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The core of an M-person game, though used already by von Neumann and

Morgenstern [15], was first explicitly defined by Gillies [5]. Gillies's defini-

tion is restricted to cooperative games with side payments and unrestrictedly

transferable utilities(2), but the basic idea is very simple and natural, and

appears in many approaches to game theory. We consider a certain set of

"outcomes" to a game, and define a relation of "dominance" (usually not

transitive) on this set. The core is then defined to be the subset of outcomes

maximal with respect to the dominance relation; in other words, the subset

of outcomes from which there is no tendency to move away—the equilibrium

states.

To turn this intuitive description of the core notion into a mathematical

definition, we need precise characterizations of

(a) the kind of game-theoretic situation to which we are referring (co-

operative game, noncooperative game, etc.);

(b) what we mean by "outcome"; and

(c) what we mean by "dominance."

Different ways of interpreting these three elements yield different applica-

tions of the generalized "core" notion, many of them well-known in game

theory. Gillies's core, Luce's ^-stability [lO], Nash's equilibrium points [12],

Nash's solution to the bargaining problem [l3](3), and the idea of Pareto

optimality—to mention only some of the applications—can all be obtained

in this way.

Here we shall be concerned exclusively with cooperative games without

side payments(4). Our procedure will be to generalize von Neumann's funda-

mental notion of characteristic function to this case, and on the basis of this

generalization to define the core in a way that generalizes and parallels the

core in the classical theory—i.e., Gillies's core. The generalization of the char-

acteristic function is of interest for its own sake also; for example, a theory

of "solutions" has been developed that generalizes and parallels the classical

theory of solutions and is based on the characteristic function [3; 16].

Received by the editors July 18, 1960.

(') Most of the results proved here were announced in [3], to which the reader may refer

for additional introductory and background material. The basic ideas of this paper were con-

ceived jointly with B. Peleg, to whom the author is greatly indebted.

(2) Such games will be called classical games in the sequel, and the theory described in

[5; 15] will be called the classical theory.

C) Cf. [6].
(4) Classical games are known to be special cases of these games.
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As in the classical theory, our "outcomes" will all be payoff vectors. We

leave aside for the moment the question as to which particular set of payoff

vectors we wish formally to consider as our set of outcomes. This brings us to

the question of how to characterize the notion of "dominance."

Although formally it is simpler to define the characteristic function first

and then to base on it the definition of dominance, the more intuitive pro-

cedure is the reverse: We must first state what we require from the dominance

relation, and this will enable us to motivate our definition of characteristic

function. Following the classical theory, then, we will say that a payoff vector

x dominates another one y if

(i) there is a coalition S that prefers x to y, and

(ii) this preference is "not idle," i.e. 5 can actually achieve at least its por-

tion of x.

What is meant by condition (i) is clear; each member of S must get more in x

than in y. As for condition (ii), its exact meaning depends on how we wish to

interpret the words "can actually achieve" ; or to say the same thing in more

technical language, it depends on when we wish to consider the coalition S

"effective" for the payoff vector x.

In the sequel we will give a number of different definitions of effectiveness,

each one leading to a different notion of dominance and hence to a different

core. An alternative procedure is to assume that we already know for each

coalition S which are the payoff vectors x for which 5 is effective; on the basis

of this information we can then determine the core, without having to know

the normal form of the game or the definition of effectiveness. A game pre-

sented in this form is said to be in characteristic function form. The character-

istic function form of a game can always be calculated from its normal form

and a particular definition of effectiveness. Note the similarity with the char-

acteristic function of the classical theory; there there is associated with each

coalition S a number v{S), and the vectors x for which 5 is effective are pre-

cisely those for which(8) ^ies x^viS). Here the set of x for which 5 is effec-

tive need not have such a simple form, and cannot be characterized by a single

number; we therefore define v(S) to be the set itself, rather than a number

that characterizes the set. A considerable part of the theory can be developed

on the basis of the characteristic function, without referring to the original

game or to the particular notion of effectiveness we are using. As in the classi-

cal theory, some assumptions must be made about v(S) to justify this de-

velopment; these assumptions are natural ones, and we will establish that

they hold for the particular definitions of effectiveness that we will wish to

use.

We now return to the question of which payoff vectors we wish to con-

sider as "outcomes." One possibility is the set 77 of all those payoff vectors

that can be obtained by means of some correlated mixed strategy of the set

(5) The coordinates of the payoff vectors are indexed with superscripts.
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N of all players. It is also possible to impose various more or less natural

restrictions on the set of outcomes. There are two such restrictions that have

received special attention in the literature, namely "individual rationality"

and "group rationality." The former restricts the outcomes to payoff vectors

in which each individual player gets at least what he can guarantee himself

without any aid from the other players; under the latter restriction, a payoff

vector is not called an "outcome" if there is another payoff vector in 77 which

yields more to each player. These two restrictions can be imposed on the

"outcome" concept in various combinations, so that we obtain four possibili-

ties for this concept. In the classical theory it is easily established that all

four lead to the same core; in the present theory this is also true, but the proof

is no longer trivial. An interesting sidelight on this theorem is that its proof

depends essentially on the assumption that 77 is a polyhedron (this assump-

tion always holds if we start out with a finite game). If we replace 77 by a non-

polyhedral convex set, the theorem becomes false; such a situation can ac-

tually be realized in the case of games with infinite strategy sets.

The paper is divided into two parts: the first part (§§1-7) deals with the

theory of games in characteristic function form; the second part (§§8-10)

deals with applications to games in normal form. §1 is devoted to a review of

notation. In §2 we give the formal definition of a game in characteristic func-

tion form. §3 is devoted to the definition of various basic concepts such as

domination, individual and group rationality, and core. §§4 and 5 are devoted

to the statement and proof of the theorem that all the sets of outcomes dis-

cussed above lead to the same core. In §6 we give the counter-example to this

theorem when 77 is not polyhedral. In §7 we discuss the composition of two

games, and remark that the core of the composition is the cartesian product

of the cores of the components. In §8 we pass to the normal form. We define

two kinds of effectiveness, both generalizations of the classical definition, and

show that they are different. In §9 we show that both these definitions lead

to characteristic functions that satisfy the conditions of §2. In §10 we discuss

the connection between the supergame(6) of a game and its various cores; in

particular we shall show that the set of acceptable payoff vectors of a game

[l ; 2] coincides with the core for one of the two definitions alluded to above.

1. Notation. N will denote a fixed finite set with n members, who will be

called players. EN will denote euclidean space of n dimensions, the coordinates

of the points being indexed by the members of N; formally, EN may be con-

sidered the set of functions from N to the reals. The points of EN will be called

payoff vectors. If xEEN, the coordinates of x will be denoted by x\ where

iEN. For fixed xEEN and SEN, we will call the 5-tuple {x^^s an S-vector

and denote it by xs.(7) Note that x = xN. If xs and ys are 5-vectors, then any

(6) The game each play of which consists of an infinite sequence of the plays of the original

game.

(') Xs is the projection of x on Es; if x is considered a function, then xs is x restricted to S.
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relation between xs and ys is to be understood coordinate-wise; e.g., xs^ys

means x*^y* for all iES. If SEN then (xs, yN~s) denotes the payoff vector z

such that zs = xs and zN~s = yN~s.

Subsets of N will be called coalitions, and will be denoted by 5 and T.

Lower case latin letters towards the end of the alphabet will denote payoff

vectors. 0 denotes the empty set. In addition to its usual meaning, 0 will

sometimes denote a vector all of whose components are 0; no confusion will

result. The letter i always denotes a player. Unless the contrary is specifically

indicated, summation, the taking of maxima or minima, etc., will be over i;

for instance, E« means ^^s- The symbol X denotes the cartesian product.

We shall need a norm on EN. Any norm with reasonable properties would

serve our purposes; we shall use the maximum, defined by ||x|| = maxAr |x'|.

In addition to the usual norm properties, we note

(1) if x > 0 and y > 0, then ||x + y\\ > max (||x||, ||y||).

Similar to the definition of norm on EN, we define a norm on Es by ||x5||

= maxg |x'|.

The numbering of formulas, theorems, etc., starts from the beginning in

each section; references from one section to another specify the section num-

ber as well as the formula number.

2. The definition of a game in characteristic function form.

Definition. A characteristic function^) is a pair (A, v), where A is a finite

set and v is a function that carries each subset S of N into a subset v{S) of

EN so that

(1) v{S) is convex;

(2) v{S) is closed;

(3) v{0)=E»;
(4) if xEv{S) and ys^xs, then yEv{S);

(5) if Sr\T=0, then v{S\JT)Dv{S)i^v{T).
A game in characteristic function form, or simply a game, is a triple (A, v, 77),

where {N, v) is a characteristic function and

(6) 77 is a convex compact polyhedral subset of EN.

Condition (5) is the natural generalization of the classical notion of super-

additivity: it says that if a certain outcome can be achieved by the disjoint

coalitions 5 and £ when acting separately, then it can also be achieved by

them when acting in concert.

We shall say that (A, v, 77) is an ordinary game if

(7) xGi>(A) if and only if there is a yEH such that x^y.

This condition is easily justified intuitively, if we consider the interpretations

of 77 and v{N) : 77 is the set of all payoff vectors that can be achieved by a

joint strategy of all of A7, whereas v{N) is the set of payoff vectors x such that

(8) Note the similarity with the "end games" used by Isbell [8] in a somewhat different

context. (This work is independent of Isbell's.)
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N can jointly achieve at least x. The notion of game as originally defined

(without (7)) provides a generalization of von Neumann and Morgenstern's

"extended" game [l5](9);this is why (7) was not included in the original

definition(10).

3. Domination, core, rationality. Fix a game (N, v, 77). A payoff vector x

is said to dominate a payoff vector y via S (notation: x>sy) if xEv(S) and

xs>ys; x is said to dominate y (notation: x>y) if there is an 5 such that

x>sy. If R is an arbitrary set of payoff vectors, we define the R-core Q(R) to

be the set of all members of R not dominated by any other member of P.

It is easy to show that for each i EN, there is an extended real number(u)

v* such that v({i})= {x: x'<zj*}. A payoff vector x is called individually ra-

tional il x}tvN. x is called group rational if there is no y£77 such that y>x.

We will denote by E the set of group rational payoff vectors in 77, and by A

the set of individually rational payoff vectors in 77; also, we set(12) A =Ef~\A

and 1 = 77.

Fig. 1

We will consider the P-cores for R = E, E, A, and A. For two-person

games, all these cores turn out to be equal to A. This is a set which is related

to what has been called the "negotiation set" [ll, p. 118], but is not always

the same thing. (See Figure 1, in which the negotiation set is the line be,

whereas the set A is the broken line ebef. Note that eb is horizontal and cf is

vertical.)

(•) See [3, §7].
(10) Half of (7)—the "only if" half—was included in the definition of "game" as given in

[3, §2]. What we call "game" here is called "extended game" in [3], and what we call "ordinary

game" here is slightly stronger than either of the definitions in [3].

(") A real number or + <x> or — *>.

(12) Following the notation of [5, p. 58].
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4. A lemma on polyhedral sets. If BEEN, denote by 7(£) the set(13) of

all members x of £ for which there is no y such that y>x. For example,

4 =7(4) and E = I{E). The lemma we shall establish in this section may be

described as follows:

If B is a bounded polyhedron in EN, then for each x in B but not in I{B),

there is a payoff vector x" in I{B) such that if we move along the ray connecting

x to x" at a constant speed {which is the same for all xEB), then the rate of in-

crease of each of the coordinates is uniformly bounded away from zero {for all

xEB).
If £ is not a polyhedron this need not be true, as we shall see in an exam-

ple.
For x>0, define/(x) = maxji3eAr(xi/x'). We have

(1) f(x + y) úmax(f{x),f{y)).

Lemma 2. For every closed polyhedron B in EN, there is a positive number K

such that for all xEB — I(B), there is an x'EB such that

(3) x' > x   and   f(x' - x) £ K.

Proof. Suppose B to be defined by the set of linear inequalities £i(x)

£bi, • • • , £m(x) =om; we denote this set by M. Each subset Q of M defines

a subset Bq of £, namely the set of those elements of £ which satisfy the

inequalities in Q strictly, and the inequalities in M— Q as equalities. Some of

the Bq may be empty; but those that are not are distinct, and we have

B = U<3cm Bq. (Geometrically, the Bq are the interiors of the faces of £.)

For each Q such that Bq — I(B)^0, choose a payoff vector xQ in

BQ — I(B). Then there is a payoff vector VqG£ such that yQ>XQ. Now let x

be an arbitrary element of BQ; define yi = x + o(;y<3 — xQ). For sufficiently small

positive 8, y5 satisfies the inequalities in Q strictly; the inequalities in M—Q

are satisfied by y¡ for all positive 5. Hence for positive 5 sufficiently small,

ysEB and y¡>x; we define x'=ys for this 5. Then x'— x = hiyQ — xQ), so that

f(x'— x) =f(yQ — xq). Setting £ = maxecjlf/(yQ —xQ), we obtain f(x'— x) g A

for all those X that are located in some Bq for which BQ — I{B) ?¿0. But since

every xEB — I{B) is located in some such BQ, our proof is complete.

Lemma 4. For every compact polyhedron B in EN, there is a positive number

K such that for all xEB-I(B), there is an x"G7(73) such that x">x and

f(x"-x)ûK.

Proof. For each xEB — I(B), let Fx be the union of the single point x

with the set of all x'EB satisfying (3). Fx is compact, and therefore the func-

tion ||y — x||, considered as a function of y, attains its maximum in Fx, say

(") If B is closed and convex, then 1(B) is the weak top of B over its base as defined in [7].
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at the point x". Suppose x"(f7(P). Then by Lemma 2 there is a point yEB

such that y>x" and f(y — x") ¿K. From (1) it then follows that/(y — x) ^P

and from (1.1) that ||y-x|| =||(y-x") + (x"-x)|| >||x"-x|¡ ; hence x" does

not have the maximum property by which it was defined, which is a contra-

diction. This completes the proof.

Corollary 5. If B is a compact polyhedron in EN, then there is a positive

number K, such that for each xEB — I(B), there is an x"EI(B) such that

x">x and for each iEN, x"' —x^Hx" —x[|/P.

5. Relations between the P-cores for R = E, P, A, and A. Fix a game

(N, v, 77). The crux of this section is the following theorem:

Theorem 1. Let B be a compact polyhedron in EN, and let yEI(B). If

there is a zEB which dominates y, then there is also a wEI(B) which

dominates y.

Proof. We may assume without loss of generality that y = 0. Let F denote

the closed positive orthant {x: x^OJ. Since 0 = yEI(B), B cannot intersect

the interior of V, and there is therefore a hyperplane g(x) = ^2,N cixi = 0 which

separates P from V. W. 1. o. g. g(x) 5=0 for all x£P, and g(x) ^0 for all xE V;

from the latter fact it follows that cN 2:0. Note that if xEB and g(x) ^0, then

xEI(B); otherwise we would have an XxEB such that Xi>x, and since not

all the c* vanish, it would follow that g(x) <g(xi) ^0.

Let the effective set for the domination of z over 0 be 5; set h(x) = ^2ns c'x''.

Suppose there is an xEB such that x>50 and h(x) ^0. Then since xs>0 and

cs^0 it follows that ^s c'x'^0. Hence g(x) ^0, and therefore x£7(P); but

then we are finished (set w = x). Therefore we may assume without loss of

generality that

(2) ilxEB    and    x>s0,    then    h(x) < 0.

Let k = (mins z')/2; note that k>0. Let C be the set of those x in B for

which xs5:0 and \\xs\\ =£. C is compact, and therefore h(x) attains its maxi-

mum in C at a point Xi in C. If Xi£7(P), then there is an x2EB for which

x2>xi; hence |[rx:f[| >||xf|| =k, and

(3) h(x2) ^ h(xi).

Set x3 = (&/||xf||)x2. Then |¡xf|¡ =k, xf >0, and since P is convex, x3£P. Hence

XzEC, and therefore

(4) h(xx) ^ h(x3).

Since ||xf|| =k, it follows that xf<zs; but since zEv(S), it follows from (2.4)

that x3Ev(S). Hence from x|>0, it follows that x3>s0. Hence by (2),

ft(x3)<0. Buth(x3) = (k/\\x¡\\)h(x2), and¿/||4||<l; hence h(x2) <h(xz), which

contradicts (3) and (4). We conclude that Xi£7(P).
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Now since ||xf|| =k, it follows that xf <zs; therefore XiEv(S). If xf >0 it

then follows that Xi>s0, and since xi£7(P), we are finished (w = xx). It there-

fore remains only to deal with the case in which one of the coordinates of xx

vanishes. In this case, set S — k/(K + l), the K being that of Corollary 4.5.

Let x4£P be such that xf >0 and [|x4 —Xi|| go; such an x4 can be constructed

by choosing a point sufficiently close to xi on the line segment joining z to Xi.

Define xf in accordance with Corollary 4.5. If ||x4" — x4|| >K8, then x['{ — x\

>S for each iEN; therefore for iEN we have

ffi i ,   Iri i. i t it i i n 11

X4     —  Xi =   (X4   — Xi)   +   (Xi — Xi)  > S —   I X4 — Xi I     ^  ä  -  ||X4  —   Xi||   ¿ 0.

Hence x4" >Xi and x4" £7(P), contradicting xi£7(P). Hence ||x4" — x4|| ^K8.

But then

||x4' — Xi|| ^ \\x" — x4|| + ||x4 — Xi|| g Ko + S = k;

hence
11     f fß m 11// II II    ^\ I '

||Xi   || ¿ \\Xi — Xi\\ + ||xi|| ^ 2k = mins z .

Hence x4"sázs and from (2.4) we deduce x4" Ev(S). Since x4"s>xf^0, we

obtain x4" >s0 and x4" £7(P). The proof of Theorem 1 is now complete

(w = xi').

Corollary 5. If B is a compact polyhedron, then e(I(B)) = e(B)(~M(B).

Proof. If y£C(7(P)), then surely y£7(P). If y were not in C(P), then it

would be dominated by a member zolB, and hence by Theorem 1, by a mem-

ber w of 7(P) ; but then it would not be in e(7(P)). Hence yE&(B) also.

Conversely, if y£7(P) and is not dominated by any member of P, then

a fortiori it is not dominated by any member of 7(P). Hence y£6(7(P)).

Corollary 6. e(£) = e(F)fYE; Q(A) = e(l)r\A.

Corollary 7. If (N, v, 77) is an ordinary game, then e(E) = 6(£) and

e(A) = e(l).

Proof. We need only remark that if BEv(N) then 6(73) C7(P); for any

payoff vector not in 7(P) is dominated via N by some other payoff vector.

Our result now follows by applying Corollary 5 with P = E or A.

Theorem 8. If (N, v, 77) is an ordinary game, then e(E) = e(7£) = C(A)

= e(J).

Proof. It is sufficient to prove that e(£) = C(J). Clearly vnE0n v({i}) ;

hence by (2.5), vNEv(N). Hence by (2.7) there is a y£77 such that y^vN.

Now let x£C(£). If xEA, then for some i, x^v^y'. Let yi be on the line

segment connecting y to x, but so close to x so that v'^y'^x*. Since £ is

convex and both x and y are in E (which is the same as 77), so is yi; but then
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yi>{i)X, and therefore ï$e(£), a contradiction. Therefore xG4. Therefore

if xG<2(4) then there is a zEA such that z>x; but since 4G£> it follows

that zEE, and therefore ïÎC(£), again a contradiction. We have shown

that C(£)Ce(4).
Conversely if xGC(4), then surely xG£ since £D4De(4). Hence if

xE&(E), there must be a yEE and an S EN such that;y>-sx. In particular,

ys>xs and yEv(S). Set z = {ys, vN~s); then by (2.4), zEv{S), and therefore

aG»(5)nnA'-a »({*'}). Hence by (2.5), zEv{N). Hence by (2.7) there is a
wEH such that w^z. In particular, ws¿izs = ys>xs^vs (since xG4), and

wív-s_zn-s — vn-s. hence wEA. Now let wi be on the line segment connect-

ing w to x, but so close to x so that ys>wf >xs. Since 4 is convex and both

x and ware in 4, sois wi; but since y Ev(S), it follows from (2.4) that wiEv(S).

Since wf>xs and «JiGflGS), it follows that Wi>sx; therefore since WiEA, it

follows that xG<3(4), a contradiction. Hence xEQ(E), and the proof is

complete.

If G is an ordinary game, we shall call the common value of C(£), C(£),

6(4), and 6(4) the core of G.

6. A counter-example. The results of §§4 and 5 may fail if £ (or 77) is

not polyhedral. In the case of Lemma 4.2 a circle in two dimensions is a

counter-example. In the case of Theorem 5.1, let N= {l, 2, 3} and let B

be the convex hull of the sets C and £, where

C = {x: x1 ^ 0, x2 ^ 0, x3 = 0, (x1)2 + (x2)2 = l},

D = {x: x1 ^ 0, x2 ^ 0, x3 = 1, (x1)2 + (x2 + l)2 ^ 4}.

Then

7(£) = D\J {x:xl = 0, x2 = 1, 0 g x3 á l}.

Define the characteristic function v by

vN = 0,        v{{ij}) = {x:xi ^ 1/2 and x> g 1/2},

î)(A) = {x: there is a y G 77 such that y ^ x\.

We have (1/2, 1/2, 1/2)EB and (1/2, 1/2, 1/2)>{i,)(0, 1, 0), but there is no
member of 7(£) that dominates (0, 1, 0). If we set 77= £ we obtain counter-

examples to the other results of §5.

7. Composition. Let Gi = {Nlt vx, Hi) and G2 = (A2, v2, H2) be games whose

player sets Ai and A2 are disjoint. Intuitively, the composition G of Gi and

G2 is the game each play of which consists of a play of Gi and a play of G2,

played without any interconnection. Formally, we define G = (N, v, 77),

where N = NiVJN2, H=HiXH2, and for each SEN, v(S)=Vi(SnNi)

Xv2(Sr\N2).

Let RiEENl and R2EENl, and set £ = £iX£2. Then it is easily seen that

C(£) = ei(Ai) X 62^2). Furthermore, if Gi and G2 are ordinary, then so is G.
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It follows that in this case, the core of G is the cartesian product of the cores of

Gx and G2.

8. «-effectiveness and /3-effectiveness. Up to now we have been treating

games in characteristic function form only; we now turn to games given in

normal form, and ask how we may obtain the characteristic function form

from the normal form. As we remarked in the introduction, this may be done

in a number of ways, depending on our definition of effectiveness. Here we

shall give two such definitions.

A (finite) game T in normal form consists of a finite set N, called the set

of players, a finite set P* for each iEN, called the set of pure strategies lor

player i, and a function F from the cartesian product P of all the P* to EN;

F is called the payoff function(14), and its ith coordinate Fi is the payoff to i.

If SEN, we write Ps= YLs P\ the cartesian product being meant. A proba-

bility measure on Ps will be called a c-strategy S-vector (c for correlated) ; the

set of all c-strategy 5-vectors will be denoted Cs. Note that a c-strategy

{i}-vector is the same as a mixed strategy for player i. If cNECN, then

F(cN) will denote the expected payoff if the c-strategy Af-vector cN is played.

If 5, TEN, SC\T=0, then (csXcT) denotes the product measure(15) on

psuT = ps<xpT induced by cs and cT. Occasionally we shall have cause to

consider a topological and a convex structure on Cs; in this case Cs will be

considered a subset of Ep .

Definition. (1) A coalition 5 is said to be a-effective for the payoff vector

x if there is a csECs such that for each cN~sECN's, we have Fs(csXcN~s)

^xs.

(2) S is said to be ß-effective lor x if for each cN~sECN~s there is a csECs

such that Fs(csXcN~s)^xs.

Intuitively, «-effectiveness means that 5 can assure itself, independently

of the actions of N — S, that each of its members i will receive at least his

coordinate x* of x. ^-effectiveness means that 5 can always act so that each

of its members i receives at least x*, but the strategy that it must use to

achieve this end may depend on the strategy used by N — S; in other words,

N—S cannot effectively prevent 5 from obtaining at least(16) Xs. Although

«-effectiveness seems at first to be the intuitively more straightforward con-

cept, technically speaking ß-effectiveness possesses certain interesting prop-

erties not shared by «-effectiveness (see §10) which lead one to think that it

may eventually turn out to be the more significant concept.

To construct a game in which «-effectiveness and /3-effectiveness are not

the same, let N= {l, 2, 3} and 5= {l, 2}. Let Ps have two members pf

and pi, and P3 two members p\ and />2. Define Fs by the matrix

(") Denoted by H in [l;2].

C5) Denoted (cs,cT) in [l].

(16) The difference between the two kinds of effectiveness may be formulated as the dif-

ference between a maxmin and a minmax; for 2-person games it follows from the von Neumann

theorem that the two concepts coincide, but this does not generalize to more players.
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Pi
3

P*

Pi

S

P2

1,     "I

0,      0

0,     0

1,  1

the values of £3 need not concern us. Then for (0, 0, 0), 5 is /3-effective but not

a-effective.

9. Passage from the normal form to the characteristic function form. Fix

a game T in normal form, and for each SEN, let va(S) be the set of payoff

vectors for which 5 is a-effective. Define Vß(S) similarly, using /3-effectiveness

instead of «-effectiveness. Define H=F{CN); 77 is the convex hull ol all the

payoff vectors of the form F{p), where pEP- Both (A, va, 77) and (A, Vß, 77)

are ordinary games (though they may be different, as we saw in the previous

section); except for Condition 2.5 in the case of /3-effectiveness, all the condi-

tions of §2 are easily verified for both these games. To establish Condition 2.5

for (A, vß, II), let xEvß(S)nvß{T) and CN-S-TECN-S-T. Define subsets U

and V of CSXCT as follows:

U = {{cs, cT) : FT(cs XcTX cN~s-T) ^ xT],

V = {(cs, cT) : Fsics XcTX cN~s-T) ä; xs}.

Applying the von Neumann-Kakutani fixed point theorem(17), we obtain the

existence of a point (cq, Cq) in UCW. Setting CqUT = c$Xc%, we obtain

FSVJT(cs0[jrXcN-s-T)'=xSVT, and it follows that xEvß(S\JT).

From (2.6) and (2.7) it follows that in an ordinary game, v(N) must be

polyhedral. The reader may suspect that in the characteristic function form

of a finite game in normal form, v(S) must be polyhedral for all S. This is

true for va(S), but not for Vß{S). The example is the same as in the previous

section, except that £»(/>!, p\) = F2{ps2, pi) = 0 rather than 1. (See Figure 2;

VßiS) is the cylinder whose cross-section is the shaded area.)

Note that we always have va{N) =Vß{N) and v^ = Vß (the former is trivial,

the latter follows from the minimax theorem for 2-person zero-sum games

[15]). In particular, a- and ^-effectiveness are equivalent for all 2-person

games.

If Ti and T2 are games in normal form with disjoint player sets, we may

define their composition T by N = Ai \J N2, P = PiX P2, F {pi, pi)

= {Fi(pi), F2(p2)). It is easily established that either definition of effective-

ness yields a characteristic function form for T that is the composition of the

corresponding characteristic function forms of Ti and T2 in the sense of §7.

10. The supergame. Nash's notion of equilibrium point for noncoopera-

tive games [12] is an example of the core notion as described in the introduc-

(») [9, Theorem 2]; see also [14].
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tion. The "outcomes" are strategy M-tuples; one strategy M-tuple / "domi-

nates" another one g il they coincide for all but one of the players, and that one

player prefers(18) / to g. Thus an equilibrium point is a strategy M-tuple/

with the property that if all the players have reason to believe that / will be

played, then no player will be tempted to deviate from/. In the context of

cooperative games, it is natural to broaden the definition of dominance so

that / dominates g whenever they coincide for all players not in a certain

coalition 5, and the players in 5 each prefer/ to g. When dominance between

strategy M-tuples is defined in this way, members of the core are called strong

equilibrium points(19).

c *»=2V/n?r- i*m -i, -i<*'<o

Fig. 2

This definition of dominance seems well justified for a single play of a

game which is not to be repeated. If the game is to be played repeatedly,

though, then a player or group of players may be unwilling to deviate even

if the deviation will yield a temporary advantage, for fear of future retalia-

tion. If future retaliation is to be ruled out, then 5 must be able to maintain

its payoff at the level of/; that is, 5 must be effective for/. We are thus led

to the conclusion that a strategy M-tuple for one of a long sequence of plays

of a game T should be considered in equilibrium if its payoff is in the core of

the characteristic function form of T.

The question now arises, is it the «-core or the /3-core that is appropriate

for use in this context, or possibly we should use an altogether different notion

of effectiveness? To answer this question, we consider a long sequence of

plays of T as a single play of a game T*, which we call the supergame of T

[l; ll]. It stands to reason that equilibrium behavior for T, knowing that

(18) I.e., receives a higher payoff when g is played.

(") A related definition is given in [4J.
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there will be more plays of T in the future, should correspond to equilibrium

behavior in T*, provided that Y* is not repeated. But for games that are not

repeated, we have a perfectly well-defined equilibrium notion, namely that

of strong equilibrium point. And it turns out that it is precisely the /3-core

of the characteristic function form of T that corresponds to the strong

equilibrium points in V*.

Formally(20), the supergame T* is the game each play of which is an in-

finite sequence of plays of T. As in finite games, an «-tuple / of supergame

strategies is said to dominate another ra-tuple g if they coincide for all players

not in a certain coalition S, and the players in 5 each prefer/ to g. To define

the word "prefer" in this context, we consider a sequence Ti, r2, • • • of plays

of r, and look at the average payoff for all the plays up to the jfeth. A number

of definitions of preference are now possible, of which the following are the

two "extreme" possibilities:

(a) 5 prefers / to g if the probability is positive that infinitely often the

average payoff to each member of S will be uniformly(21) larger if/ is used

than if g is used.

(b) 5 prefers/ to g if it is certain(22) that from a certain play Tk onwards,

the average payoff to each member of 5 will always be uniformly larger if /

is used than if g is used.

An ra-tuple/ of supergame strategies is said to have the payoff x if with proba-

bility 1 the average payoffs(23) tend to x. / is said to correspond^) to a

c-strategy vector c in T if the payoff to/ exists and is the same as the payoff

to c in T. An ra-tuple of supergame strategies is said to be a strong equi-

librium point if it is undominated and if it possesses a payoff. Actually we

get two sets of strong equilibrium points, one for each of the two (inequiva-

lent) notions of preference defined above. However, it turns out that both

these sets correspond to the same set of c-strategy vectors, called acceptable

points [l, §4]. By making use of Lemma 9.1 of [l], it is not difficult to show

that the set of payoff vectors to acceptable points—the set of acceptable

payoff vectors—coincides with the /3-core(25). Hence the /3-core of a finite

(20) For a more detailed treatment of the supergame, see [l].

(21) The difference must be larger than a fixed (independent of k) positive S-vector.

(22) The probability is 1.

(23) Care should be taken to differentiate between the average payoff for the first k plays,

and the expected payoff (for the latter, probability statements would of course be meaningless).

Because of the law of large numbers, the existence of a payoff to/ is quite plausible. For exam-

ple, if a "steady state" in strategy choices on the individual Yk is ever reached, then/certainly

has a payoff. As we have shown in [l, §12], considerations of expected payoff are inappropriate

for r*.
(24) The correspondence must be defined via the payoffs because there is no direct method

for comparing strategies for individual games with supergame strategies.

i25) Definitions "between" (a) and (b) yield the same set of payoff vectors. For example, in

either of the definitions we could substitute "with probability at least 1/2" for the respective

probability statements.
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game is the set of payoff vectors to strong equilibrium points in its super-

game.
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