, • • -, let Tk be a tor-

sion module with the following properties(4) :

(i) pxTk is cyclic of order (pk) (and so Tk has length X+ft);

(ii) E*"-i/(7*; a) =f(T; a) for all a<\.
Let II = n*°=i r*' The elements of II are sequences u = (uk) of elements

ukGTk. Now h(u) = mink h(uk). Let 2 denote Xrf=i ^*> -W the torsion sub-

module of II and yk a generator of pxTk. Set y = (yi, y2, • • • , yk, • • • ). Given

an element m£II, let ul = u and u*=(0, ■ • ■ , 0, u„, un+i, • • ■ ). An element

m is regular in case:

(Rl) A(wjfc+i) >h(uk) lor sufficiently large ft;

(R2) A(«(t) is not a limit ordinal for infinitely many ft;

(R3) h(puk) =h(uk) + \ for infinitely many ft.

An element u is quasi-regular in case it satisfies (Rl) and (R2).

Lemma 5. // pu is quasi-regular, then there exists a regular element v such

that pu = pv.

Proof. Let z = pu — (zi, z2, • • • ). We can assume h(z\)<h(z2)< • • • . If

h(zk) =a + l, choose vk in Tk such that pvk = zk and h(vk) =a. If h(zk) is a limit

ordinal, choose vk in Tk such that pvk = zk, h(vk) is not a limit ordinal, and

h(vk) >h(zk-i). Since z is quasi-regular, v=(vi, v2, • ■ ■ ) has properties (Rl)

and (R3). Now v has property (R2) unless A(z*) =0:4 + 1 for all ft^w where

ak is a limit ordinal. In such a case, there are infinitely many ordinals between

h(zk) and ft(zfc+i) for any ft^rn. Hence we may rechoose v2k(2k>m) so that v

satisfies condition (R2).

Lemma 6. There exists a quasi-regular element u such that pu = y and

lim h(uk) =X.(6)

Proof. Let <xi, a2, • • ■ be a monotone increasing sequence of ordinals such

that sup ak=\. Given any ordinal /3<X, there is a ukGTk such that puk — yk,

h(uk) is not a limit ordinal, and h(uk) ^max(ak, ß). This allows us to find in-

ductively elements ukGTk such that u = (ui, u2, ■ ■ ■ ) satisfies the conditions

of the lemma.

(3) If /i = 0, the module is simply a direct sum of a torsion module and an infinite cyclic

module.

(4) For a technical reason (see Lemma 6 below) we shall assume that X is a limit ordinal.

There is no loss of generality from this restriction, for if X is not a limit ordinal, we may use

the scheme of the last paragraph to reduce it to a limit ordinal.

(6) X is assumed to be a limit ordinal. See footnote (*).
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Definition. A submodule B oí II is allowable if:

(Al) Br\N = 2;
(A2) rank 73 = 1;

(A3) any element bEB of infinite order with hibk) ^X for infinitely many

k is congruent to a multiple of y mod 2;

(A4) any element b E B with hibk) <Xfor large k is either regular or is quasi-

regular, lim hibk) =X and pb—yE%.

The submodule generated by 2 and y is allowable. Since the ascending

union of allowable submodules is allowable, there exists a maximal allowable

submodule Mi.

The next lemmas are concerned with the purity of Mi.

Lemma 7. 7/ pu EMi, there is an element vEMi with pu = pv.

Proof. We may assume m(JMi. By the maximality of Mi, the submodule

M'— {Mi, u] is not allowable. Suppose M' violates (Al). Then ru — wEN,

where rER and wEMi. r must be a unit, so that we may assume u — wEN.

But píu — w)ENr\Mi = ü,. Hence piu — w) =cr, where cr£2. Since 2 is pure in

IT, there is a (r'£2 with pa' =o. Hence pu = piw+o') and w+o'EMi.

We may now assume there \sawEMi such that u — w violates (A3) or (A4).

Since rank M' = 1, either p*+t'u = p'w or p'u = pa+,'w, where 5 and s' are non-

negative integers. In the latter case, set w' =p*'w. Then p'iu — w1) =0 so that

u — w'EN. Therefore ¿>(m —w/)£2. The purity of 2 yields an element c of 2

with po = piu — w'). Then pu = píw¡ +a) and w'+oEMi. In order to complete

the argument, it will suffice to prove the relation ps+s'u = psw is impossible if

s'>0. Adjusting w by an element of 2, we may assume p''u = w. But now

u — w= (1 —ps')u is a multiple of u by a unit in the ring. Hence u — w violates

(A3) or (A4) if and only if u violates (A3) or (A4). But Lemmas 5 and 6 per-

mit us to assume u is regular or quasi-regular—a contradiction.

Lemma 8. The submodule M\ is pure.

Proof. Since 2 is a pure submodule, we need only consider the elements of

infinite order. If the height of a quasi-regular element z is preserved, then the

height of the element y is also preserved, for lim A(z*) =X. Therefore, it is only

necessary to consider the regular and quasi-regular elements of M\. Let hi

denote the height taken in Mi. Assume that, for any regular or quasi-regular

element z in Mi, hiiz) = Ä(z) if Ai(z) <a. By Lemma 7, the induction hypothesis

is true for a = 1. Let z be an element in Mi with Ai(z) —a.

Case 1. a = ß + l. There is a regular element w in Mi such that pw = z and

hiiw) = ß = hiw). If hiz)>a, then there is an element u in IT such that pu=z

and hiu) =a. Let win) =u — un+wn. Then w(w) belongs to Mi and pwin) —z.

Hence Ai(w(«)) a/3 and hiiwin)) =Ä(w(«)), for all positive integers n. For all

sufficiently large w, we have A(m) = hiu — un) and hiwn)=hiwn)>hiw) by the
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regularity of w. Hence ß^h(w(n)) — min(h(u — u*), h(w*)) — h(w") = h(wn)

>h(w) =ß for all large n; this is impossible.

Case 2. a is a limit ordinal. Let w be a regular element in Mi such that

pw — z. Then h\(w) <a and h(w) —h(w). If A(z) >a, then there is an element

u in II such that pu = z and h(u) |a. Form the elements w(n) as in Case 1.

Then we have a>h(w(n)) = h(wn) for all large n. Since a is a limit ordinal,

a>h(w„) + 1 as well; this contradicts the property (R3) of the element w. The

proof of Lemma 8 is complete.

It follows from Lemma 8 that S(Mi) is the equivalence class of the sequence

{X+m }. However the torsion submodule of Mi is too large. Let S0 = 2*°-1 Px Tk,

and set Jlf=Mi/S0. The elements p*y, m = 0, 1, 2, • ■ • are S-proper, hence So-

proper. Furthermore, all regular and quasi-regular elements are S0-proper, for

the heights of these elements are, by (A4), less thanX. Hence, if <p: Mi—>Mi/20

is the natural homomorphism, h(<p(p*y))=\ + n for all n; [3, Lemma 3.1].

Thus S(M) is the equivalence class of {X+m}. Furthermore, the torsion sub-

module of M is S/2o= 2*°=i Tk/pxTk. By property (ii) of the definition of

Tk and by [l, Exercise 35], 2/20~ T. This completes the construction of pro-

longed modules.

We now construct the modules of Case 3. Let T be the given torsion mod-

ule and let g(n) be the given sequence of ordinals consistent with T; let

Mi<m2< • ■ • be the sequence of gaps of g. For ft= 1, 2, • • • , define torsion

modules Tk such that

(0 Ei* r»-r;
(ii) f(Th;g(nk))*0.

Let II denotePJ"«i Tk, and let N denote the torsion submodule of II.

Lemma 9. There exists an element x = (xk) in II iwcft that all pnx are regular

and h(pnx) =g(n), for n = 0, 1, 2, • • • .

Proof. Since the sequence g has no gaps between 0 and Mi, g(M) =g(0)+M

for O^m^mi. Let x\ be an element in Ti such

Ux= (g(0),g(l), • • -,g(ni), co, • • •).

In general, we find inductively elements xk in Tk with the following properties:

(i) the order of xk is (p"k+l) ;

(ii) h(p**xk)=g(nk);

(iii) except the natural gap at nk, the Ulm sequence of xk has at most one

gap; if it has a gap at mk<nk then h(pmt+lxk) is a limit ordinal;

(iv) h(p*xk)>h(pnxk-i) lor Qúnúnk-X.

Suppose that there exists an element xk-i in 7Vi satisfying (i)-(iii). To

find Xt, we distinguish two cases.

Case 1. g(nk) =a+nk. Let xk be an element in Tk of order (p*k+1) such that

h(p"Xk) =a + n, 0^n^nk. The element xk has the properties (i)-(iv).

Case 2. g(M*) =a+m, where 0^mi<mj¿ and a is a limit ordinal. Since the
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sequence g has no gaps between nk-i + l and nk, m = re* —w*_i —1. Let the Ulm

sequence of xk-i be

(ß, ß + ii • • • , ß + Mk-L y, y + l, • • •, y + »*-i - mk-u °°, • • • ).

where y is either ß + mk-\ + i or a limit ordinal.

(2.1) y+nk^a+m. Then y<a. Since a is a limit ordinal, there is an

ordinal a0 between y and a such that a0>g(w*_i) and fíaB+mk) ?¿0, where

mk = nk — m — \. Let Xit be an element in T* having the Ulm sequence

(«o, «o + l, • ■ • , a>o+mk, a, a+i, ■ • • , a+m, <»,•••)• The element xk

satisfies (i)-(iv).

(2.2) y+nk>a+m. Then a+m = y+i for some positive integer i<nk. In

fact, since y+i-g(nk) >g(nk-i) + (nk-nk-i) =y + (nk-mk^i-l), i>nk-mk-i

— 1 è «t — w^_i — 1. The element x& in T* having Ulm sequence

fj8+wi*_i-(w* —1-1), • • ■ , ß+ntk-i, y, 7 + 1. ■ • • . Y+*. °° ' * ' ). satisfies

(i)-(iv).

In all cases the Ulm sequence of xk does not have a gap between w*_i + l

and nk; this is clearly true for Case 1, while for Case 2, we have both m oí

(2.1) and i oí (2.2) greater than n¡¡—»*_i — 1. Therefore h(pnx) =g(n) for

w = 0, 1, 2, • • • .

The elements pnx are regular, unless the sequence of gaps {mk} is equiva-

lent to a constant sequence, say mk = c for all ¿ = /. In this case pcx violates

(R3) and pc+1x violates (R2). From the construction of xk, we see that the

equality mk = mk-i can only occur in (2.1). In this case, we have h(xk)

>g(«*-i). Thus, it is possible to rechoose x2k (2k>l) so that pnx are also regu-

lar.

Definition. A submodule P of the module II is termed permissible if

(PI) rankP=l;

(P2) Pr\N=T;
(P3) every element of infinite order in P is regular.

Analogous to the construction of prolonged modules we get the desired

module through a maximal permissible submodule containing {T, x). This

completes the proof of Theorem 3.

4. Applications. 5(M) is a clumsy invariant. In spite of this clumsiness,

the main theorems can be applied to solve isomorphism problems.

Theorem 4 (cancellation theorem). Let T be a torsion KM module

all of whose Ulm invariants are finite, and let M and M' be KM modules. If

T@M~T®M', then M~M'.

Proof. S(M) = SÍT®M) = SÍT®M') = SÍM'). By Ulm's Theorem, we
may cancel T so that the torsion submodules of M and M' are isomorphic

Hence M^M', by Theorem 1.
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Definition. A module is completely decomposable if it is the direct sum of

modules of rank 1.

Definition. Let M be a KM module. A subset xi, • • • , x. of M is a

decomposition basis of M if

(i) the x's are a basis;

(ii) ft(]Cr«x«) =min h(riXi) for all rtGR.

A decomposition set is an independent set (not necessarily a basis) which

satisfies condition (ii).

Definition. M is almost completely decomposable if it is almost isomorphic

to a completely decomposable module.

Theorem 5. A KM module M is almost completely decomposable if and only

if it contains a decomposition basis.

Proof. Necessity is obvious. In order to prove sufficiency, let Xi, • • • , x,

be a decomposition basis for M. Let Mit i= 1, 2, • • ■ , i, be a KM module

of rank 1 such that S(Mi) = [Uxí], the equivalence class of Uxí. Then S(M)

= S(^Mi). Hence M is almost isomorphic to J^.Mj.

Rotman [3] has shown that if one assumes M has no elements of infinite

height, M is completely decomposable if and only if it contains a decomposi-

tion basis. This is false in the general case, as the following example shows.

Let T be a reduced torsion module of length 2w with Ulm invariants

f:/(2n-l)=0,/(2n) = l,/(«+2n-l)=0,/(»+2n) = l. Let Mi have torsion

submodule T and contain an x with Ux = 2, 4, 6, • • • ; let M2 have torsion

submodule Tand contain an element y with Uy = w + 2, w+4, w+6, • • • .Let

5 = all pairs (t, -t), where tGT. Finally, set N=(Mi®M2)/S. Now (ax, by)

is 5-proper in Mi®M2, where a, bGR. Hence the images of (x, 0) and (0, y)

form a decomposition basis of N. N is not completely decomposable, for any

decomposition set contains elements x' and y', with Ux' having gaps at almost

all the even integers, and Uy' having transfinite ordinals. Now the torsion

submodule of N is isomorphic to T. Suppose N = Ni®N2, with torsion T\ and

T2 respectively. TX@T2~T. If S(NX) = [[/*'], then f(Tu 2m) = 1 for almost all

m. Hence f(T2, n) 9^0 only finitely often. Hence f(T2, a) is not a Zippin func-

tion, contradicting its being the Ulm invariants of T2. Therefore N is not

completely decomposable. On the other hand, the theorem tells us that N is

almost completely decomposable.

Definition. A module M is homogeneous if it is almost isomorphic to

]C"-i Mi, where all the Mi have rank 1 and S(Mi)=S(M¡), for all i and/.

Lemma 10. Let M= ^Mi, all the Mi of rank 1 and S(Mi)=S(Mj) for all
i andj. If xGM has infinite order, then [Ux] = S(Mi).

Proof. Choose XíGMí of infinite order such that Uxí— Ux¡ for all i and j.

Then pkx= J^r,■#,-, rtGR, ft^O. (We assume the sum is taken over all * such
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that ri9¿0). Now r, = Uipki where w¿ is a unit. Let £0 = min k,. Then hipn+kx)

= min hipH+kiXi)=hipn+kox0). Hence

[Ux] = [Uxo] - 5(M0) = S(Jfi)-

This lemma shows that the definition of homogeneity is independent of

the choice of decomposition into summands of rank 1. Further, we may say

M is of type S if there is a decomposition M = "^Mi with 5( M,) = 5 for all i.

Lemma 11. Let M be a reduced module, and let Xi, ■ • • , x, be a decomposition

basis such that each Xi has the same Ulm sequence. Suppose also that Xi

= «>iifli+ • • • +Wi,a„ and, for all i, \wn\ sá|a»ii|. (| -| is the p-adic norm).

Under these conditions, yi = wnXi — WnXi, i^2, is a decomposition set, and each

y< is in the submodule generated by a2, • • ■ , a,.

Proof. [3, Lemma 6.6].

Theorem 6. Let M be a homogeneous KM module of type S. Any direct sum-

mand of M is homogeneous of type S.

Proof. Let M=A®B.
Choose d, • • • , a,-.k independent in A, ae-k+i, • • ■ , a, independent in B

so that these elements form a basis for M. By Lemma 10, we may assume the

a's have identical Ulm sequences. We are now in the situation of Lemma 11.

Applying this lemma k times (after each application we must normalize the

y's obtained so that they have identical Ulm sequences), we obtain s — k inde-

pendent elements in {ae~k+i, ■ • ■ , a,} EB, which is a decomposition set in B.

By the purity of B and the fact that rank B = s — k, these elements constitute

a decomposition basis of B. By Theorem 5, B is almost completely decom-

posable. By Lemma 10, B is homogeneous and of type S.

We now consider uniqueness of the decomposition of a module into sum-

mands of rank 1.

Definition. Let M= "^Mi — 53A7',-, where rank M¿ = rank Ni —I for all

i. These two decompositions are almost isomorphic in case the indices may be

so ordered that 5(M0 = 5(A7,0 for all i.

Theorem 7. Let M be a completely decomposable KM module. Any two

decompositions of M into summands of rank 1 are almost isomorphic.

Proof. We call two decomposition sets Xi, • • ■ , xt and yi, • • • , yt de-

pendent in case each yi is linearly dependent on the x's and each Xj is linearly

dependent on the y's.

We show by induction on t that if x\, • • • , xt and yi, • • • , y< are de-

pendent decomposition sets, then (after rearrangement), [í/x,]= [í/y¿] for

l^iút. If f=l, the statement is obvious. Suppose M=Mi® • • ■ @Mn

= Ni® ■ ■ ■ ®Nn. Take elements of infinite order x¡EM¡ and yiENi. We

may assume that the following equations are satisfied:
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i

y» = xi + ]£ OijXj, l ú i Ú m ik t;
i-i

yi = £ difXj, m + 1 á í á /.
;'=2

PTxi = 6iyi + • • • + ômym + • • • + bnyt.

If we replace the y's in (5) by their expressions in (4), We obtain prXi

= (bi+ ■ ■ ■ +bm)xi+z, where z is a linear combination of Xi's, î'^2. By

independence, z = 0 and pr = bi+ ■ • ■ +bm. At least one biG(Pr+1) for i^m,

say biG(Pr+1)- Since the x's and y's form decomposition sets, (4) and (5)

yield h(pr+kyi) ^h(pr+kxi) èh(pkbiyi) lor all ft^O. In particular, if ft = 0,

bi = upr where it is a unit in R. Hence h(pT+kXi) =h(pr+kyi) and Uxi and Uyi

are equivalent. There is no loss in generality if we even assume Uxi= Uyi.

Now if tit», h(pkyi) — h(pkxi + YLpkaayi) — minft(p*xi), h(pkaijXj)

= min h(pkyí), h(pkaijX¡). Hence h(pkyi) ^h(pkyi) lor all i^m.

We claim y2 —yi, ■ • • , ym—yi, ym+i, • ■ • , y< form a decomposition set.

Clearly this set is independent. Consider ft(5^?L2 a,(y¿—yi) + ]Cí=m+i o¿y,).

We must show this is equal to min ft(a¿(y,—yi))¿ám, ft(a,y¿)tam+i. Now we do

know the height in question is equal to min ft( 5^™ a a»yi), ft(fliy¿)ia2.

Case 1. This expression is ft(a¿0y¿0) for some ¿0 ^ 2. But ft(ö,0yi0)

^minís2 ft(a¿yi) gmin ft(a¿(y< —yi))<Sm, ft(a.-y.-)i¡im+i since Uy^Uyi for í^mí.

Case 2. This expression is ft(2™2 a»yi)-

But ft(]F^L2 °»yi) ^minism A(a,yi) §?min,i2 h(aty%) since Uyi^Uyi, which

returns us to Case 1.

Since y2 —yi, ■ • • , ym—yi, ym+i, • • ■ , Vt and x2, • • • , Xi are dependent

decomposition sets, the inductive hypothesis allows us to match the Ulm

sequences. Hence, after reordering, [Z7(y,—yi)]= [Uxi] lor i^m and [i/y,]

= [Uxí] lor i 2: mi + 1. Since [U(yi—yî)]= [Uyi], we have completed the proof

of the theorem.

An even stronger uniqueness assertion can be stated if the module M

has no elements of infinite height.

Theorem 8. Let M be a completely decomposable KM module with no ele-

ments of infinite height. Then any two decompositions of M into summands of

rank 1 have isomorphic refinements.

Proof. Let M = Mi® ■ ■ ■ ®Mn = Ni® ■ ■ ■ ©A7',, be two decompositions,

each Mi and A7, of rank 1. By Theorem 7, we may assume S(Mi)=S(Ni) for

all î. By the existence theorem, there are modules A¿ of rank 1 such that:

(i) A i is isomorphic to a summand of M< and of N^,

(ii) if Wi is the torsion submodule of At, all the Ulm invariants of W, are

O's and l's.

Hence there exist torsion modules 7\ and T[ such that M,• ~ A¿ © Ti and

(4)

(5)
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Ni**Ai®TÍ, and so M« 5^<© S^»*3 HAi® JL^í • Looking only at the
torsion submodules, we see that 5^W<© 5^»~ 52^»© 53^«'- By our choice

of Wi, Ulm's theorem allows us to cancel and obtain 52^« ~ 5^77- Since

there are no elements of infinite height, these have isomorphic refinements.
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