CARTAN DECOMPOSITIONS FOR L^* ALGEBRAS

ву JOHN R. SCHUE

1. Introduction. In the discussion of L^* algebras given in [5] a classification theory was obtained for the separable simple algebras under the assumption of the existence of a Cartan decomposition relative to some Cartan subalgebra. The main result of this paper is a proof that any semi-simple L^* algebra of arbitrary dimension has such a decomposition relative to any Cartan subalgebra.

In the process of proving this several additional results of interest in themselves are obtained, among them one concerning representations of finitedimensional semi-simple Lie algebras which seems to be new. This is stated in detail in the second corollary of 4.5. The conclusion obtained in 4.5 also adds a new result to the theory of commutators of operators on a Hilbert space.

2. Continuous decompositions.

DEFINITIONS AND NOTATION. An L^* algebra is defined as a Lie algebra L over the complex numbers whose underlying vector space is a Hilbert space and such that for each x in L there exists an element x^* with $([x, y], z) = (y, [x^*, z])$ for all y and z. For an x in L, X (occasionally D_x) will denote the linear operator defined by Xy = [x, y] for all y and we will assume that the norm on L is chosen such that $||X|| \le ||x||$. An L^* algebra is semi-simple if and only if the mapping $x \to X$ is one-one. For the remainder of this paper L will denote an arbitrary (but fixed) semi-simple L^* algebra unless further restrictions are explicitly stated. As shown in [5] this implies the mapping $x \to x^*$ is a Hilbert space conjugation and anti-multiplicative, D_x^* is the adjoint of D_x , and that L is a direct sum of simple L^* ideals. A Cartan subalgebra of L is defined as a maximal abelian self-adjoint subalgebra of L. For subsets M, N of L, Sp(M) will represent the smallest closed linear subspace of L containing M and $[M, N] = Sp\{[m, n]: m \in M, n \in N\}$. For subspaces S_1 , S_2 the notation $S_1 + S_2$ will be used only when S_1 is orthogonal to S_2 .

Suppose A is a bounded self-adjoint operator on L. For λ real and $\epsilon > 0$ let $V(\lambda, \epsilon) = \{x: \|(A-\lambda)^n x\| \le \epsilon^n \|x\|, n=1, 2, \cdots \}$. For a Borel set M of the real numbers let $V(M, \epsilon) = \operatorname{Sp} \{V(\lambda, \epsilon): \lambda \in M\}$ and $V(M) = \bigcap_{\epsilon > 0} V(M, \epsilon)$. It is proved in $[1, \operatorname{pp. }66-69]$ that $V(\lambda, \epsilon)$ is a closed subspace and equal to the set of x such that the sequence $\{(\epsilon^{-1}(A-\lambda))^n x\}$ is bounded. Furthermore, if E is the real spectral measure such that $A = \int \lambda dE$ then the range of E(M) is equal to V(M) for M compact. For any Borel set M the range of E(M) will be denoted by S(M). Finally, for Borel sets M and N let M + N

= $\{m+n: m \in M, n \in N\}$ and $-M = \{-m: m \in M\}$. Then M+N and -M are also Borel sets.

2.1. Suppose A is a bounded self-adjoint derivation on L and M, N are Borel sets of the real line. Then $[S(M), S(N)] \subset S(M+N)$ and $S(M)^* = S(-M)$.

Proof. Suppose first that M and N are compact and $\epsilon > 0$. Let $M = \bigcup M_k$ and $N = \bigcup N_k$ where $\{M_k\}$, $\{N_k\}$ are sequences of disjoint Borel sets, each of diameter less than $(1/2)\epsilon$. Let $x \in S(M)$ and $y \in S(N)$. Then $x = \sum x_j$, $y = \sum y_k$ where $x_j \in S(M_j)$, $y_k \in S(N_k)$ and $[x, y] = \sum [x_j, y_k]$. Suppose $\lambda_j \in M_j$, $\mu_k \in N_k$. Then it follows from the spectral theorem that $\|(A - \lambda_j)^n x_j\| \le (2^{-n}\epsilon^n)\|y_j\|$ and $\|(A - \mu_k)^n y_k\| \le (2^{-n}\epsilon^n)\|y_k\|$ for each positive integer n. Since A is a derivation it follows by induction on n that $\|(A - (\lambda_j + \mu_k))^n [x_j, y_k]\| = \|\sum_{0}^n C_m [(A - \lambda_j)^m x_j, (A - \mu_k)^{n-m} y_k]\| \le \sum_{0}^n C_m \|(A - \lambda_j)^m x_j\| \|(A - \mu_k)^{n-m} y_k\| \le \sum_{0}^n C_m \|x_j\| \|y_k\| = \epsilon^n \|x_j\| \|y_k\|$. Hence the sequence

$$\left\{(\epsilon^{-1}(A-(\lambda_j+\mu_k))^n[x_j,y_k]\right\}$$

is bounded and this implies $[x_j, y_k] \in V(\lambda_j + \mu_k, \epsilon)$. Thus $[x, y] \in V(M+N, \epsilon)$. Since ϵ was arbitrary, $[x, y] \in V(M+N)$. The compactness of M and N implies M+N is also and hence $[x, y] \in S(M+N)$. Thus [S(M), S(N)] is a subset of S(M+N) for M and N compact.

It is proved in [1] that E is regular, i.e., for any Borel sets M and N, $E(M) = \sup\{E(C): C \subset M, C \text{ compact}\}\$ and similarly for E(N). For $C \subset M$ and $D \subset N$ with C and D compact we have $[S(C), S(D)] \subset S(C + D) \subset S(M+N)$. Letting C vary gives $[S(M), S(D)] \subset S(M+N)$. Letting D vary gives $[S(M), S(N)] \subset S(M+N)$.

Since A is a derivation, $[A, D_x] = D_{Ax}$ for all x and hence $D_{(Ax)} = [A, D_x]^* = [D_x^*, A^*] = -[A, D_{x^*}] = D_{-Ax^*}$ so that $(Ax)^* = -Ax^*$ for all x in L. Using this, a proof like that above can be constructed to prove the second assertion.

NOTATION. Suppose $\mathcal K$ is a closed self-adjoint abelian subalgebra of L. Let $\alpha = \alpha(\mathcal K)$ be the commutative C^* algebra of bounded operators generated by $\{H:h\in\mathcal K\}$. Since each H is zero on $\mathcal K$ then the identity operator is not in α . Let $\Delta = \Delta(\mathcal K)$ be the set of all homomorphisms of α into the complex numbers. For $A \in \alpha$ let \hat{A} be the function on Δ defined by $\hat{A}(\alpha) = \alpha(A)$. If Δ is given the weakest topology making these functions continuous then Δ is a compact Hausdorff space and the theory of C^* algebras shows that the mapping $A \to \hat{A}$ is an algebraic isomorphism mapping α isometrically onto the set of all continuous functions on Δ vanishing at the zero homomorphism with A^* corresponding to the complex conjugate of \hat{A} . The set Δ with its topology will be called the spectrum of $\mathcal K$. It is also known that the spectrum of an operator $A \in \alpha$ is the range of the function \hat{A} .

2.2. For each $\alpha \in \Delta$ there is a unique $x_{\alpha} \in \mathcal{X}$ such that $\alpha(H) = (h, x_{\alpha})$ for all $h \in \mathcal{X}$. Also $||x_{\alpha}|| \leq 1$ and $x_{\alpha}^* = x_{\alpha}$. If $\{x_{\alpha}\}$ is given the induced weak topology of \mathcal{X} then Δ is homeomorphic to $\{x_{\alpha}\}$ under the mapping $\alpha \to x_{\alpha}$.

Proof. All except the last statement were proved in [5]. The family $\{\hat{H}: h \in \mathcal{K}\}$ separates points of Δ and all members vanish at infinity (zero). By Theorem 5G of [3], the topology of Δ is that generated by the family. But this is clearly equivalent to the weak topology on $\{x_{\alpha}\}$, finishing the proof.

There is a unique spectral measure E on the Borel sets of Δ such that $(Ax, y) = \int \widehat{A}(\alpha) d(E(\alpha)x, y)$ for all x, y in L. Also it is easily seen that the range of E(0) is $\{x: [x, x] = 0\}$ where $\{0\}$ denotes the Borel set consisting of the zero homomorphism. For an arbitrary Borel set M of Δ let S(M) denote the range of E(M).

Suppose α , $\beta \in \Delta$. If $x_{\alpha} + x_{\beta} = x_{\gamma}$ for some $\gamma \in \Delta$, let γ be denoted by $\alpha + \beta$. If $x_{\alpha} = -x_{\gamma}$ for some $\gamma \in \Delta$, let γ be denoted by $-\alpha$. Using this notation we have the following theorem which is the continuous version of the desired composition for L relative to 3C.

2.3. Suppose M, N are Borel sets of Δ and $M+N=\{m+n: m\in M, n\in N\}$. Then M+N is a Borel set and $[S(M), S(N)]\subset S(M+N)$. If $-M=\{-m: m\in M\}$ then $S(-M)=S(M)^*$.

Proof. Choose a set $\{x_i : i \in I\}$ of elements of \mathfrak{R} such that the set spans \mathfrak{R} and $x_i^* = x_i$ for each i. Let σ_i be the spectrum of x_i . Then σ_i is compact so that $P = \prod_i \sigma_i$ is compact. For $\alpha \in \Delta$ let $f(\alpha)$ be the element of P whose ith coordinate is (x_i, x_α) . Then f is a homeomorphism of Δ onto a compact subset of P. If addition is defined in P (whenever possible) in the obvious coordinatewise fashion then f preserves the algebraic structure of Δ as well as the topology. The spectral measure E can be defined directly on P (hence on $f(\Delta)$ and Δ) by constructing the product measure obtained from the E_i 's where $X_i = \int_{\sigma_i} \lambda dE_i$. The measure-theoretic details will be omitted here but a discussion of this type of problem may be found in [2].

A subset M of P will be called a rectangle if and only if $M = \prod M_i$ where M_i is a Borel set of σ_i and $M_i = \sigma_i$ for all but a finite number of indices. Then the Borel sets of P will coincide with the σ -algebra generated by the rectangles. In fact, Chapter 7 of [2] shows that this σ -algebra is obtained as the smallest monotone class containing all finite unions of disjoint rectangles. 2.1 can be used to prove 2.3 for the case when M, N are finite unions of disjoint rectangles. The collection of all sets for which 2.3 holds is clearly a monotone class, hence contains all Borel sets.

2.4. COROLLARY. Suppose L is separable and \Re is a closed self-adjoint abelian subalgebra of L such that $\{\|x_{\alpha}\|: \alpha \in \Delta, x_{\alpha} \neq 0\}$ is bounded away from zero. Then there exist disjoint Borel sets M_k of Δ , $k=0, 1, \cdots$ such that $M_0 = \{0\}$, $L = \sum S(M_k)$, and $[S(M_k), S(M_k)^*] \subset \{x: [\Re, x] = 0\}$.

Proof. L separable implies $\{x_{\alpha}: \alpha \in \Delta\}$ is a separable metric space in the norm topology, hence contains a countable dense subset. Suppose $||x_{\alpha}|| > c > 0$ for all $\alpha \neq 0$. Let $\alpha_0 = 0$ and let $\{x_{\alpha_k}: k \geq 1\}$ be a countable dense subset of

 $\{x_{\alpha}\}-\{0\}$. If $N_k=\{\beta\colon \|x_{\beta}-x_{\alpha_k}\|\leq 3^{-1}c\}$ then $N_0=\{0\}$ and $\Delta=\bigcup N_k$. Furthermore, since $\{x_{\alpha}\}$ is weakly compact, N_k is weakly closed, hence a Borel set. If α , $\beta\in N_k$ the triangle inequality implies $\|x_{\alpha}-x_{\beta}\|< c$ so that either $\alpha=\beta$ or $\alpha-\beta\in\Delta$. Hence $N_k+(-N_k)=\{0\}$. In the usual way it is possible to choose Borel sets M_k such that $M_k\subset N_k$ and Δ is the disjoint union of the M_k 's. Then $[S(M_k),S(M_k)^*]\subset S(M_k+(-M_k))\subset S(\{0\})$ and the remaining statements follow easily from the spectral theory.

3. Nilpotent elements.

3.1. There exists a nonzero element $a \in L$ such that $(a, a^*) = 0$ and $A^3 = 0$. **Proof.** Let x be a self-adjoint element of L with ||X|| = 1 and let $X = \int \lambda dE$. If M is the real interval (2/3, 1] and V is the range of E(M) then $V \neq 0$ and, since V^* is the range of E(-M), $(V, V^*) = 0$. Using 2.1, [V, [V, L]] = 0. Thus a may be chosen as any element of V different from zero.

NOTATION. For this section we choose a fixed a having the properties listed in 3.1 and let $b=a^*$, c=[a, b]. Then $C=C^*$ and $A^3=B^3=0$. This section is devoted to an analysis of the L^* subalgebra generated by a, culminating in 3.8. This turns out to be a key result in the general existence proof for Cartan decompositions.

3.2. For any x in L, $A^2XA = AXA^2$ and $B^2XB = BXB^2$.

Proof. [A, [A, [A, X]]] = 0 and $A^3 = 0$ together imply $-3A^2XA + 3AXA^2 = 0$. The second equation follows from the first by taking adjoints.

3.3. Suppose x is any element in the closure of the range of A^2 . Then $X^3=0$.

Proof. By continuity of the adjoint representation it is sufficient to prove this for the case $x = A^2z$ for some z in L. Then $X = [A, [A, Z]] = A^2Z - 2AZA + ZA^2$. Using 3.2, $A^2ZA = AZA^2$ so that $A^2ZA^2 = 0$. A direct computation then shows that $X^2 = A^2Z^2A^2$ and $X^3 = 0$.

- 3.4. Suppose n is any positive integer. Then
- (a) $C^n a = -A^2 (BA)^{n-1} b = (AB)^n a$,
- (b) $C^n b = (-1)^{n-1} B^2 (AB)^{n-1} a = (-1)^n (BA)^n b$.

Proof. Since $C = C^*$, $(C^n x)^* = (-1)^n C^n x^*$ for any x. Thus (b) follows from (a) by using adjoints.

The first equation of (a) is proved by induction. For n=1, $Ca=[[a,b],a]=-A^2b$. Assuming the result for n, $C^{n+1}a=C(-A^2(BA)^{n-1}b)=-(AB-BA)A^2(BA)^{n-1}b=-ABA^2(BA)^{n-1}b=-A^2(BA)^nb$, after using 3.2. For the second, repeated application of 3.2 gives $C^na=-(AB)^{n-1}A^2b=(AB)^na$.

COROLLARY. For all integers $n \ge 0$,

- (a) $A C^n a = B C^n b = 0$,
- (b) $ABC^na = C^{n+1}a$, $BAC^nb = -C^{n+1}b$,
- (c) $B^2C^na = (-1)^nC^{n+1}b$, $A^2C^nb = (-1)^{n+1}C^{n+1}a$.
- 3.5. Let $S_0 = \operatorname{Sp}\{a, b\}$, $S_n = \operatorname{Sp}\{D_1 \cdot \cdot \cdot D_n s : s = a, b; D_i = A, B\}$ for $n = 1, 2, \dots$ Let $S = \operatorname{Sp}\{S_n : n = 0, 1, \dots\}$.

- (a) S is the L^* subalgebra generated by a.
- (b) $S_{2n} = \operatorname{Sp} \{ C^n a, C^n b \}, n = 0, 1, \cdots$
- (c) $S_{2n+1} = \operatorname{Sp} \{BC^n a, AC^n b\}, n = 0, 1, \cdots$
- (d) $(S_{2m}, S_{2n+1}) = 0, m, n = 0, 1, \cdots$

Proof. (a) It is clear that $S_n = S_n^*$ and hence $S = S^*$. Since $AS_n \subset S_{n+1}$, $BS_n \subset S_{n+1}$, then S is invariant under A and B. Hence S is invariant under X for any x in the L^* subalgebra S' generated by a, i.e., $[S', S] \subset S$. But clearly $S \subset S'$. Hence $[S, S] \subset S$ and therefore S = S'.

(b) and (c) are true for n = 0. Suppose they hold for some n. Then

$$S_{2n+2} = \operatorname{Sp} \{ AS_{2n+1}, BS_{2n+1} \} = \operatorname{Sp} \{ ABC^n a, A^2C^n b, B^2C^n a, BAC^n b \}$$

= $\operatorname{Sp} \{ C^{n+1} a, C^{n+1} b \},$

using the corollary of 3.4. Hence

$$S_{2n+3} = Sp\{AS_{2n+2}, BS_{2n+2}\} = Sp\{AC^{n+1}b, BC^{n+1}a\}$$

since $AC^{n+1}a = BC^{n+1}b = 0$. Thus, by induction on n, (b) and (c) are true for all n.

(d) $(C^{m}a, BC^{n}a) = (AC^{m}a, C^{n}a) = 0$ and

$$(C^{m}a, AC^{n}b) = (-1)^{n}(C^{m}a, A(BA)^{n}b) = (-1)^{n}(C^{m}a, (AB)^{n}Ab)$$
$$= (-1)^{n+1}(C^{n+m}a, Ba) = (-1)^{n+1}(AC^{n+m}a, a) = 0.$$

Similarly $(C^m b, A C^n b) = (C^m b, B C^n a) = 0$, completing the proof of (d).

- 3.6. Letting *n* range over the non-negative integers, let $V_0 = \operatorname{Sp} \{ S_{2n+1} \}$, $V_1 = \operatorname{Sp} \{ C^n a \}$, $V_2 = \operatorname{Sp} \{ C^n b \}$.
 - (a) $S = V_0 + V_1 + V_2$.
 - (b) $V_0 = V_0^*$, $V_1^* = V_2$, $V_2^* = V_1$.
 - (c) $[V_1, V_1] = [V_2, V_2] = 0.$
 - (d) $[V_1, V_1^*] = [V_2, V_2^*] = V_0$.

Proof. (a) It only remains to prove that V_1 is orthogonal to V_2 . Now (a,b)=0 and, if either n or m is nonzero, then $(C^na,C^mb)=-(A^2(BA)^{n+m-1}b,b)=-((BA)^{n+m-1}b,B^2b)=0$. Hence $(V_1,V_2)=0$.

- (b) $V_1^* = \operatorname{Sp}\{(C^n a)^*\} = \operatorname{Sp}\{C^n b\} = V_2$. Similarly $V_2^* = V_1$. Since $S^* = S$, $V_0^* = V_0$.
- (c) It is sufficient to prove $[V_1, V_1] = 0$ or $[C^n a, C^m a] = 0$ for all m and n. This is done by induction on n. The case n = 0 is given by the corollary of 3.4. Suppose $[C^{n-1}a, C^m a] = 0$ for all m. Then $C^n[a, C^m a] = C^n 0 = 0$. By Leibniz's rule, $0 = [C^n a, C^m a] + \text{terms}$ of the form $[C^n a, C^n a]$ where p < n. Each of these latter terms is zero by the induction hypothesis.
- (d) $V_0 = \operatorname{Sp}\{[a, C^n b], [b, C^n a]\}$ implies $V_0 \subset [V_1, V_1^*]$. But $(V_1, [V_1, V_1^*]) = ([V_1, V_1], V_1) = 0$ implies $[V_1, V_1^*]$ is orthogonal to V_1 . Similarly, since $[V_1, V_1^*] = [V_2, V_2^*], [V_1, V_1^*]$ is also orthogonal to V_2 , hence must be a subset of V_0 .
 - 3.7. $[c, V_0] = 0$.

Proof. By using adjoints it is sufficient to prove $CA C^n b = 0$ for all n. Since C is self-adjoint it is sufficient to prove $C^2A C^n b = 0$. Using the appropriate cases of the corollary of 3.4,

$$CAC^{n}b = (AB - BA)AC^{n}b = A(BAC^{n}b) - B(A^{2}C^{n}b)$$

= $-AC^{n+1}b + (-1)^{n}BC^{n+1}a$.

Hence

$$C^{2}AC^{n}b = -A(BAC^{n+1}b) + B(A^{2}C^{n+1}b) + (-1)^{n}AB^{2}C^{n+1}a + (-1)^{n+1}BABC^{n+1}a$$

$$= AC^{n+2}b + (-1)^{n}BC^{n+2}a + (-1)^{2n+1}AC^{n+2}b + (-1)^{n+1}BC^{n+2}a = 0.$$

COROLLARY 1. $[C^n a, C^m b] = (-1)^n [a, C^{n+m} b]$ for all n, m.

Proof. $[C^n a, C^m b] \in V_0$ by 3.6. Also we may assume n is positive. Then $0 = C[C^{n-1}a, C^m b] = [C^n a, C^m b] + [C^{n-1}a, C^{m+1}b]$

so that $[C^n a, C^m b] = -[C^{n-1}a, C^{m+1}b]$. Applying this repeatedly gives the result in general.

COROLLARY 2.
$$[V_0, V_i] = V_i$$
 for $i = 1, 2$.

Proof. It is sufficient to prove this for i = 1. Now $[V_0, C^n a] = C^n[V_0, a]$ and V_1 is invariant under C so it is enough to prove $[V_0, a] \subset V_1$ in order to prove $[V_0, V_1] \subset V_1$. But $AV_0 = \operatorname{Sp}\{A^2C^n b, ABC^m a\} \subset V_1$ by the corollary of 3.4.

For the reverse inclusion, suppose $x \in V_1$ and $(x, [V_0, V_1]) = 0$. Then $([x, x^*], V_0) = 0$ so that $[x, x^*] = 0$ and X is normal. To prove x must be zero it is sufficient to show that X is nilpotent. In fact, for future reference, we will prove that $X^3 = 0$ for all $x \in V_1$. Since $V_1 = \operatorname{Sp}\{C^na: n \ge 0\}$, it is clear that $\operatorname{Sp}\{C^na: n \ge 1\}$ is either all of V_1 or a hyperplane in V_1 . In the first case V_1 is contained in the closure of the range of A^2 (see 3.4) and the assertion follows from 3.3. In the other case an element x of V_1 must be of the form $x = \mu a + y$ where μ is a scalar and y is in the closure of the range of A^2 . A proof like that of 3.3 then shows that $A^2Y = AY^2 = 0$. Since $A^3 = Y^3 = 0$, the binomial theorem gives $X^3 = 0$.

COROLLARY 3.
$$[V_0, V_0] = 0$$
.

Proof. Suppose $x \in V_0$ and $(x, AC^nb) = 0$ for all n. Then $([b, x], C^nb) = 0$ for all n implies [b, x] = 0 since $[b, x] \in V_2$. But then $0 = C^nXb = XC^nb$ and this implies X is zero on V_2 so that $(x, V_0) = (x, [V_2, V_2^*]) = 0$ and hence x is zero. Thus $V_0 = \operatorname{Sp}\{AC^nb\}$. Now $0 = [C^nb, C^mb]$ implies $A^2[C^nb, C^mb] = 0$ so that $[A^2C^nb, C^mb] + 2[AC^nb, AC^mb] + [C^nb, A^2C^mb] = 0$. The sum of the first and last terms on the left side is $(-1)^{n+1}[C^{n+1}a, C^mb] + (-1)^{m+1}[C^nb, C^{m+1}a]$ which is zero by Corollary 1. Thus $[AC^nb, AC^mb] = 0$ and, since $V_0 = \operatorname{Sp}\{AC^nb\}$, V_0 is abelian.

Corollary 4. S is semi-simple with V_6 as a Cartan subalgebra.

- **Proof.** Suppose $x \in S$ and $[x, V_0] = 0$. Then $0 = ([x, V_0], V_i) = (x, V_i)$ for i = 1, 2 implies $x \in V_0$ and V_0 is maximal abelian. To show that S is semi-simple suppose that $x \in S$ and [x, S] = 0. Then $x \in V_0$ and [x, b] = 0. The proof of Corollary 3 shows that x must be zero.
- 3.8. Suppose S is a semi-simple L^* algebra and $S = V_0 + V_1 + V_2$ with V_0 as a Cartan subalgebra and that the relations of 3.6 hold. Then S is a direct sum of three-dimensional ideals I_j where $I_j = \operatorname{Sp}\{e_j, e_j^*, [e_j, e_j^*]\}$ for some nonzero $e_j \in V_1$.
- **Proof.** The decomposition theorem of [5] for semi-simple algebras shows that S can be written as the direct sum of simple ideals I_j where $I_j = H_j + [H_j, S]$ for some closed self-adjoint subspace H_j of V_0 . We choose a fixed I_j and let $U_0 = H_j$, $U_1 = [H_j, V_1]$, $U_2 = [H_j, V_2]$. Then $I_j = U_0 + U_1 + U_2$ and it is clear that $[U_i, U_i] = 0$ for each i, $[U_0, U_i] = U_i$ for i = 1, 2, while $[U_i, U_i^*] = U_0$ for i = 1, 2.

Suppose $U_1=P+Q$ where P and Q are closed subspaces invariant under U_0 . Then ($[[U_1, U_1^*], P], Q$) = 0 implies ($[U_1, U_1^*], [Q, P^*]$) = 0 so that $[Q, P^*]=0$. Since [Q, P] is also zero, it follows that $U_0=[P+Q, P^*+Q^*]=[P, P^*]+[Q, Q^*]$ and, furthermore, that XY=0 (on S) for all $x\in[P, P^*]$ and $y\in[Q, Q^*]$. Referring to the proof in [5] of the decomposition theorem and using the simplicity of I_j we must have $[P, P^*]=0$ or $[Q, Q^*]=0$. But every element of U_1 is nilpotent on S so that necessarily either P=0 or Q=0. Hence U_1 contains no nontrivial closed subspaces invariant under U_0 . By the spectral theorem U_1 must be one-dimensional and this completes the proof.

COROLLARY 1. The L* algebra generated by a is a direct sum of three-dimensional ideals.

COROLLARY 2. There exists a nonzero element $x \in L$ such that $X^3 = 0$ and $[[x, x^*], x] = \lambda x$ with λ positive. In fact $\lambda ||x||^2 = ||[x, x^*]||^2$.

- **Proof.** Let I_j be a simple ideal of S as above and let $x = e_j$. Then $[[x, x^*], x] = \lambda x$ for some λ . Hence $\lambda ||x||^2 = ([[x, x^*], x], x) = ||[x, x^*]||^2$. Since $x \in V_1$, the proof of Corollary 2 of 3.7 shows that $X^3 = 0$. Thus $[x, x^*] \neq 0$ and λ must be different from zero.
- 4. A commutator equation. For this section, A will denote a fixed nonzero bounded operator on a Hilbert space such that $[A, A^*]$, $A = \lambda A$ for some $\lambda \neq 0$. From this considerable information about the spectra of AA^* , A^*A , and A^* can be obtained. Also there are some interesting consequences for representations of Lie algebras as bounded operators on a Hilbert space. By assuming 4.1 and Corollary 1 of 4.2 much of what is done here is valid for elements A, A^* of an arbitrary algebra with identity over a field of characteristic zero.
 - 4.1. A is nilpotent.

Proof. The mapping $B \rightarrow [[A, A^*], B]$ is a derivation on the set of all

bounded operators and has norm not exceeding $2||[A, A^*]||$. Hence $[[A, A^*], A^n] = n\lambda A^n$ for n a positive integer. Then $n\lambda A^n = [[A, A^*], A^n]$ implies $|n| |\lambda| ||A^n|| \le 2||[A, A^*]|| ||A^n||$ so that A^n is zero for some n.

4.2. $[A^*, A^n] = nA^{n-1}[A^*, A] - (\lambda/2)(n)(n-1)A^{n-1}$ for $n = 1, 2, \cdots$.

Proof. The case n=1 is trivial. Assuming the equation for n gives

$$[A^*, A^{n+1}] = A^n[A^*, A] + [A^*, A^n]A$$

$$= A^n[A^*, A] + nA^{n-1}[A^*, A]A - (\lambda/2)(n)(n-1)A^n$$

$$= A^n[A^*, A] + nA^n[A^*, A] - n\lambda A^n - (\lambda/2)(n)(n-1)A^n$$

$$= (n+1)A^n[A^*, A] - (\lambda/2)(n)(n+1)A^n.$$

COROLLARY 1. λ is real and positive and $[A^*, A], A^* = \lambda A^*$.

Proof. Choose n such that $A^n \neq 0$ but $A^{n+1} = 0$. Then $0 = [A^*, A^{n+1}] = (n+1)A^n[A^*, A] - (\lambda/2)(n)(n+1)A^n$ implies $A^n(A^*A - n(\lambda/2)) = 0$. Since $A^n \neq 0$, $A^*A - n(\lambda/2)$ does not have a bounded inverse, hence $n(\lambda/2)$ is in the spectrum of the positive operator A^*A and λ must be positive. Since λ is real, taking adjoints of both sides of the equation $[A, A^*], A = \lambda A$ gives the second assertion.

COROLLARY 2.
$$[A^{*n}, A] = nA^{*n-1}[A^*, A] + (\lambda/2)(n)(n-1)A^{*n-1}$$
.

Proof. Taking adjoints of both sides of the equation in 4.2 gives

$$[A^{*n}, A] = n[A^*, A]A^{*n-1} - (\lambda/2)(n)(n-1)A^{*n-1}$$

= $nA^{*n-1}[A^*, A] + \lambda n(n-1)A^{*n-1} - (\lambda/2)(n)(n-1)A^{*n-1}.$

COROLLARY 3. AA* commutes with A*A.

Proof. Since $[A, A^*] = AA^* - A^*A$, it is sufficient to prove AA^* commutes with $[A, A^*]$. But

$$[[A, A^*], AA^*] = [[A, A^*], A]A^* + A[[A, A^*], A^*] = \lambda AA^* - \lambda AA^* = 0.$$

- 4.3. For each non-negative integer n let $B_n = A^n A^{*n}$ and $D_n = A^{*n} A^n$.
- (a) $B_n A A^* = (1/n+1)B_{n+1} + (n/n+1)B_n A^* A + n(\lambda/2)B_n$.
- (b) $D_n A * A = (1/n+1)D_{n+1} + (n/n+1)D_n A A * + n(\lambda/2)D_n$.
- (c) For all $n, m \ge 0$, B_n and D_n commute with B_m and D_m .

Proof. (a)

$$B_{n}AA^{*} = A^{n}A^{*n}AA^{*} = A^{n+1}A^{*n+1} + A^{n}[A^{*n}, A]A^{*}$$

$$= B_{n+1} + A^{n}(nA^{*n-1}[A^{*}, A] + (\lambda/2)(n)(n-1)A^{*n-1})A^{*}$$

$$= B_{n+1} + (\lambda/2)(n)(n-1)B_{n} + nA^{n}A^{*n-1}[A^{*}, A]A^{*}$$

$$= B_{n+1} + (\lambda/2)(n)(n-1)B_{n} + n\lambda A^{n}A^{*n} + nA^{n}A^{*n}[A^{*}, A]$$

$$= B_{n+1} + (\lambda/2)(n)(n+1)B_{n} + nB_{n}A^{*}A - nB_{n}AA^{*}.$$

Solving for B_nAA^* gives the assertion in (a).

- (b) Because of the symmetry between A and A^* the proof is like that for (a).
- (c) If either n or m is zero the result is immediate. By Corollary 3 of 4.2, B_1 commutes with D_1 . Using equations (a) and (b) an induction on n shows that B_n and D_n are polynomials in B_1 and D_1 and this gives (c).
 - 4.4. Let p, q be non-negative integers and n = p + q. Then

$$B_p D_q A A^* = (q + 1/n + 1) B_{p+1} D_q + (p/n + 1) B_p D_{q+1} + (\lambda/2)(p)(q+1) B_p D_q.$$

Proof. The case q=0 is given by equation (a) of 4.3 and the case p=0 reduces to $D_nAA^*=AA^*D_n$. Thus we may assume both p and q are positive. Now $B_pD_qAA^*=(B_pAA^*)D_q=((1/p+1)B_{p+1}+(p/p+1)B_pA^*A+p(\lambda/2)B_p)D_q$ implies

(1) $B_p D_q A A^* = (1/p + 1) B_{p+1} D_q + p(\lambda/2) B_p D_q + (p/p + 1) B_p D_q A^* A$. But, using equation (b) of 4.3,

$$B_{p}(D_{q}AA^{*}) = B_{p}((q+1/q)D_{q}A^{*}A - (1/q)D_{q+1} - (\lambda/2)(q+1)D_{q})$$

which gives

(2) $B_p D_q A A^* = -(1/q) B_p D_{q+1} - (\lambda/2)(q+1) B_p D_q + (q+1/q) B_p D_q A^* A$. Using (1) and (2) to eliminate the term $B_p D_q A^* A$ gives the conclusion.

COROLLARY. For n a positive integer $(AA^*)^n$ is a linear combination of the B_pD_q where $1 \le p \le n$, $0 \le q \le n$.

Proof. For n=1, $AA^*=B_1D_0$. 4.4 and an induction on n gives the result in general.

4.5. Let n be the greatest integer such that $A^n \neq 0$. Then

$$(AA^*)^n \prod (AA^* - (\lambda/2)(p)(q+1)) = 0$$

where the product is taken over all pairs p, q with $1 \le p \le n$, $0 \le q \le n$.

Proof. $(AA^*)^n$ is a linear combination of terms of the form B_pD_q with $1 \le p \le n$, $0 \le q \le n$. Thus it is sufficient to show that for each such pair p, q, $B_pD_q\prod(AA^*-(\lambda/2)(k)(m+1))=0$ where the product is taken over all pairs k, m with $p \le k \le n$, $q \le m \le n$. If we define the degree of B_pD_q as p+q then $B_pD_q(AA^*-(\lambda/2)(p)(q+1))=(q+1/p+q+1)B_{p+1}D_q+(p/p+q+1)B_pD_{q+1}$ (by 4.4) and hence is a sum of terms of degree greater than that of B_pD_q . If the degree of B_pD_q is n each of the terms on the right is zero since $A^{n+1}=A^{*n+1}=0$. In general an induction on the terms of higher degree will yield the conclusion.

COROLLARY. AA^* and A^*A have finite spectra contained in the set $\{k(\lambda/2): k=0, 1, \cdots, n(n+1)\}$. $[A, A^*]$ has spectrum contained in this set and its negatives.

Proof. Let α be the commutative C^* algebra generated by AA^* and A^*A .

For any homomorphism α of α onto the complex numbers the value of α at AA^* must satisfy the same polynomial relation as AA^* , proving the first part. Because of the symmetry between A and A^* , A^*A must also satisfy a polynomial identity like that of 4.5. Since $[A, A^*] = AA^* - A^*A$, a similar argument applies here.

COROLLARY. Suppose L is a finite-dimensional semi-simple complex Lie algebra with \Re as a Cartan subalgebra and $\{h_{\alpha}, e_{\alpha} : \alpha \text{ a root}\}$ is a Weyl basis of L relative to \Re . Let σ be the associated involution and $x^* = -\sigma(x)$ for all x in L. Suppose ϕ is a representation of L as bounded operators on a Hilbert space with $\phi(x^*) = \phi(x)^*$ for all x.

- (a) If $[x, x^*] = 0$ then $\phi(x)$ is diagonalizable with finite spectrum.
- (b) The eigenvalues of $\phi(h_{\alpha})$ are integer multiples of $(1/2)\alpha(h_{\alpha})$.
- (c) $\phi(\mathfrak{R})$ is diagonalizable.
- (d) $\phi(e_{\alpha})$ is nilpotent.

Proof. For each α , $h_{\alpha} = [e_{\alpha}, e_{\alpha}^{*}]$ and $[h_{\alpha}, e_{\alpha}] = \alpha(h_{\alpha})e_{\alpha}$ together with the first corollary give (b). (d) is a consequence of this and 4.1. (c) is true since $\phi(\mathfrak{X})$ is spanned by the finitely many diagonalizable operators $\phi(h_{\alpha})$ which are mutually commutative. If $[x, x^{*}] = 0$ then x is contained in some Cartan subalgebra of the L^{*} algebra L and this subalgebra is spanned by elements of the form $[f_{\beta}, f_{\beta}^{*}]$ where f_{β} is a root vector relative to it so that the arguments used in (a) and (b) can be used to prove $\phi(x)$ is diagonalizable.

A slightly improved version of 4.5 for a special case will be needed later and this is proved below.

4.6. Suppose A is equal to D_x for some a in L and $A^3 = 0$. Then the spectrum of $[A, A^*]$ lies in the set $\{k(\lambda/2): k=0, 1, 2, -1, -2\}$.

Proof. By 3.2, $A^2A^*A = AA^*A^2$ and, using the argument in the proof of the first corollary of 4.2, each of these is equal to λA^2 . Because of symmetry similar relations hold with A and A^* interchanged.

Now $(AA^*)^2 = A^2A^{*2} + A[A^*,A]A^* = A^2A^{*2} + AA^*[A^*,A] + \lambda AA^*$ which implies $2(AA^*)^2 = A^2A^{*2} + AA^{*2}A + \lambda(AA^*)^2$. From these two relations a direct computation shows that $2(AA^*)^3 - 3\lambda(AA^*)^2 + \lambda^2 AA^* = 0$ and (by symmetry) that the same relation holds for A^*A . Then an argument like that used in proving the corollary of 4.5 will finish the proof.

5. Reduction to the separable case.

DEFINITION. Let \mathfrak{K} be a Cartan subalgebra of L. If L' is a semi-simple subalgebra of L, L' will be called regular (with respect to \mathfrak{K}) if and only if L' is separable and $\mathfrak{K}' = \mathfrak{K} \cap L'$ is a Cartan subalgebra of L'. It will be proved here that if each regular L' has a Cartan decomposition with respect to the accompanying \mathfrak{K}' then L has a decomposition with respect to \mathfrak{K} . For x in L let M(x) denote the smallest closed subspace of L containing x and invariant under \mathfrak{K} . Then $M(x) = \operatorname{Sp}\{V_n \colon n = 0, 1, \cdots\}$ where $V_0 = \operatorname{Sp}\{x\}$, $V_n = [\mathfrak{K}, V_{n-1}]$ for $n \ge 1$.

5.1. Let x be fixed and let B be the bounded operator on \Re defined by

(Bh, h') = (Hx, H'x) for h, h' in \mathfrak{R} . Then B is self-adjoint and completely continuous.

Proof. $(Bh, h') \ge 0$ implies $B = B^*$. Let E be the spectral measure on the spectrum of \mathfrak{X} such that $(Hy, z) = \int (h, x_{\alpha}) d(E(\alpha)y, z)$ for h in \mathfrak{X} and y,z in L. Then $(Bh, h') = \int (h, x_{\alpha})(x_{\alpha}, h') d(E(\alpha)x, x)$. If $\{h_n\}$ converges weakly to h and $\{h_n'\}$ to h' then both sequences are bounded and the Lebesgue dominated convergence theorem implies (Bh_n, h_n') converges to (Bh, h'). By [4, Definition 2, p. 206], B is completely continuous.

5.2. For x in L let $\mathcal{K}'(x) = \{h: h \in \mathcal{K}, [h, x] = 0\}$ and let $\mathcal{K}(x)$ be the orthogonal complement of $\mathcal{K}'(x)$ in \mathcal{K} . If x is self-adjoint then so are $\mathcal{K}(x)$ and M(x) and both are separable.

Proof. It is clear that $\mathfrak{R}'(x)$ is self-adjoint and hence the same is true of $\mathfrak{R}(x)$. Since V_0 is self-adjoint, induction on n proves that each V_n is also and hence M(x) is.

Let $h' \in \mathcal{K}$. By the definition of the operator B in 5.1, (Bh, h') = 0 for all h if and only if H'x = 0. Hence $\mathcal{K}'(x)$ is the null-space of B and, since B is self-adjoint, $\mathcal{K}(x)$ is the closure of the range of B. Since B is completely continuous, the reference in [4] shows that $\mathcal{K}(x)$ must be separable. Then an induction on n proves that $V_n = [H(x), V_{n-1}]$ and that each V_n is separable so that M(x) is separable.

5.3. Suppose x is self-adjoint, nonzero, and orthogonal to \mathfrak{K} . Let L' be the L^* algebra generated by $\mathfrak{K}(x) + M(x)$. Then $\mathfrak{K}(x) = \mathfrak{K} \cap L'$, L' is regular, $[\mathfrak{K}'(x), L'] = 0$, and $(\mathfrak{K}'(x), L') = 0$.

Proof. Since the orthogonal complement of \mathcal{K} is invariant under \mathcal{K} and contains x it also contains M(x) so that the indicated sum is actually direct. Since $\mathcal{K}(x)$ and M(x) are separable and self-adjoint it is possible to choose a countable (or finite) orthogonal basis of the space $\mathcal{K}(x) + M(x)$, say $\{e_n\}$, such that each e_n is self-adjoint. Then a proof like that for 3.5 (a) shows that L' is spanned by products of the form $E_{i_1} \cdot \cdot \cdot E_{i_k} e_n$ and, since the set of these is countable, L' is separable.

For $h' \in \mathfrak{C}'(x)$, H' is zero on $\mathfrak{C}(x) + M(x)$, hence on a set of generators of L'. Since H' is a derivation, H' is zero on L', proving $[\mathfrak{C}'(x), L'] = 0$. Now $(\mathfrak{C}'(x), e_n) = 0$ for each n and, since $[\mathfrak{C}'(x), L'] = 0$, it follows readily that $\mathfrak{C}'(x)$ is orthogonal to each of the finite products of generators, hence is orthogonal to L'. This implies $\mathfrak{C}(x) = \mathfrak{C} \cap L'$.

Finally, if $y \in L'$ and $[y, \mathcal{K}(x)] = 0$ then $[y, \mathcal{K}] = 0$ so that $y \in \mathcal{K}$ and hence $y \in \mathcal{K}(x)$. Thus $\mathcal{K}(x)$ is a maximal abelian subalgebra of L'. If $y \in L'$ and [y, L'] = 0 then $y \in \mathcal{K}(x) \cap \mathcal{K}'(x)$ implies y is zero. Thus L' is semi-simple and $\mathcal{K}(x)$ is a Cartan subalgebra of L'.

5.4. Suppose every regular subalgebra L' of L has a Cartan decomposition with respect to $\mathcal{K}' = \mathcal{K} \cap L'$. Then L has a decomposition with respect to \mathcal{K} .

Proof. Let K be the L^* subalgebra of L obtained by letting $K = \Re + V$ where V is the span of all the nonzero root vectors of L relative to \Re . It is sufficient to prove K = L. Now K is invariant under \Re so that K', the orthog-

onal complement of K in L, is also invariant. Furthermore, $K'^*=K'$ and if $K'\neq 0$ there is a nonzero self-adjoint element $x\in K'$. Then $M(x)\subset K'$. Let L' be the L^* subalgebra generated by $\mathfrak{W}(x)+M(x)$. By 5.3 L' is regular so that the hypothesis here implies L' has a Cartan decomposition with respect to $\mathfrak{W}(x)$. Since M(x) is invariant under $\mathfrak{W}(x)$ it will be spanned by root vectors of $\mathfrak{W}(x)$ and hence there is a nonzero v in M(x) which is a common eigenvector for all H, $h\in \mathfrak{W}(x)$. But if $h'\in \mathfrak{W}'(x)$ then H'v=0 so that it follows immediately that v is a common eigenvector for \mathfrak{W} . Since $v\in M(x)\subset K'$ this gives the desired contradiction.

6. Existence of Cartan decompositions.

REMARK. It will be proved here that if L is simple and separable there is a Cartan subalgebra \mathfrak{R} of L such that L as a decomposition with respect to \mathfrak{R} . Hence L must be one of the five types A, A', B, C, D obtained in [5]. Since each of these is a Lie subalgebra of an H^* algebra, Theorem 2 of [5] shows that L has a decomposition with respect to any Cartan subalgebra. From this it is clear that any separable semi-simple L^* algebra has a decomposition with respect to any Cartan subalgebra. Finally, 5.4 shows that this is true with no restriction on the dimension of L.

6.1. Suppose a_1 , a_2 are self-adjoint elements of L and $A_1A_2 = 0$. Then either $a_1 = 0$ or $a_2 = 0$.

Proof. Since A_i is self-adjoint, A_2A_1 is also zero. Let C_i be the null-space of A_i and R_i the closure of the range of A_i , i=1, 2. Then $L=C_i+R_i$ and both C_i and R_i are self-adjoint. Let $I_i=\operatorname{Sp}\{R_i,\ [R_i,\ R_i]\}$. Since $A_1A_2=0$ then $(R_1,\ R_2)=0$. Also $[[a_1,\ L],\ [a_2,\ L]]=[[[a_1,\ L],\ a_2],\ L]+[a_2,\ [[a_1,\ L],\ L]]$ $=[a_2,\ [[a_1,\ L],\ L]]\subset R_2$. Similarly $[[a_1,\ L],\ [a_2,\ L]]\subset R_1$. From this we have $[R_1,\ R_2]\subset R_1\cap R_2=0$. Hence the Jacobi identity gives $[I_1,\ I_2]=0$. From the above it is easy to see that I_1 is orthogonal to I_2 . Let I_1 be the orthogonal complement of I_1+I_2 . Then I_1 is orthogonal to I_2 . Let I_1 be the orthogonal complement of I_1+I_2 . Then I_2 in I_3 in I_4 in I_4 is invariant under I_4 . But I_4 is invariant under I_4 . But I_4 is invariant under I_4 . Since I_4 if follows immediately that I_4 is an ideal of I_4 . By the simplicity of I_4 either I_4 or I_4 must be zero. Now I_4 is othat either I_4 or I_4 is zero.

NOTATION. By Corollary 2 of 3.8 there exists an element a of L such that $A^3 = 0$, $\|a\| = 1$, and $[[a, a^*], a] = \lambda a$ where $\lambda = \|[a, a^*]\|^2 \neq 0$. Thus $[[A, A^*], A] = \lambda A$ and 4.6 implies $L = V_0 + V_{\lambda/2} + V_{-\lambda/2} + V_{\lambda} + V_{-\lambda}$ where V_{μ} is the eigenspace for $[A, A^*]$ with the indicated subscript as eigenvalue. The usual relations hold between these subspaces, i.e., $[V_{\mu}, V_{\nu}] \subset V_{\mu+\nu}$ and $V_{\mu}^* = V_{-\mu}$ for each μ . In particular, $X^3 = 0$ for all $x \in V_{\lambda}$.

6.2. Let $S = [V_{\lambda}, V_{\lambda}^*] + V_{\lambda} + V_{\lambda}^*$. Then S is a semi-simple L* algebra.

Proof. Clearly $S^* = S$ and $[V_{\lambda}, V_{\lambda}] = [V_{\lambda}^*, V_{\lambda}^*] = 0$. Since V_{λ} , V_{λ}^* are both invariant under $[V_{\lambda}, V_{\lambda}^*]$, so is $[V_{\lambda}, V_{\lambda}^*]$. From this it follows that S is a subalgebra. If $x \in S$ and [x, S] = 0 then $[A, A^*]x = 0$ implies $x \in [V_{\lambda}, V_{\lambda}^*]$. But $(x, [V_{\lambda}, V_{\lambda}^*]) = 0$ since $[x, V_{\lambda}] = 0$. Thus x is zero and S is semi-simple.

Definition. By Zorn's Lemma it is possible to choose a subset $\mathfrak F$ of V

which is maximal with respect to the following properties:

- (i) $b \in \mathfrak{F}$ implies ||b|| = 1 and $[[b, b^*], b] = \lambda_b b (\lambda_b = ||[b, b^*]||^2)$.
- (ii) $b, c \in \mathfrak{F}$ implies $[[b, b^*], [c, c^*]] = 0$.

Necessarily a is in \mathfrak{F} since $[V_{\lambda}, V_{\lambda}^*] \subset V_0$. Let $M = \operatorname{Sp}\{[b, b^*]: b \in \mathfrak{F}\}$. Then M is self-adjoint and abelian. Let $C(M) = \{x: x \in S, [x, M] = 0\}$.

6.3. Let Δ be the spectrum of M (acting on S) and suppose $\alpha \in \Delta$ with α nonzero. Then $||x_{\alpha}|| \ge (1/2)\lambda^{1/2}$.

Proof. For any b in \mathfrak{F} , $([b, b^*], [a, a^*]) = \lambda$ implies $\lambda \leq \|[a, a^*]\| \|[b, b^*]\|$ $= \lambda^{1/2} \lambda_b^{1/2}$ so that $\lambda \leq \lambda_b$. Since α is not zero there is a $b \in \mathfrak{F}$ such that $(x_\alpha, [b, b^*]) \neq 0$. By the first corollary of 4.5 the spectrum of $[B, B^*]$ consists of integer multiples of $(1/2)\lambda_b$. Thus we must have $\|x_\alpha\| \|[b, b^*]\| \geq (1/2)\lambda_b$ which gives $\|x_\alpha\| \geq (1/2)\lambda_b^{1/2}$.

COROLLARY. There exist subspaces V_k of S, invariant under C(M), such that $S = C(M) + \sum V_k$ and $[V_k, V_k^*] \subset C(M)$.

Proof. The existence of the V_k 's is implied by 2.4. Since they are spectral subspaces they are invariant under all operators commuting with $\{X: x \in M\}$, hence invariant under C(M).

6.4. M = C(M) and M is a Cartan subalgebra of S.

Proof. For x in C(M), $[A, A^*]x = 0$ implies $x \in V_0$, hence $x \in [V_\lambda, V_\lambda^*]$. Thus V_λ is invariant under C(M). Then if $W_k = V_\lambda \cap V_k$ we have W_k is invariant under X for any x commuting with M, $V_\lambda = \sum W_k$, and $[W_k, W_k^*] \subset C(M)$.

Suppose $c \in W_k$. Then W_k is invariant under $[C, C^*]$. Hence $\operatorname{Sp}\{X^nc\colon X=[C,C^*],\ n=0,\ 1,\cdots\}\subset W_k$. Since $C^3=0$, the proof of 3.8 shows that there exists an orthonormal set $\{e_i\}\subset W_k$ such that $[[e_i,e_i^*],e_i]=\lambda_ie_i, [e_i,e_j^*]=[e_i,e_j^*]=0$ for $i\neq j$, and $c=\sum c_ie_i$. Then $[c,c^*]=\sum |c_i|^2[e_i,e_i^*]$. By the maximality of \mathfrak{F} , each $e_i\in\mathfrak{F}$ since $[e_i,e_i^*]\in C(M)$. Hence $[e_i,e_i^*]\in M$ so that $[c,c^*]\in M$.

For future reference we will now prove that if x is any element of L with [x, M] = 0 and (x, M) = 0 then $[x, V_{\lambda}] = 0$. To see this note first that $x \in V_0$ (since $[a, a^*] \in M$) and this implies V_{λ} and V_k are invariant under X so that W_k is also invariant. If $c \in W_k$ then $[c, c^*] \in M$ so that $0 = (x, [c, c^*]) = (Xc, c)$. Since the operator X on W_k is completely determined by the quadratic form (Xc, c) this gives X is zero on W_k for each k so that X is zero on V_{λ} .

The preceding paragraph shows that if $x \in C(M)$ and (x, M) = 0 then $[x, V_{\lambda}] = 0$. Now M is self-adjoint which implies the same for C(M) and thus $x^* \in C(M)$, $(x^*, M) = 0$ so that we also have $[x^*, V_{\lambda}] = 0$ and this gives $[x, V_{\lambda}^*] = 0$. But then $[x, [V_{\lambda}, V_{\lambda}^*]]$ is also zero and this implies X is zero on S so that x = 0. Hence M = C(M) so that M is maximal abelian in S, hence a Cartan subalgebra of S.

6.5. S has a Cartan decomposition with respect to M. **Proof.** Using the notation of 6.4 we now have $V_{\lambda} = \sum W_k$ with $[W_k, W_k^*]$

 $\subset M$. Also $[W_k, W_k] = 0$. Let k be fixed and let $S_1 = [W_k, W_k^*] + W_k + W_k^*$. Then it is easily seen that S_1 is an L^* subalgebra since W_k is invariant under M. Let P be the projection of S onto S_1 and $a_0 = P[a, a^*]$. Then for $z \in S_1$, $[a_0, z] = [P[a, a^*], z] = P[[a, a^*], z] = [[a, a^*], z]$ since Z and Z* leave S_1 invariant. Hence if $[z, S_1] = 0$ then $[z, [a, a^*]] = 0$ so that $z \in [W_k, W_k^*]$. But $(z, [W_k, W_k^*]) = 0$ since $[z, W_k] = 0$, hence z is zero and S_1 is semi-simple. Now $[W_k, W_k^*] \subset M$ implies $[W_k, W_k^*]$ is abelian and the proof above shows that it is maximal abelian in S_1 , thus a Cartan subalgebra. By 3.8, S_1 is a direct sum of simple ideals I_i where $I_i = \operatorname{Sp}\{e_i, e_i^*, [e_i, e_i^*]\}$ for some e_i in W_k . If $x \in M$ then $[x, S_1] \subset S_1$ and X is zero on S_1 if and only if it is zero on W_k which is equivalent to $(x, [W_k, W_k^*]) = 0$. From this it follows readily that each e_i is a common eigenvector for all $X, x \in M$. Thus each W_k , and therefore V_{λ} , is spanned by root vectors for M. By symmetry the same is true of V_{λ}^* . Since S is generated by V_{λ} and V_{λ}^{*} , and since each finite product of eigenvectors for M is again an eigenvector for M, S is spanned by eigenvectors and this completes the proof.

DEFINITION. Let \mathfrak{F}_1 be a set in $V_{\lambda/2}$ which is maximal with respect to the following properties:

- (i) $b \in \mathfrak{F}_1$ implies ||b|| = 1, $[[b, b^*], b] = \lambda_b b$,
- (ii) $b, c \in \mathfrak{F}_1$ implies $[[b, b^*], [c, c^*]] = 0$,
- (iii) $b \in \mathfrak{F}_1$ implies $[[b, b^*], M] = 0$.

Let $\mathfrak{R}_0 = \operatorname{Sp}\{[b, b^*]: b \in \mathfrak{F}_1 \cup \mathfrak{F}\}$. Then $M \subset \mathfrak{R}_0$ and \mathfrak{R}_0 is abelian and self-adjoint. Let $\mathfrak{R} = \{x: [x, \mathfrak{R}_0] = 0\}$. Since $[a, a^*] \in \mathfrak{R}_0$, $\mathfrak{R} \subset V_0$. We will show that \mathfrak{R} is the desired Cartan subalgebra. Note that V_μ is invariant under \mathfrak{R} for each eigenspace V_μ of $[A, A^*]$.

6.6. Let Δ be the spectrum of \mathfrak{X}_0 and suppose α is a nonzero element of Δ . Then $||x_{\alpha}|| \geq (1/4)\lambda^{1/2}$. Hence $L = \mathfrak{X} + \sum V_k$ where $[V_k, V_k^*] \subset \mathfrak{X}$ and V_k is invariant under \mathfrak{X} .

Proof. For $b \in \mathfrak{F}_1$, $([b, b^*], [a, a^*]) = (1/2)\lambda$ implies $\lambda_b^{1/2}\lambda^{1/2} \ge (1/2)\lambda$ so that $\lambda_b \ge (1/4)\lambda$. The remainder of the argument is like that of 6.3 and the corollary.

6.7. \Re is abelian and is a Cartan subalgebra of L.

Proof. If \Re is abelian it is necessarily maximal abelian so that we need only prove the first assertion.

Let $W_k = V_{\lambda/2} \cap V_k$. Then W_k is invariant under \mathcal{K} and $V_{\lambda/2} = \sum W_k$. Also $[W_k, W_k^*] \subset \mathcal{K}$. Suppose \mathcal{K} is not abelian. Then $[\mathcal{K}, \mathcal{K}]$ is a semi-simple L^* subalgebra and $(\mathcal{K}_0, [\mathcal{K}, \mathcal{K}]) = 0$. Thus there exists a $w \in [\mathcal{K}, \mathcal{K}]$ with ||w|| = 1 and $[[w, w^*], w] = \mu w$. Also $([w, w^*], \mathcal{K}_0) = 0$.

Now $[W, W^*]$ has spectrum contained in the set $\{r\mu\}$ where r is a half-integer (by the first corollary of 4.5). Let $T_{r\mu}$ be the eigenspace associated with the value $r\mu$. Choose a fixed W_k . Since W_k is invariant under $[W, W^*]$, $W_k = \sum Z_{r\mu}$ where $Z_{r\mu}$ is the intersection of W_k with $T_{r\mu}$.

Suppose $r \neq 0$. Then $[Z_{\tau\mu}, Z_{\tau\mu}] \subset T_{2\tau\mu} \subset \text{Range } [W, W^*]$. But $[Z_{\tau\mu}, Z_{\tau\mu}]$

 $\subset V_{\lambda}$. Since $([w, w^*], M) = 0$, the remark made in the proof of 6.4 shows that $[W, W^*]$ is zero on V_{λ} and thus V_{λ} is contained in the null-space of $[W, W^*]$. Hence $[Z_{\tau\mu}, Z_{\tau\mu}] = 0$.

Now suppose some $Z_{r\mu}\neq 0$ for $r\neq 0$. For this r let $S_1=[Z_{r\mu},Z_{r\mu}^*]+Z_{r\mu}+Z_{r\mu}^*$. Since $[Z_{r\mu},Z_{r\mu}^*]\subset\mathfrak{R}\cap$ null-space $[W,W^*]$ then $Z_{r\mu}=W_k\cap T_{r\mu}$ is invariant under $[Z_{r\mu},Z_{r\mu}^*]$ so that it is easy to see that S_1 is an L^* subalgebra. Using the technique of projecting $[w,w^*]$ onto S_1 , the proof of 6.5 can be used to show that S_1 is semi-simple. Let $c\in S_1$. Then $C^3=0$ on S_1 . Hence it follows as in 6.4 that $c=\sum c_ie_i$ where $\{e_i\}$ is an orthonormal set in $Z_{r\mu}\subset W_k$ with $[[e_i,e_i^*],e_i]=\lambda_ie_i$ and $[c,c^*]=\sum |c_i|^2[e_i,e_i^*]$. Now $[e_i,e_i^*]\in [W_k,W_k^*]\subset \mathfrak{R}$. By the maximality of \mathfrak{F}_1 this implies $[e_i,e_i^*]\in \mathfrak{R}_0$. Thus $[c,c^*]\in \mathfrak{R}_0$ so that $0=([w,w^*],[c,c^*])=([[w,w^*],c],c)$. Since $Z_{r\mu}$ is invariant under the operator $[W,W^*]$ we must have $[W,W^*]$ is zero on $Z_{r\mu}$. But this implies $Z_{r\mu}$ is zero for all $r\neq 0$ and hence $[W,W^*]$ is zero on $V_{\lambda/2}$ as well as on V_{λ} . Using the self-adjointness of $[W,W^*]$ this implies $[W,W^*]$ is zero on $V_{\lambda/2}$ and V_{λ}^* so that $[W,W^*][A,A^*]=0$. By 6.1 we must have $[W,W^*]=0$ and, since w is an eigenvector for $[W,W^*]$, this gives w=0, finishing the proof.

6.8. 30 has at least one nonzero root.

Proof. $[\mathfrak{M}, V_{\lambda}] \subset V_{\lambda}$ and $M \subset \mathfrak{M}$. If $x \in \mathfrak{M}$ and x is orthogonal to M the remark in the proof of 6.4 shows that X is zero on V_{λ} . Now, using 6.5, V_{λ} is spanned by eigenvectors for M and it is immediate that each of these will be a root vector for \mathfrak{M} , corresponding to a nonzero root.

6.9. Suppose L' is one of the simple algebras A, A', B, C, D discussed in §3 of [5]. If e_{α} is a normalized root vector corresponding to some root α then $E_{\alpha}^{3}=0$. There exists an e_{α} in L' such that the eigenspace corresponding to the maximal eigenvalue of $[E_{\alpha}, E_{\alpha}^{*}]$ is finite-dimensional.

Proof. It is easily seen that $\beta+3\alpha$ is never a root for any root β in the same root set as α and this implies $E_{\alpha}^{3}=0$. Hence the spectrum of $[E_{\alpha}, E_{\alpha}^{*}]$ is contained in the set $\{r(\alpha, \alpha): r=0, 1/2, -1/2, 1, -1\}$. Now the eigenspace in question is spanned by root vectors e_{β} with $(\alpha, \beta) = (\alpha, \alpha)$. Using the notation of [5], the roots are obtained from the set $\{\lambda_{i}-\lambda_{j}, \lambda_{i}+\lambda_{j}, 2\lambda_{i}, \lambda_{i}: i, j \text{ integers}\}$ with $(\lambda_{i}, \lambda_{j}) = \delta_{i,j}$. Furthermore, L' must contain a root of the form $\lambda_{i}-\lambda_{j}$. Taking $\alpha = \lambda_{i}-\lambda_{j}$, $(\alpha, \beta) = (\alpha, \alpha)$ implies β is contained in the finite set $\{\lambda_{i}-\lambda_{j}, 2\lambda_{i}\}$.

6.10. L has a Cartan decomposition with respect to \mathfrak{R} .

Proof. Let R be the (nonempty) set of all nonzero roots of L relative to \mathfrak{X} and choose a normalized root vector e_{α} for each $\alpha \in R$. Let $V' = \operatorname{Sp}\{e_{\alpha} : \alpha \in R\}$, $\mathfrak{X}' = \operatorname{Sp}\{[e_{\alpha}, e_{\alpha}^*] : \alpha \in R\}$, and $S' = \mathfrak{X}' + V'$. Then S' is semi-simple, \mathfrak{X}' is a Cartan subalgebra of S', and S has a Cartan decomposition with respect to \mathfrak{X}' with R as a complete set of roots. If $x \in \mathfrak{X}$ and $(x, \mathfrak{X}') = 0$ then $[x, e_{\alpha}] = 0$ for all α so that [x, S'] = 0. Let W be the orthogonal complement of $\operatorname{Sp}\{\mathfrak{X}, S'\}$. Then W is invariant under both S' and \mathfrak{X} . If [S', W] = 0 then it is immediate that $[S', L] \subset S'$ so that S' is a nonzero ideal, S' = L, and the existence theorem is proved.

By the remarks above it is enough to prove [S', W] = 0. Now W is invariant under \mathcal{K} so that $W = \sum W_k$ where W_k is invariant under \mathcal{K} and $[W_k, W_k^*] \subset \mathcal{K}$.

Let S'' be any simple ideal of S'. By the classification theory of [5] and 6.9, there is an e_{α} in S'' such that the eigenspace associated with the maximal eigenvalue of $[E_{\alpha}, E_{\alpha}^{*}]$ (restricted to S'') is finite-dimensional. We will show that $[E_{\alpha}, E_{\alpha}^{*}]$ is zero on W.

Since $[[e_{\alpha}, e_{\alpha}^*], e_{\alpha}] = \mu e_{\alpha}$, L is spanned by subspaces T_r where T_r is the eigenspace for $[E_{\alpha}, E_{\alpha}^*]$ associated with the value $r\mu$, r being a half-integer. Suppose $W_k \cap T_r$ contains a nonzero subspace U invariant under \mathfrak{M} with [U, U] = 0 for some k. If $S_1 = [U, U^*] + U + U^*$ it is easy to see that S_1 is a semi-simple L^* subalgebra (see the proof of 6.5) with $[U, U^*]$ as a Cartan subalgebra. By 3.8, S_1 is a direct sum of three-dimensional ideals I_j with $I_j = \operatorname{Sp}\{e_j, e_j^*, [e_j, e_j^*]\}$ for some e_j in U. Thus each e_j is a root vector for $[U, U^*] \subset \mathfrak{M}$. Since S_1 is invariant under \mathfrak{M} it follows as in the proof of 6.8 that each e_j is a root vector for \mathfrak{M} , a contradiction of the definition of S'.

Thus if $r_0\mu$ is the maximal eigenvalue for $[E_\alpha, E_\alpha^*]$, since T_{r_0} is abelian, we must have $W \cap T_{r_0} = 0$. But then $(T_{r_0}, W) = 0$ and this implies T_{r_0} is entirely contained in S''. Since $E_\alpha^3 = 0$ on S'', r_0 must equal one. By the choice of α , T_1 is finite-dimensional, say of dimension m.

Suppose $[E_{\alpha}, E_{\alpha}^*] \neq 0$ on W. Since W is self-adjoint we must have $Z = T_{1/2} \cap W_k \neq 0$ for some k. Then Z is invariant under \mathfrak{R} . Suppose $Z = Z_1 + \cdots + Z_{m+1}$ with each Z_i invariant under \mathfrak{R} . Then $([Z_i, Z_j^*], \mathfrak{R}) = (Z_i, [\mathfrak{R}, Z_j]) = 0$ for $i \neq j$. Hence $[Z_i, Z_j^*] = 0$ for $i \neq j$ and this implies $([Z_i, Z_i], [Z_j, Z_j]) = 0$. Since $[Z_i, Z_i] \subset T_1$ for each i, at least one Z_i must be abelian, so that the remarks above imply that Z contains no more than m mutually orthogonal subspaces invariant under \mathfrak{R} . From this it is a simple consequence of the spectral theorem that Z must contain a root vector for \mathfrak{R} ; a contradiction. Hence $[E_{\alpha}, E_{\alpha}^*]$ must be zero on W. Using the simplicity of S'', this implies the representation of S'' on W obtained by restricting the adjoint representation is trivial. Since S'' was an arbitrary simple component of S' this implies [S', W] = 0.

BIBLIOGRAPHY

- 1. P. R. Halmos, Introduction to Hilbert space, New York, Chelsea, 1951.
- 2. —, Measure theory, New York, Van Nostrand, 1950.
- 3. L. H. Loomis, An introduction to abstract harmonic analysis, New York, Van Nostrand, 1953.
 - 4. F. Riesz and B. Sz.-Nagy, Functional analysis, New York, Ungar, 1955.
- 5. J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. vol. 95 (1960) pp. 69-80.

Massachusetts Institute of Technology, Cambridge, Massachusetts Oberlin College, Oberlin, Ohio