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1. Introduction. In the discussion of L* algebras given in [5] a classifica-

tion theory was obtained for the separable simple algebras under the assump-

tion of the existence of a Cartan decomposition relative to some Cartan sub-

algebra. The main result of this paper is a proof that any semi-simple L*

algebra of arbitrary dimension has such a decomposition relative to any Car-

tan subalgebra.

In the process of proving this several additional results of interest in them-

selves are obtained, among them one concerning representations of finite-

dimensional semi-simple Lie algebras which seems to be new. This is stated in

detail in the second corollary of 4.5. The conclusion obtained in 4.5 also adds

a new result to the theory of commutators of operators on a Hubert space.

2. Continuous decompositions.

Definitions and notation. An L* algebra is defined as a Lie algebra L

over the complex numbers whose underlying vector space is a Hubert space

and such that for each x in L there exists an element x* with ([x, y], z)

= (y< [x*, z]) for all y and z. For an x in L, X (occasionally Dx) will denote the

linear operator defined by Xy= [x, y] for all y and we will assume that the

norm on L is chosen such that \\X\\ ^|[a;||. An L* algebra is semi-simple if and

only if the mapping x-*X is one-one. For the remainder of this paper L will

denote an arbitrary (but fixed) semi-simple L* algebra unless further restric-

tions are explicitly stated. As shown in [5] this implies the mapping x—*x*

is a Hubert space conjugation and anti-multiplicative, Dx* is the adjoint of

Dx, and that L is a direct sum of simple L* ideals. A Cartan subalgebra of L

is defined as a maximal abelian self-adjoint subalgebra of L. For subsets M, N

of L, Sp(A7) will represent the smallest closed linear subspace of L containing

M and [M, N] =Sp { [mi, n]:mGM,nGN}. For subspaces 5i, 52the notation

5i+52 will be used only when 5i is orthogonal to 52.

Suppose A is a bounded self-adjoint operator on L. For X real and e>0

let F(X, e)={a::||(4-X)n^||g€n||x||,M=l, 2, • • • }. Fora Borel set If of the

real numbers let V(M, e)=Sp{ F(X, e):\GM} and F(A7) = D.>o V(M, e). It

is proved in [l, pp. 66-69] that F(X, e) is a closed subspace and equal to the

set of x such that the sequence {(t~l(A — X))"*) is bounded. Furthermore, if

£ is the real spectral measure such that A =f\dE then the range of E(M)

is equal to V(M) lor M compact. For any Borel set M the range of E(M)

will be denoted by S(M). Finally, for Borel sets M and A7, let M + N
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= {m+n: mEM, nEN] and —M= { — m: mEM}. Then M+N and — M
are also Borel sets.

2.1. Suppose A is a bounded self-adjoint derivation on L and M, N are

Borel sets of the real line. Then [S(M), S(N)]QS(M+N) and S(M)*
= 5(-M).

Proof. Suppose first that M and TV are compact and «>0. Let M=UMk

and N = UNk where {Mk], {Nk\ are sequences of disjoint Borel sets, each of

diameter less than (l/2)e. Let xES(M) and yES(N). Then x= £*y,

y=¿Zyk where XjES(M,), ykES(Nk) and [x, y] = £[*y, y*]. Suppose

XyG-My, UkENk. Then it follows from the spectral theorem that ||(.4 — Xy)BiCy||

s;(2-"en)||;ey|| and ||(.4 -M*)ny*|| â(2~"Én)||y*|| for each positive integer w.

Since A is a derivation it follows by induction on n that || (A — (Xy+/xt))" [*/. y* ]||

= 11 £S.C«[(i4-Xy)-*y, (¿-»»)*-y»í||á £SBCm||(4-Xy)-xy|| WiA-UkY-myk\\
Ú £ nCm2-"t"||a;>|| ||y*|| =«"|[acy|| ||y*||. Hence the sequence

{(e-KA - (\, + UkMxj, yk]}

is bounded and this implies [xJt y*]G F(Xy+ju*, e). Thus [x, y]E V(M+N, e).
Since e was arbitrary, [x, y]EV(M+N). The compactness of M and N im-

plies M+N is also and hence [x, y]ES(M+N). Thus [S(M), S(N)] is a

subset of S(M+N) for Af and N compact.

It is proved in [l ] that £ is regular, i.e., for any Borel sets M and N,

E(M) = sup{E(C): CEM, C compact} and similarly for E(N). For CEM

and D E N with C and D compact we have [5(C), 5(7?)] C S(C + D)

ES(M+N). Letting Cvary gives [S(M), S(D)]ES(M+N). Letting D vary

gives [S(M),S(N)]ES(M+N).
Since A is a derivation, [.4, Dx] =D¿X for all x and hence D(Ax) = [A, Dx]*

= [D*,A*]=- [A, ZV]=7)_¿x* so that (Ax)*= -Ax* for all x in L. Using

this, a proof like that above can be constructed to prove the second assertion.

Notation. Suppose X is a closed self-adjoint abelian subalgebra of L.

Let ß= a(3C) be the commutative C* algebra of bounded operators generated

by {77: hESC-}. Since each 77 is zero on 3C then the identity operator is not in

ft. Let A=A(3C) be the set of all homomorphisms of ft into the complex num-

bers. For A E ft let A be the function on A defined by -4(a) =«(.4). If A is

given the weakest topology making these functions continuous then A is a

compact Hausdorff space and the theory of C* algebras shows that the map-

ping A—*A is an algebraic isomorphism mapping ft isometrically onto the set

of all continuous functions on A vanishing at the zero homomorphism with

A* corresponding to the complex conjugate of A. The set A with its topology

will be called the spectrum of 3C. It is also known that the spectrum of an

operator A E ft is the range of the function A.

2.2. For each aGA there is a unique xaEX such that a(H) = (h, xa) for

all ÄG3C- Also ||xa|| á 1 and x* = xa. If {xa\ is given the induced weak topology

of 3C then A is homeomorphic to {xa} under the mapping a—>xa.
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Proof. All except the last statement were proved in [5]. The family

{77: &G3C} separates points of A and all members vanish at infinity (zero).

By Theorem 5 G of [3], the topology of A is that generated by the family.

But this is clearly equivalent to the weak topology on {xa}, finishing the

proof.

There is a unique spectral measure E on the Borel sets of A such that

(Ax, y) = J'Â(a)d(E(a)x, y) for all x, y in L. Also it is easily seen that the range

of £(0) is {¡c: [3C, x] = 0} where {o} denotes the Borel set consisting of the

zero homomorphism. For an arbitrary Borel set M of A let 5(Af) denote the

range of E(M).

Suppose a, ßGA. If xa+Xß = xy for some 7GA, let 7 be denoted by a+ß.

If xa= —Xy lor some 7GA, let y be denoted by —a. Using this notation we

have the following theorem which is the continuous version of the desired

composition for L relative to SQ..

2.3. Suppose M, N are Borel sets of A and M+N— {m+n:mGM, nGN}.
Then M + N is a Borel set and [S(M), S(N)] C S(M + N). If - M
= {-m:mGM} then 5(-M) = S(M)*.

Proof. Choose a set {xi-.iGl} of elements of 3C such that the set spans

3C and x? = Xi for each i. Let <n be the spectrum of Xi. Then ff< is compact so

that P= YliVi is compact. For «GA let f(a) be the element of P whose tth

coordinate is (xi, xa). Then/ is a homeomorphism of A onto a compact subset

of P. If addition is defined in P (whenever possible) in the obvious coordinate-

wise fashion then / preserves the algebraic structure of A as well as the topol-

ogy. The spectral measure £ can be defined directly on P (hence on /(A)

and A) by constructing the product measure obtained from the £<'s where

Xi=frt\dEi. The measure-theoretic details will be omitted here but a discus-

sion of this type of problem may be found in [2].

A subset M of F will be called a rectangle if and only if M= IlA7¿ where
Mi is a Borel set of ffi and Mi = (Xi for all but a finite number of indices. Then

the Borel sets of P will coincide with the <r-algebra generated by the rectan-

gles. In fact, Chapter 7 of [2] shows that this <r-algebra is obtained as the

smallest monotone class containing all finite unions of disjoint rectangles.

2.1 can be used to prove 2.3 for the case when M, N are finite unions of dis-

joint rectangles. The collection of all sets for which 2.3 holds is clearly a mono-

tone class, hence contains all Borel sets.

2.4. Corollary. Suppose L is separable and 3C is a closed self-adjoint

abelian subalgebra of L such that {||*«|| : c*GA, Xa^O} is bounded away from

zero. Then there exist disjoint Borel sets Mk of A, k = 0, 1, • • • such that

Mo={o},L='£S(Mk),and [S(Mt), S(Mk)*]C{x: [x,x] = 0}.

i
Proof. L separable implies \xa:aG&} is a separable metric space in the

norm topology, hence contains a countable dense subset. Suppose ||xa[| >c>0

for all «7*0. Let cto = 0 and let {xai: k^l} be a countable dense subset of
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{xa]-{0}. If Nk={ß:\\xß-xak\\^3-1c} then 7V0={o} and A = U/V*. Fur-

thermore, since {xa} is weakly compact, Nk is weakly closed, hence a Borel

set. If a, ßENk the triangle inequality implies ||*„—xB\\ <c so that either

a=ß or a—/3GA. Hence Nk + ( — Nk) — }o}. In the usual way it is possible

to choose Borel sets Mk such that MkENk and A is the disjoint union of the

Mk's. Then [S(Mk), S(Mk)*]ES(Mk + (-Mk))ES({o}) and the remaining
statements follow easily from the spectral theory.

3. Nilpotent elements.

3.1. There exists a nonzero element aEL such that (a, a*) =0 and A3 = 0.

Proof. Let x be a self-adjoint element of L with \\X\\ = 1 and let X=f\dE.
If M is the real interval (2/3, l] and V is the range of E(M) then Fy¿0 and,

since F*istherangeof£(-Af),(F, V*) =0. Using 2.1, [V, [V, [F,L]]] = 0.

Thus a may be chosen as any element of V different from zero.

Notation. For this section we choose a fixed a having the properties listed

in 3.1 and let b = a*, c= [a, b]. Then C=C* and A3 = B3 = 0. This section is

devoted to an analysis of the L* subalgebra generated by a, culminating in

3.8. This turns out to be a key result in the general existence proof for Cartan

decompositions.

3.2. For any x in L, A*XA=AXA* and B2XB = BXB2.
Proof. [A, [A, [A,X]]] = 0 and A3 = 0 together imply -3AÎXA+3AXA2

— 0. The second equation follows from the first by taking adjoints.

3.3. Suppose x is any element in the closure of the range of A2. Then

X3 = 0.

Proof. By continuity of the adjoint representation it is sufficient to prove

this for the case x = A2z for some z in L. Then X= [A, [A, Z]] = A2Z—2AZA

+ZA2. Using 3.2, A2ZA=AZA2 so that A2ZA2 = 0. A direct computation

then shows that X2 = A*Z2A2 and X3 = 0.

3.4. Suppose w is any positive integer. Then

(a) Ca=-A2(BA)"-1b=(AB)na,

(b) C"b = ( - l)"-l732(,473)"-ia = ( - l)n(BA)»b.

Proof. Since C= C*, (Cnx)*= (—l)nCnx* for any x. Thus (b) follows from

(a) by using adjoints.

The first equation of (a) is proved by induction. For w = 1, Ca= [[a, b], a]

= - A2b. Assuming the result for w, Cn+1a = C(- A2(BA)n~lb)

= -iAB-BA)A2iBA)"-1b= -ABA2iBA)n~1b= -A2iBA)"b, after using 3.2.

For the second, repeated application of 3.2 gives Cna= — iAB)n~lA2b

= iAB)"a.

Corollary. For all integers wïïO,

(a) ACna = BCnb = 0,

(b) ABC«a = C"+1a, BAC"b=-C"+1b,

(c) 7320a=(-l)"0+Iè, ¿2G>0 = (-l)"+IC"+1a.

3.5. Let50 = Sp{a,ô},5„ = Sp{l»i • • • Dns: s = a, b;Di = A,B] for
w = l, 2, • • • . Let 5 = Sp{5„: w = 0, !,-••}.
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(a) 5 is the L* subalgebra generated by a.

(b) 52„ = Sp{C"a, C"*>},« = 0, 1, • • • .
(c) 52„+i=Sp{5C"o, AOb], » = 0, 1, • • • .
(d) (S2m, S2„+i) = 0, m, « = 0, 1, • • • .

Proof, (a) It is clear that Sn = S% and hence S = S*. Since -45„C5„+i,

7^5»C5n+i, then 5 is invariant under A and B. Hence 5 is invariant under X

lor any x in the L* subalgebra 5' generated by a, i.e., [5', 5] C5. But clearly

5C5'. Hence [5, 5]C5 and therefore S=S'.

(b) and (c) are true for » = 0. Suppose they hold for some n. Then

52n+2 = Sp{ AS2n+h BS2n+i} = Sp{ ABCa, A*Ob, B2Oa, BACnb]

= Sp{ C+1a,C»+lb},

using the corollary of 3.4. Hence

S2n+i = Sp{ AS2n+2, BS2a+2} - Sp{ AO+% BO+la}

since ACn+1a = BCn+1b = 0. Thus, by induction on », (b) and (c) are true for

all ».
(d)  (Cma, BC"a) = (ACma, Cna) =0 and

(Cma, AOb) = (-l)-(Cma, A(BA)"b) = (-l)»(Oo, (AB)nAb)

= (-l)"+1(CB+ma, J5a) = (-iY+\ACn+ma, a) = 0.

Similarly (Cmb, ACnb) = (Cmb, BCna) =0, completing the proof of (d).

3.6. Letting » range over the non-negative integers, let F0 = Sp { 52b+i},

Fi = Sp{C"a}, F2 = Sp{C»6}.
(a) 5=F„+Fi-|-F2.
(b) F„=F„*, Fi*=F2, F2*=Fi.

(c) [Fi, Fi]=[F2, F2] = 0.

(d) [Fi, Fi*]=[F2, F2*]=Fo.

Proof, (a) It only remains to prove that Fi is orthogonal to V2. Now

(a, b) =0 and, if either m or m is nonzero, then (Cna, Cmb) = — (A2(BA)n+m~1b,b)

= -((BA)"+m-lb, 52¿»)=0. Hence (F,, F2) = 0.

(b) F1* = Sp{(C»a)*}=Sp{C"ô} = F2. Similarly F2*=Fi. Since S* = S,

Fo*=Fo.
(c) It is sufficient to prove [Vi, Fx] = 0 or [C"a, Cma] = 0 for all m and n.

This is done by induction on n. The case m = 0 is given by the corollary of 3.4.

Suppose [Cn~la, Cma] = 0 for all m. Then Cn[a, Cma] = C"0 = 0. By Leibniz's

rule, 0= [Cna, Cma]+terms of the form [Cva, Cqa] where p <n. Each of these

latter terms is zero by the induction hypothesis.

(d) Fo = Sp{ [a, Ob], [b, Oa]} implies F0C[Fi, V?]. But (Vu [Vt, Fx*])
= ([^ii Vi], FO=0 implies [Fi, Fi*] is orthogonal to Fi. Similarly, since

[Fi, Fi*]= [F2, Vf], [Vi, V*] is also orthogonal to F2, hence must be a

subset of Vq.

3.7. [c, Fo] = 0.
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Proof. By using adjoints it is sufficient to prove CAOb = 0 for all w. Since

C is self-adjoint it is sufficient to prove C2AOb = 0. Using the appropriate

cases of the corollary of 3.4,

CAOb = iAB - BA)AOb = A(BAOb) - BiA2Cnb)

= - AC+ïb + (-l)»73CB+1a.

Hence

OAOb = - A(BAO+lb) + B(A2Cn+1b) + (-iyAB20+la + (-l)»+173473C"+1a

= AO+2b + (-l)»73C"+2a + (-l)»«+MC»+,i + (-l)"+173C"+2a = 0.

Corollary 1. [Cna, Cmo] = (-l)"[a, Cn+mb]for all w, m.

Proof. [Oa, Cnb]E Vo by 3.6. Also we may assume w is positive. Then

0 = C[0-la, Cmb] = [Oa, Cmb] + [0~la, Cm+1b]

so that [Cna, Cmb] = - [Cn-'a, Cm+1b]. Applying this repeatedly gives the

result in general.

Corollary 2. [F0, Vi] = Vifor » = 1, 2.

Proof. It is sufficient to prove this for i—t. Now [F0, Cna] = Cn[V0, a] and

V\ is invariant under C so it is enough to prove [Vo, a] E Vi in order to prove

[Fo, Fi]CFi. But ^Fo = Sp{^2C"o,^ 73 C"a} CFi by the corollary of 3.4.
For the reverse inclusion, suppose xEVi and (x, [Fo, Fi])=0. Then

([x, x*], Vo) =0 so that [x, x*] =0 and X is normal. To prove x must be zero

it is sufficient to show that X is nilpotent. In fact, for future reference, we

will prove that A"3 = 0 for all xEVi. Since Fx = Sp{ Cna: w^O}, it is clear

that Sp { Oa: n = 1} is either all of V\ or a hyperplane in V\. In the first case

Vi is contained in the closure of the range of -42 (see 3.4) and the assertion

follows from 3.3. In the other case an element x of Fi must be of the form

x=ua+y where u is a scalar and y is in the closure of the range of A2. A proof

like that of 3.3 then shows that ¿2F=,4F2 = 0. Since A3= F3 = 0, the bi-

nomial theorem gives A"3 = 0.

Corollary 3. [Vo, F0] = 0.

Proof. Suppose xEV0 and (x, A Cnb) = 0 for all w. Then ([b,x], Cnb) = 0 for

all w implies [6, x] = 0 since [o, x]EV2. But then 0 = CnXb = XCnb and this

implies X is zero on F2 so that (x, F0) = (x, [V2, V*]) =0 and hence x is zero.

Thus Vo = Sp{AC*b}. Now 0= [Ob, Ob] implies A2[Ob, Ob] = 0 so that
[A2Ob, Ob] + 2[AOb, AOb] + [Ob, A2Ob] = 0. The sum of the first and
last terms on the left side is (-l)n+1[0+1a, Ob] + (-l)m+l[Ob, Cm+1a]

which is zero by Corollary 1. Thus [A Ob, A Ob] =0 and, since F0 = Sp{^4C"o},

Fo is abelian.

Corollary 4. 5 is semi-simple with Fc a5 a Cartan subalgebra.
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Proof. Suppose xGS and [x, F0] = 0. Then 0 = ([x, F0], Vt) = (x, V,) for
* = 1, 2 implies xGVo and Fo is maximal abelian. To show that 5 is semi-

simple suppose that xGS and [x, 5] = 0. Then xGVo and [x, ¿>] = 0. The

proof of Corollary 3 shows that x must be zero.

3.8. Suppose 5 is a semi-simple L* algebra and 5= Vo+ Vi+ V2 with Fo

as a Cartan subalgebra and that the relations of 3.6 hold. Then 5 is a direct

sum of three-dimensional ideals 7,- where 7y = Sp{«y, e,*, [e¡, e*]} lor some

nonzero e,G V\.

Proof. The decomposition theorem of [5 ] for semi-simple algebras shows

that 5 can be written as the direct sum of simple ideals 7y where 7y = 77y+ [77y, 5]

for some closed self-adjoint subspace 77y of Fo. We choose a fixed 7y and let

¡7o = 77y, Ui= [H¡, Vi], t/2 = [77y, V,]. Then 7y= U,+ Ui+Ut and it is clear
that [Ui, Ui] = 0 for each i, [i/o, #<] = Ut for t-1, 2, while [Uit t/<*] = i/o

fort = l, 2.
Suppose Ui=P+Q where P and Q are closed subspaces invariant under

Z7o. Then ([[Ui, Uf], P], 0 = 0 implies ([Uu Uf], [Q, P*])=0 so that
[Q, P*] = 0. Since [Q, P] is also zero, it follows that U0 = [P+Q, P*+Q*]
= [P, P*] + [Q, Q*] and, furthermore, that IF=0 (on 5) for all xG [P, P*]
and y G [Q, Q*]- Referring to the proof in [5] of the decomposition theorem

and using the simplicity of 7y we must have [P, P*] = 0 or [Q, Q*] = 0. But

every element of Ui is nilpotent on 5 so that necessarily either P = 0 or Q = 0.

Hence Ux contains no nontrivial closed subspaces invariant under Z70. By

the spectral theorem ¿7i must be one-dimensional and this completes the

proof.

Corollary 1. The L* algebra generated by a is a direct sum of three-

dimensional ideals.

Corollary 2. There exists a nonzero element xGL such that X3 = 0 and

[[x,x*],x]=\x with\ positive. 7m/öc/X||x||2 = || [x, **]||2.

Proof. Let 7y be a simple ideal of 5 as above and let x = e¡. Then [[#,**],*]

=\x for some X. Hence X||x||2 = ([[x, x*], x], x) = || [x, x*]||2. Since xGVi, the

proof of Corollary 2 of 3.7 shows that X3 = 0. Thus [x, x*] ^0 and X must be

different from zero.

4. A commutator equation. For this section, A will denote a fixed nonzero

bounded operator on a Hilbert space such that [[A, A*], ^4]=X^4 for some

Xt^O. From this considerable information about the spectra of .4.4*, A*A,

and [A, A*] can be obtained. Also there are some interesting consequences for

representations of Lie algebras as bounded operators on a Hilbert space. By

assuming 4.1 and Corollary 1 of 4.2 much of what is done here is valid for

elements A, A* of an arbitrary algebra with identity over a field of character-

istic zero.

4.1. A is nilpotent.
Proof. The mapping B—*[[A, A*], B] is a derivation on the set of all
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bounded operators and has norm not exceeding 2||[.4, -4*]||. Hence

[[4, .4*], An] = n\An for w a positive integer. Then wXk"= [[.4, .4*], An]

implies \n\ |X| ||^4n|| ^2|| [A, A*]\\ \\An\\ so that A" is zero for some n.

4.2. [A*, A»] = nA»-i[A*, A]-(\/2)(n)(n-l)A»-i ior n = l, 2,
Proof. The case w = 1 is trivial. Assuming the equation for w gives

[A*, An+1] = A"[A*, A] + [A*, A»]A

= A"[A*, A] + nAn~l[A*, A]A - (X/2)(w)(w - l)A"

= 4"[4*, 4] + nA»[A*, il] - wX^" - (X/2)(n)(n - 1)4»

= in + i)A'[A*, A] - (X/2)(w)(w + 1)A\

Corollary 1. X is real and positive and [[A*, A], A*] =X.4*.

Proof. Choose w such that An^0 but .4»+1 = 0. Then 0= [,4*, An+l]

= in + l)A"[A*, A]-Çk/2)in)in + l)A» implies A*(A*A-nQi/2))=0. Since
An5¿0, A*A—n(K/2) does not have a bounded inverse, hence w(X/2) is in

the spectrum of the positive operator .4*4 and X must be positive. Since

X is real, taking adjoints of both sides of the equation [ [.4, A*], A ] =\A gives

the second assertion.

Corollary 2. [A*n, A]=nA*»-*[A*, ¿] + (X/2)(n)(n-l)i4*»-».

Proof. Taking adjoints of both sides of the equation in 4.2 gives

[4*", A] = n[A*, A]A*"~l - (X/2)(w)(w - 1)4*»-!

= nA*n-'[A*, A] + Xw(« - 1)4*"-! - (X/2)(w)(w - 1)4*"-'.

Corollary 3. A A* commutes with A*A.

Proof. Since [.4, .4*] =AA*— A*A, it is sufficient to prove ^4.4* commutes

with [-4,-4*]. But

[[A, A*], AA*] = [[A, A*], A]A* + A[[A, A*], A*] = X^4* - \AA* =- 0.

4.3. For each non-negative integer w let 73„ = .4".4*" and 7?„ = .4*".4".

(a) 73n^4* = (l/w + l)73B+1+(w/w + l)73„^M+w(X/2)73„.

(b) DnA*A = il/n + l)Dn+i+in/n + l)DnAA*+ni\/2)Dn.

(c) For all w, iw^O, 73„ and Dn commute with 73m and Dm.

Proof, (a)

BnAA* = A"A*"AA* = An+lA*n+1 + An[A*", A]A*

= 73n+1 + A*inA*"-l[A*t A] + (X/2)(w)(w - l)^*"-1)^*

= 73n+i + (X/2)(«)(w - 1)5. + nA'A*^l[A*, A]A*

= Bn+i + (X/2)(w)(w - 1)73„ + n\A"A*n + w4M*"[4*, 4]

= 73n+i + (X/2)(w)(w + l)73n + w73„4*4 - w73„44*.

Solving for BnAA* gives the assertion in (a).



342 J. R. SCHUE [February

(b) Because of the symmetry between A and A * the proof is like that for

(a).

(c) If either « or mí is zero the result is immediate. By Corollary 3 of 4.2,

Bi commutes with 7>i. Using equations (a) and (b) an induction on « shows

that Bn and Dn are polynomials in Bi and 7J>i and this gives (c).

4.4. Let p, q be non-negative integers and n=p+q. Then

B,D,AA* - (q + 1/» + l)B^iDt + (p/n + l)BpDq+í + (\/2)(p)(q + \)BpDq.

Proof. The case q = 0 is given by equation (a) of 4.3 and the case p = 0 re-

duces to DnAA* = AA*Dn. Thus we may assume both p and q are positive.

NowBpDqAA*=(BpAA*)Dt=((l/p+l)Bp+i+(p/p+l)BpA*A+p(K/2)Bp)Dt
implies

(1) BpDqAA* = (l/p + VB^D, + p(\/2)BpDq + (p/p + l)BpDtA*A.

But, using equation (b) of 4.3,

Bp(DqAA*) = Bp((q + l/q)DqA*A - (l/q)Dq+i - (\/2)(q + l)Dq)

which gives

(2) BpDqAA* = - (l/q)BpDq+i - (\/2)(q + l)BpDq + (q + l/q)BpDqA*A.

Using (1) and (2) to eliminate the term BpDgA*A gives the conclusion.

Corollary. For n a positive integer (AA*)n is a linear combination of the

BpDq where 1 èp^n, O^q^n.

Proof. For m = 1, AA* = BiDB. 4.4 and an induction on n gives the result

in general.

4.5. Let m be the greatest integer such that An9i0. Then

(AA*)' u (A A* - (\/2)(p)(q + 1)) = 0

where the product is taken over all pairs p, q with 1 úpún, O^q^n.

Proof. (.4.4 *)" is a linear combination of terms of the form BpDq with

1=£^«, O^g^m. Thus it is sufficient to show that for each such pair p, q,

BpDqYi(AA* — (K/2)(k)(m + l)) =0 where the product is taken over all pairs

k, m with púk^n, q^m^n. If we define the degree of BpDq as p+q then

BJ)q(AA* - (\/2)(p)(q + l)) = (q + l/p+q + l)Bp+iDq + (p/p+q + l)BpDt+i
(by 4.4) and hence is a sum of terms of degree greater than that of BpDq. If

the degree of BpDq is n each of the terms on the right is zero since An+i

_.4*n+i = o. In general an induction on the terms of higher degree will yield

the conclusion.

Corollary. A A* and A* A have finite spectra contained in the set

{k(h/2): k = 0, 1, • • • , m(m-H)}. [A, A*] has spectrum contained in this set

and its negatives.

Proof. Let Q, be the commutative C* algebra generated by A A * and A* A.
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For any homomorphism a of ft onto the complex numbers the value of a at

A A* must satisfy the same polynomial relation as .4.4*, proving the first part.

Because of the symmetry between A and A*, A*A must also satisfy a poly-

nomial identity like that of 4.5. Since [A, A*] = AA* — A*A, a similar argu-

ment applies here.

Corollary. Suppose L is a finite-dimensional semi-simple complex Lie

algebra with X as a Cartan subalgebra and {ha, ea: a a root} is a Weyl basis of

L relative to X. Let <r be the associated involution and x* = — o~ix) for all x in L.

Suppose <b is a representation of L as bounded operators on a Hilbert space with

<j>ix*) = <f>(x)* for all x.
(a) If [x, x*] = 0 then <b(x) is diagonalizable with finite spectrum.

(b) The eigenvalues of <p(ha) are integer multiples of (l/2)a(ha).

(c) cb(X) is diagonalizable.

(d) (b(ea) is nilpotent.

Proof. For each a, ha=[ea, ¿*] and [ha, ea]=a(ha)ea together with the

first corollary give (b). (d) is a consequence of this and 4.1. (c) is true since

<b(X) is spanned by the finitely many diagonalizable operators (p(ha) which

are mutually commutative. If [x, x*] =0 then x is contained in some Cartan

subalgebra of the L* algebra L and this subalgebra is spanned by elements

of the form [fß,fß] where fß is a root vector relative to it so that the arguments

used in (a) and (b) can be used to prove <p(x) is diagonalizable.

A slightly improved version of 4.5 for a special case will be needed later

and this is proved below.

4.6. Suppose A is equal to Dx for some a in L and .43 = 0. Then the spec-

trum of [.4, .4*] lies in the set {k(\/2) : k = 0, 1, 2, -1, -2J.

Proof. By 3.2, A2A*A = AA*A2 and, using the argument in the proof of

the first corollary of 4.2, each of these is equal to X.42. Because of symmetry

similar relations hold with A and A* interchanged.

Now 04.4*)2 = A2A*2 + A[A*,A]A* = A2A*2 + AA*[A*,A] +X.4.4*

which implies 2(AA*)2 = A2A*2+AA*2A+\iAA*)2. From these two rela-

tions a direct computation shows that 2(AA*)3 — 3r\(AA*)2+\2AA* = 0 and

(by symmetry) that the same relation holds for .4*/!. Then an argument

like that used in proving the corollary of 4.5 will finish the proof.

5. Reduction to the separable case.

Definition. Let 3C be a Cartan subalgebra of L. If 7/ is a semi-simple

subalgebra of L, 7/ will be called regular (with respect to 3C) if and only if

L' is separable and 3C' = Xf~\L' is a Cartan subalgebra of L'. It will be proved

here that if each regular L' has a Cartan decomposition with respect to the

accompanying 3C' then L has a decomposition with respect to JfC. For x in

L let Mix) denote the smallest closed subspace of L containing x and invari-

ant under 3C. Then M(x) =Sp{ F„: w = 0, 1, • • • } where F0 = Sp{x|,

F„=[3C, F„_i] for »èl.
5.1. Let x be fixed and let 73 be the bounded operator on 3C defined by
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(Bh, h') = (Hx, H'x) for h, h' in 3C. Then B is self-adjoint and completely con-
tinuous.

Proof. (Bh, «') ^0 implies B = B*. Let £ be the spectral measure on the

spectrum of 3C such that (77y, z) =/(«, xa)d(E(a)y, z) for A in 3C and y,z in Z,.

Then (5A, h')=f(h, xa)(xa, h')d(E(a)x, x). If {hn} converges weakly to A

and {«„'} to A' then both sequences are bounded and the Lebesgue dominated

convergence theorem implies (Bhn, A„') converges to (Bh, A'). By [4, Defini-

tion 2, p. 206], B is completely continuous.

5.2. For x in L let X'(x) = {ä: AG3C, [A, x] = 0} and let 3C(x) be the

orthogonal complement of X'(x) in 3C. If x is self-adjoint then so are 3C(x)

and M(x) and both are separable.

Proof. It is clear that 3C'(x) is self-adjoint and hence the same is true

of 3C(x). Since F0 is self-adjoint, induction on n proves that each F„ is also

and hence M(x) is.

Let h'GX. By the definition of the operator B in 5.1, (Bh, A') =0 for all

h if and only if 77'x = 0. Hence 3C'(x) is the null-space of B and, since B is

self-adjoint, 3C(x) is the closure of the range of B. Since B is completely con-

tinuous, the reference in [4] shows that X(x) must be separable. Then an

induction on n proves that FB= [H(x), V„-i] and that each F„ is separable

so that M(x) is separable.

5.3. Suppose x is self-adjoint, nonzero, and orthogonal to 3C. Let L' be

the L* algebra generated by 3C(x) + M(x). Then 3C(x) = X(~\L', U is regular,

[3C'(x), 7/]=0, and (3C'(x), 7/)=0.

Proof. Since the orthogonal complement of 3C is invariant under 3C and

contains x it also contains M(x) so that the indicated sum is actually direct.

Since X(x) and M(x) are separable and self-adjoint it is possible to choose a

countable (or finite) orthogonal basis of the space 3C(x)+M(x), say {e„},

such that each-e,, is self-adjoint. Then a proof like that for 3.5 (a) shows that

V is spanned by products of the form £<,-•• £,te„ and, since the set of these

is countable, L' is separable.

For h'GX'(x), 77' is zero on X(x) + M(x), hence on a set of generators of

L'. Since 77' is a derivation, 77' is zero on L', proving [3C'(x), L']=0. Now

(3C'(x), e»)=0 lor each » and, since [3C'(x), L'] = 0, it follows readily that

3C'(x) is orthogonal to each of the finite products of generators, hence is

orthogonal to L'. This implies 3C(x) = X(~\L'.

Finally, if yGT/ and [y, 3C(x)] = 0 then [y, 3C] = 0 so that yG3C and hence

yGX(x). Thus 3C(x) is a maximal abelian subalgebra of L'. If yGL' and

[y, L'] = 0 then yGX(x)C\X' (x) implies y is zero. Thus L' is semi-simple and

3C(x) is a Cartan subalgebra of L'.

5.4. Suppose every regular subalgebra L' of L has a Cartan decomposition

with respect to 3C' = X.C\L'. Then 7, has a decomposition with respect to 3C.

Proof. Let K be the 7,* subalgebra of L obtained by letting K = X+V

where V is the span of all the nonzero root vectors of L relative to 3C. It is

sufficient to prove K = L. Now K is invariant under X so that K', the orthog-
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onal complement of K in L, is also invariant. Furthermore, K'* = K' and if

K' ¿¿0 there is a nonzero self-adjoint element xG7£'. Then M(x) EK'. Let L'

be the L* subalgebra generated by 3C(x) + J7(x). By 5.3 L' is regular so that

the hypothesis here implies L' has a Cartan decomposition with respect to

3C(x). Since M(x) is invariant under X(x) it will be spanned by root vectors

of 3C(x) and hence there is a nonzero v in M(x) which is a common eigen-

vector for all 77, hEX(x). But if h'EX'(x) then 77't> = 0 so that it follows

immediately that v is a common eigenvector for X. Since vE M(x) EK' this

gives the desired contradiction.

6. Existence of Cartan decompositions.

Remark. It will be proved here that if L is simple and separable there

is a Cartan subalgebra X oí L such that £ as a decomposition with respect

to X. Hence L must be one of the five types A, A', 73, C, D obtained in [5].

Since each of these is a Lie subalgebra of an 77* algebra, Theorem 2 of [5]

shows that L has a decomposition with respect to any Cartan subalgebra.

From this it is clear that any separable semi-simple L* algebra has a decom-

position with respect to any Cartan subalgebra. Finally, 5.4 shows that this is

true with no restriction on the dimension of L.

6.1. Suppose a\, a2 are self-adjoint elements of L and A\A2 = 0. Then either

ai = 0 or a2 = 0.

Proof. Since Ai is self-adjoint, A2AX is also zero. Let Ci be the null-space

of A i and 7?,-the closure of the range of Ait i =1,2. Then L = C+7?iand both

d and Ri are self-adjoint. Let 7i = Sp{7?i, [7?,-, Ri]]. Since -4X.42 = 0 then

(Ru £2)=0. Also [[au L], [a,, L]] = [[[au L], a2], L] + [a2, [[ah L], L]]

= [a2, [[ai, L], £]]C7?2. Similarly [[ai, L], [a2, 7,]]C7?i- From this we have

[7?i, R2]ERiT\R2 = 0. Hence the Jacobi identity gives [h, 72]=0. From the

above it is easy to see that 7i is orthogonal to 72. Let W be the orthogonal

complement of 7i+72. Then (W, 7?,)=0 implies WECiC\C2. This in turn

implies that Rt is invariant under W. But ([W, Ri], Ri) = (W, [Ri, R¡]) =0 so

that [IF, 7?,] = 0 and hence [W, 7,]=0. Since L=W+h+I2 it follows im-

mediately that 7,- is an ideal of L. By the simplicity of L either 7i or 72 must

be zero. Now AtLERiEIi so that either -4X or .42 is zero.

Notation. By Corollary 2 of 3.8 there exists an element a of L such that

A3 = 0, ||a|| = 1, and [[a, a*], a] = Xa where X = || [a, a*]||2 s¿ 0. Thus

[[A, A*], A]=\A and 4.6 implies L= Fo+Fx/2+F_x/2+Fx+F_x where Vß

is the eigenspace for [.4, .4*] with the indicated subscript as eigenvalue. The

usual relations hold between these subspaces, i.e., [V,,, V,]EVI1+, and

F* = V-ß for each u. In particular, X3 = 0 for all xG Fx.

6.2. Let 5= [Fx, VÏ] + VX+ F?. Then 5 is a semi-simple L* algebra.

Proof. Clearly 5* = 5 and [Fx, Fx]=[Fx*, F£]=0. Since Fx, Fx* are both

invariant under [Fx, Fx], so is [Fx, F*]. From this it follows that 5 is a sub-

algebra. If xES and [x, 5] = 0 then [A, A*]x = 0 implies xG[Fx, F*]. But

(x, [V\, V*]) = 0 since [x, Fx] =0. Thus x is zero and 5 is semi-simple.

Definition. By Zorn's Lemma it is possible to choose a subset SF of F
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which is maximal with respect to the following properties :

(i) bGS implies ||&|| = land [[b, b*], b]=\bb (Xö = || [b, &*]||2).

(ii) b, cGï implies [[b, b*], [c, c*]] = 0.

Necessarily a is in Í since [Fx,  V*]GV0. Let Af=Sp{[6, ¿>*]: &GS}.

Then Af is self-adjoint and abelian. Let C(M) = |x:xG5, [x, Af] = 0}.

6.3. Let A be the spectrum of M (acting on 5) and suppose «GA with a

nonzero. Then |[xa|| ^(1/2)X1/2.

Proof. For any b in ÎF, ([6, b*], [a, o*])=X implies \<t\\ [o, o*]|| || [6, 6*]||
= X1/2X61/2sothatX^Xi. Since a is not zero there is a ¿»G^ such that (xa, [b, b*])

7*0. By the first corollary of 4.5 the spectrum of [B, B*] consists of integer

multiples of (l/2)Xfc. Thus we must have ||x„|| || [b, b*]\\ ^(l/2)Xk which gives

||x„||^(l/2)Xi/2.

Corollary. There exist subspaces Vk of S, invariant under C(M), such that

S=C(M) + ^Vkand [Vk, Ft*]CC(M).

Proof. The existence of the Fi's is implied by 2.4. Since they are spectral

subspaces they are invariant under all operators commuting with {X: xGM},

hence invariant under C(M).

6.4. M= C(M) and if is a Cartan subalgebra of 5.

Proof. For x in C(M), [A, A*]x = 0 implies xGF0, hence xG[Fx, F?].

Thus V\ is invariant under C(M). Then if Wk= V\f~\Vk we have Wk is in-

variant under X for any x commuting with M, V\= E^*> a°d [Wk, W*]

GC(M).
Suppose c G Wk. Then Wk is invariant under [C, C*]. Hence

Sp{Z"c:X=[C, C*], « = 0, 1, • • • }GWk. Since C3 = 0, the proof of 3.8

shows that there exists an orthonormal set {e,} GWk such that [[e„ e*], d]

= X¿e¿, [e,-,ey]= [e{, ef] = 0 for i^j, ande = Xc»'e<-Then [c,c*] = ^|c,| 2[e,-, e<*].

By the maximality of i, each «¡GiF since [e„ e,*]GC(M). Hence [eit ef]GM

so that [c, c*]GM.
For future reference we will now prove that if x is any element of L with

[x, M] = 0 and (x, M) =0 then [x, Fx] = 0. To see this note first that xG Fo

(since [a, a*]GM) and this implies Fx and Vk are invariant under X so that

IFk is also invariant. If cG Wk then [c, c*]GMso that 0 = (x, [c, c*]) = (Xc, c).

Since the operator X on JF¡t is completely determined by the quadratic form

(Xc, c) this gives X is zero on IF* for each k so that X is zero on V\.

The preceding paragraph shows that if xGC(M) and (x, M)=0 then

[x, Fx] = 0. Now M is self-adjoint which implies the same for C(M) and thus

x*GC(M), (x*, M) = 0 so that we also have [x*, Fx] = 0 and this gives

[x, F*] = 0. But then [x, [Fx, V£]] is also zero and this implies X is zero on

5 so that x = 0. Hence M=C(M) so that M is maximal abelian in 5, hence a

Cartan subalgebra of 5.

6.5. 5 has a Cartan decomposition with respect to M.

Proof. Using the notation of 6.4 we now have V\— E^* w'th [Wk, W*]
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CM. Also [Wk, Wk]=0. Let k be fixed and let 5X= [Wk, Wt] + Wk + Wt.
Then it is easily seen that 5i is an L* subalgebra since Wk is invariant under

M. Let P be the projection of 5 onto Si and ao = P[a, a*]. Then for zG5i,

[a0, 2]=[P[a, a*], z] = £[[a, a*], «] = [[», a*], z] since Z and Z* leave 5i

invariant. Hence if [z, 5i]=0then [z, [a, a*]] =0 so that zE[Wk, W*]. But

(z, [IF*, W*]) =0 since [z, IF*] = 0, hence z is zero and 5t is semi-simple. Now

[Wk, W*]EM implies [IF*, W*] is abelian and the proof above shows that

it is maximal abelian in 5i, thus a Cartan subalgebra. By 3.8, 5i is a direct

sum of simple ideals I¡ where 7; = Sp{e¡, ef, [ei, e*]} for some ei in Wk. If

xEM then [x, 5i] ESi and X is zero on 5i if and only if it is zero on IF* which

is equivalent to (x, [Wk, W*]) =0. From this it follows readily that each ei

is a common eigenvector for all X, xEM. Thus each Wk, and therefore Fx, is

spanned by root vectors for M. By symmetry the same is true of F*. Since

5 is generated by Fx and F*, and since each finite product of eigenvectors for

M is again an eigenvector for M, S is spanned by eigenvectors and this com-

pletes the proof.

Definition. Let ii be a set in FX/2 which is maximal with respect to the

following properties:

(i) ôGïi implies |H| = 1, [[b, b*], b]=\bb,
(ii) b, cGïi implies [[b, b*], [c, c*]] = 0,

(iii) èGïi implies [[b, b*], M]=0.
Let 3Co = Sp{ [b, b*]: oGïiWîj. Then MEX0 and X0 is abelian and self-

adjoint. Let 3C= {x: [x, 3C0] = 0}. Since [a, a*]G3C0, 3CCF0. We will show

that X is the desired Cartan subalgebra. Note that F„ is invariant under X

for each eigenspace Vß of [A, A*].

6.6. Let A be the spectrum of Xo and suppose a is a nonzero element of

A. Then ||x„|| è(l/4)X1/2. Hence L = X + £Vk where [Vk, Ft*]C3Cand F* is

invariant under 3C.

Proof. For bE$i, i[b, b*], [a, a*]) = (l/2)X implies Xj/2X1'2è(l/2)X so
that Xtè(l/4)X. The remainder of the argument is like that of 6.3 and the

corollary.

6.7. 3C is abelian and is a Cartan subalgebra of L.

Proof. If X is abelian it is necessarily maximal abelian so that we need

only prove the first assertion.

Let Wk= V\/2r\Vk. Then Wk is invariant under X and Fx/2= £lF*. Also

[Wk, WÎ]EX. Suppose X is not abelian. Then [x, X] is a semi-simple L*

subalgebra and (3C0, [X, 3C]) =0. Thus there exists a wE [X, X] with \\w\\ = 1

and [[w, w*], w]=uw. Also ([w, w*], 3C0)=0.

Now [W, W*] has spectrum contained in the set {ru] where r is a half-

integer (by the first corollary of 4.5). Let Trt¡ be the eigenspace associated

with the value ru. Choose a fixed Wk. Since Wk is invariant under [W, W*],

Wk = £zr/i where Zr„ is the intersection of Wk with 7V

Suppose r^0. Then  [Zr„ Zr„]CTir,CRange  [W, W*]. But  [ZrM, ZT„]
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CFx. Since ([w, w*], M)=0, the remark made in the proof of 6.4 shows

that [W, W*] is zero on V\ and thus V\ is contained in the null-space of

[IF, IF*]. Hence [Z„, Zr„] = 0.

Now suppose some Z^^O for r^O. For this r let 5i= [ZrM, Z*„]+Zrti+Z*^

Since [Zr„, Z*]C3Cn null-space [W, W*] then Zr„ = IF*n 7V„ is invariant

under [ZTI¡, Z*M] so that it is easy to see that 5i is an L* subalgebra. Using

the technique of projecting [w, w*] onto Si, the proof of 6.5 can be used to

show that 5i is semi-simple. Let cG5i. Then Ca = 0 on 5i. Hence it follows

as in 6.4 that c= Ec«e» where {e<} is an orthonormal set in Z^GIF* with

[k^],ef]=X,e,and [c, c*] = £|c,| 2[e,-, if]. Now [e{,et]G[Wk, Wt]GX.
By the maximality of ii this implies [e,-, e*]GX"o. Thus \c, c*]G3Co so that

0 = ([w, w*], [c, c*]) = ([[w, w*], c], c). Since Zr„ is invariant under the oper-

ator [W, W*] we must have [IF, W*] is zero on Zr(1. But this implies Zr/1 is

zero for all r^O and hence [W, W*] is zero on V\/2 as well as on Fx. Using

the self-adjointness of [W, W*] this implies [IF, W*] is zero on F*/2 and F*

so that [W, W*][A, A*] = 0. By 6.1 we must have [W, W*] = 0 and, since

w is an eigenvector for [IF, IF*], this gives w = 0, finishing the proof.

6.8. 3C has at least one nonzero root.

Proof. [3C, Fx]CFx and MGX. If xG3C and x is orthogonal to M the

remark in the proof of 6.4 shows that X is zero on Fx. Now, using 6.5, V\ is

spanned by eigenvectors for M and it is immediate that each of these will

be a root vector for 3C, corresponding to a nonzero root.

6.9. Suppose L' is one of the simple algebras A, A', B, C, D discussed in

§3 of [5]. If ea is a normalized root vector corresponding to some root a

then Ea = 0. There exists an ea in L' such that the eigenspace corresponding

to the maximal eigenvalue of [Ea, E* ] is finite-dimensional.

Proof. It is easily seen that ß + 3a is never a root for any root ß in the same

root set as a and this implies £„ = 0. Hence the spectrum of [£„, £*] is con-

tained in the set {r(a, a):r = 0, 1/2, —1/2, 1, — l}. Now the eigenspace in

question is spanned by root vectors e$ with (a, ß) = (a, a). Using the notation

of [5 ], the roots are obtained from the set [X¿—Xy, Xi+Xy, 2X<, X¿: i,j integers}

with (X,-, Xy)=5,-,y. Furthermore, V must contain a root of the form X,—Xy.

Taking a = X¿—Xy, (a, ß) = (a, a) implies ß is contained in the finite set

{\i-\j, 2X,}.
6.10. L has a Cartan decomposition with respect to 3C.

Proof. Let R be the (nonempty) set of all nonzero roots of L relative to 3C

and choose a normalized root vector ea for each aGR. Let V = Sp {ea : a G R},

3C'=Sp{ [ea, el]: aGR}, and 5' = 3C' + F'. Then 5' is semi-simple, 3C' is a

Cartan subalgebra of 5', and 5 has a Cartan decomposition with respect to

3C' with R as a complete set of roots. If xG3C and (x, 3C') = 0 then [x, ea] =0

for all a so that [x, 5'] = 0. Let IF be the orthogonal complement of Sp {3C, 5'}.

Then IF is invariant under both 5' and 3C. If [5', IF] = 0 then it is immediate

that [5', L]C5' so that 5' is a nonzero ideal, S' = L, and the existence theo-

rem is proved.
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By the remarks above it is enough to prove [S', IF]=0. Now W is in-

variant under X so that W— £lF* where Wk is invariant under X and

[Wk, Wt]EX.
Let S" be any simple ideal of 5'. By the classification theory of [5] and

6.9, there is an e„ in S" such that the eigenspace associated with the maximal

eigenvalue of [£«, £* ] (restricted to 5") is finite-dimensional. We will show

that [£a, £* ] is zero on W.

Since [[ea, e*], ea]=uea, L is spanned by subspaces Tr where Tr is the

eigenspace for [£a, £* ] associated with the value ru, r being a half-integer.

Suppose WkC\Tr contains a nonzero subspace U invariant under X with

[U, U]=0 for some k. If 5i = [U, U*] + U+ U* it is easy to see that 5i is a

semi-simple L* subalgebra (see the proof of 6.5) with [U, U*] as a Cartan

subalgebra. By 3.8, 5i is a direct sum of three-dimensional ideals 7y with

7y = Sp {ey, ef, [ey, ey* ]} for some e¡ in U. Thus each ey is a root vector for

[U, U*]EX. Since 5i is invariant under X it follows as in the proof of 6.8

that each ey is a root vector for X, a contradiction of the definition of 5'.

Thus if roß is the maximal eigenvalue for [£a, £*], since TT„ is abelian,

we must have W(~\TT<l = 0. But then (rro, IF) = 0 and this implies Tr<¡ is

entirely contained in 5". Since £„ = 0 on 5", ro must equal one. By the choice

of a, Ti is finite-dimensional, say of dimension m.

Suppose [£0, ^Jt^O on W. Since W is self-adjoint we must have

Z = Ti/2 C\ Wk ¥" 0 for some k. Then Z is invariant under X. Suppose

Z = Zi+ • • • +Zm+i with each Z{ invariant under X. Then ([Z,-, Zy*], X)

= (Z,-, [X, Zy])=0 for iftj. Hence [Z,-, Zy*] = 0 for i^j and this implies

i[Zit Zi], [Zj, Zj]) =0. Since [Zf, Zi] C7\ for each i, at least one Zi must be

abelian, so that the remarks above imply that Z contains no more than m

mutually orthogonal subspaces invariant under 3C. From this it is a simple

consequence of the spectral theorem that Z must contain a root vector for 3C;

a contradiction. Hence [£„, £*] must be zero on W. Using the simplicity of

5", this implies the representation of S" on IF obtained by restricting the

adjoint representation is trivial. Since 5" was an arbitrary simple component

of 5'this implies [5', IF] = 0.
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