
HOLDER CONDITIONS FOR REALIZATIONS OF
GAUSSIAN PROCESSES

BY

Z. CIESIELSKI

1. Introduction. In this note we will consider real valued Gaussian proc-

esses {x(f)}, 0 = f = 1 satisfying the following conditions: x(0) =0, £{x(f)} =0

and £{x(f)x(s)} =p(f, s) for f, sG(0, 1); pit, s) is the covariance function and

hence is semi-definite, symmetric and p(0, f)=0 for fG(0, 1) [4, p. 72]. The

result of this note is the following:

Theorem 2. Let the covariance function pit, s) satisfy the uniform Holder

condition

(1.1) \p(h,s) - P(ti,s)\   =C\ti-ti\"

for all fi, f2, sG(0, 1), where a, 0 <a= 1, and C>0 are absolute constants. Then

there exists a Gaussian process {x(t)} with covariance pit, s) and an absolute

constant Ci>0 such that

n m r 1 ««■) ~ «to1 . r Cw
(1.2) urn      sup    -.-¡-¡-¡-¡—;-< Ci-

!-*♦ li.-i.IS« !fi-/2|a/2|log|fi-f2|  I1'2 a2

holds with probability one.

Moreover, we discuss various cases of this theorem, and in §4 we give an

application.

It will be convenient to introduce now the problem considered in §4. Let

(1.3) xnit) =4/¿{/<(2<x)-f}
M1'2  <_0

for m = 1, 2, • • • , where ft(x) is equal to 1 for 0 = x<f and to 0 for f <x

<1 (0 = f = 1), and for fixed f,/i(x) is periodic as a function of x with period 1.

Now, for fixed n we consider }xn(f)} as a stochastic process with time interval

(0, 1) and multivariate distributions defined as follows:

(1.4) P{xnih) < toi, • ■ ■ , *«(/,) < co,}  = m{x: x„(f,) < w¡, i = 1, • • • , s],

where m denotes the Lebesgue measure in (0, 1). It has been proved by N. J.

Fine [5] that for given f,G(0, 1), w< where i=l, • • •', s, and s is any positive

integer (for 5=1, see [7]), that the probability (1.4) approaches

(1.5) £{x(f,) < coi, • • • ,x(f.) <co,}
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as «—» oo , where {x(í)} is a Gaussian process associated with the covariance

(1.6) p(t, s) = lim        Xn(t)xn(s)dx.
n—* a   J o

In Fine's paper the explicit formula for the function (1.6) is given. M. Kac

conjectured that, as n—>oo, the realizations of the Gaussian process which

has (1.6) as its covariance function satisfy, with probability one, a Holder

condition in (0, 1). This conjecture is proved in §4 and the remarkable thing

is that the Holder condition for this process is quite similar to that for the

Wiener process.

The author wishes to thank Professor Mark Kac at whose suggestion this

work was undertaken.

2. Preliminary lemmas and notations. The proofs of our theorems are

based on special properties of Haar and Schauder functions [8, pp. 44, 50].

The complete orthonormal Haar's set {xn} is defined as follows:

(2.1) xiW - l, xf+t«) =

'2*-2    2k
2"/2in<

-2n/2in

2"+»        2"+

2¿ - 1        2k

r).
/2k -

\  2"+1 2n+1

0 elsewhere in (0, 1),

for » = 0, 1, • • • ; jfe = l, • • • , 2". Schauder's system {</>„} is defined by the
formulas

(2.2) Po(t) = 1,        *.(/) =   f  Xn(r)dr for n = 1, 2, • • • ; t E (0, 1).
J 0

Let C(01) denote the space of all real continuous functions on (0, 1) van-

ishing at zero. Schauder's result can be formulated in the form of

Lemma 1 [l]. For every x£C(0i,) we have

(2.3) x(t) = 22  f  Xn(r)dx(r)pn(t).
n = l J 0

Moreover, this series converges uniformly in (0, 1) and the representation (2.3)

is unique.

Now, let Ha (0<a=l) denote the set of all functions x(EC(0,i> satisfying

the Holder condition

,<    m ! x(ti) - X(t2) |
11*11-=   sup  —j-,—n7_<co'

Íl,(í6<0,l> tl   —   t2\"
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and let Ha,o be a subset of Ha such functions x that

Let us put

(2.4)

I x(h) - x(t2) |
lim     sup    —¡-¡-= 0.
Í-0+ iii-nlá»      I /i — h]"

«o (-) 2«-+»«
XI       =   Xl, X2-+A: = -^iy- X2-+*.

A«        A & 2{2nl2)     .,
01       =   01, 02"+*  = —;—-—- 02"+t,

2(n+l)a

for « = 0, 1, ■ • • ; k = l, ■ • • , 2". One can check easily that ||0$,a)||«=l for

« = 1,2, ■■•.
From Lemma 1 we now deduce easily

Lemma 2 [l]. For every xEHa (a>0)

El   Cxn\r)dx(r)pT(t)
n-ll J 0

converges uniformly in (0, 1), for any ß>0.

Let us remark that foXuB*(T)dx(T)'f>ne>(t) does not depend on ß.

Lemma 3 [3]. Let xGG<0rl>, 0<a<l and let

(2.5) X(t) =  £ inPnUt).
n=l

Then

x E Ha if and only if £„ = 0(1),

and

x E Po,o if and only if £„ = o(l).

Moreover, (2.5) converges in the norm ||  ||a/or every xEHa,o-

We will need also some more general results from [2]. Let co(t) be a posi-

tive function defined on (0, 1). We shall say that u(t) satisfies the condition

(i), (ii) or (iii) if respectively:

(i) cü(t) is nondecreasing in (0, 1) and u(2t) ^Kw(t) for 0 = 2/^1, where K

is a positive constant;

(ii) the inequality

/.

« (/)
dt g Lu(S)

t
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holds for 0 < 5 = 1 aMd for some positive constant L ;

(iii) the inequality

r1 «(0
S I     —p- df = Afco(f)

Ao/ds /or 0 < 5 = 1, wÂere Af is some positive constant.

We also recall that the modulus of continuity o>x(5) of xGG<i,o> is defined

by the formula

£0,(5) =     sup     | x(fi) — x(f2) | .
|!l-(j|S8

Lemma 4 [2], £ef coit) satisfy the conditions (i) aMd (ii) aMd suppose that

for some xEC^y

|x(l)|   =co(l),        \fxeMdxir)    = 2»'2œ(^-)

for m = 0, 1, • • • ; *-l, - • • , 2". Then

cox(5) = 62£(1 + ¿/log 2)5|"2co(l) + f   -j-dt\

for 0<5 = 1.

Let us now consider the integral equation

(2.6) fit) = X f pit, s)fis)ds
J o

where p(f, s) is a covariance function. We denote by {\„} and {/„} the eigen-

values and eigenfunctions of (2.6), respectively. We shall use the following

classical result of Mercer.

Lemma 5 [6, p. 91 ]. If pit, s) is continuous then

,,      . V   fn(t)fnis)
pit, s) = 2-, —:-'

where the convergence is uniform and absolute.

Since we will need the Wiener process in our considerations we give now

a simple construction of this process. It is well known that the Wiener process

is a Gaussian process with covariance p(f, s) = min(f, s). Let {f„},w = l,2, • • • ,

be a sequence of independent Gaussian random variables such that £{fn}

= 0, £{r2}=l forM = l, 2, • • • . Then

oo

y(t) = ¿2 UPÁt)
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is a Wiener process. Indeed, by the Borel-Cantelli lemma we have

Pn{fn = 0((log«)1'2), as «-+<»}= 1;

hence almost all y(t) are continuous on (0, 1), and since {xn} is complete we

get from Parseval's identity

00

E{y(t)y(s)} = }2 Pn(l)Pn(s) = min(/, s).
n«l

Definition. Let g(t) be a square integrable function on (0, I). If {y(t)} is a

Wiener process then the random variable flg(T)dy(r) is defined by

(2.7) f \(r)dy(r) = £  f 'Xn(r)dy(r)  f ' gn(t)Xn(t)dt,
J 0 n=l J 0 Jo

where the series converges for almost all y.

The definition is introduced in [9].

3. Main result. The first theorem which we shall prove will give us a

representation of the realizations of Gaussian processes with the covariance

functions satisfying (1.1).

We use the following notation :

(3.1) f     (   Xn(c)xm(T)p(da,dr) =   f Xn(<r)d f  Xm(r)dP(<r,r).
J o  J o Jo Jo

Theorem 1. Let the covariance p(t, s) satisfy the condition (1.1) for some

fixed aE(0, 1) and all ti, t2, sE(0, 1), and let ßE(0, a/2) be fixed. Then there

exists a sequence {£„ j of Gaussian random variables such that the process

(3.2) x(0 = ¿ {„*,W(0
n — l

is Gaussian and has p(t, s) as its covariance function. Moreover, for almost all

x(t) (3.2) converges in the norm \\ \\&, and almost all x(t) are from Hß. The ran-

dom variables {£„} satisfy the following conditions :

(3 3) £{£„}= 0, E{Um}  =   f     f  Xn(T)xm(<r)p(dr, da)
Jo   Jo

for «, m = \, 2, ■ ■ ■ .

Proof. Since p(t, s) satisfies Holder condition (1.1) and p(0, 5) =0 we have

by Lemmas 1 and 2

(3 - 4) p(l, s) = 22f \n\r)dp(r, s)d>?(t),
n=l J 0
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where the series converges absolutely and uniformly. Since

I   Xi(r)dp(r, s) = p(l, s),
J o

(3.5) J   X2"+*Wdp(T, s)
Jo

= 2<n+i>„ L (_LZÍ, s\ _ '«* - D/2-, s) + p(V2-, ,) j )

for m = 0, 1, • ■ • ; k= 1, • • • , 2", we see that/¿Xm'M dp (t, s) satisfies a Holder

condition. Again, using Lemmas 1 and 2 we get absolute and uniform con-

vergence of

(3.6) f \n\r)dpÍT, s) = ¿  f ' f 1X™(T)X¡?(<r)p(dT, da)pT(s)
J 0 m=l ■/ 0    «7 0

for m=1, 2, • • • . From (3.4) and (3. 6) we obtain

(3.7) pit, s) = ¿ ¿   f1 f'x^'Wx-'Wp^r, do-)P^\t)pT(s).
7i=l m-1  «7 o   «7 0

It should be remembered that Lemma 1 insures the uniqueness of the ex-

pansion (3.7).

Now let us find the representation of p(f, s) in terms of eigenvalues and

eigenfunctions of the integral equation (2.6). By Lemma 5 we get

(3.8) pit, s) = 2L, —r-
i-l        A»

It is obvious that the eigenfunctions/.(f) satisfy a Holder condition. Once

more by Lemmas 1 and 2 we have for each integer i

(3.9) Mt) = £ an Pn  it),
ml

where

for n = 1,2,«»'   =   I    Xn   ir)dfiir)
Jo

and where the series converges absolutely and uniformly. Now, we substitute

(3.9) in (3.8), change the order of summation and get the second representa-

tion

(3 - 10) P(t, S)   =   ±t(±- AL") Pn\t)pT(s).
n=l  m—l \ ¿-1    X; /

Since both representations (3.7) and (3.10) are unique we have
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(3.11) C f \n0\r)xT(o-)p(dr, da) = ± ^
J 0   J t-l A<

for «, m= 1, 2, • •

Let us put for « = 1,2, • • •

(3.12) gn(t) - £ -4- ■ <*[%(!).
i-i (x,-)1'2

We shall show that gn(t) are square integrable over (0, 1). From (3.8) it

follows that

°°      f (t)
(3.13) Z~< °°  in (0,1).

i-i    X,-

The coefficients aj/', t= 1, 2, • • ■ , defined in (3.9) for a given « represent the

second differences of functions/,(£), respectively, at three fixed points which

depend only on «. Thus, it is easy to see that (3.13) implies

>.I-an   1   < ».
tíVíX,-)1'2      /

Hence by the Riesz-Fisher theorem gn(t) are square integrable.

We also note that by (3.11), (3.12) and by Parseval's identity we have

(3.14) (gn, gm)=   f1  Í \n\r)xT (a)p(dr, da)
Jo  Jo

for «, w= 1, 2, • • • .

Let {y (i)}, 0 = t = 1, be a Wiener process. Using this process and the func-

tions (3.12) we define a new process

(3.15) *(/) = ¿ CgntfdytfpTW,
n-lJ 0

where the random variables

(3.16) £„=   f gn(r)dy(r), n = 1, 2, ■ ■ ■
J o

are defined by (2.7) if we replace g(t) by gn(t). One can easily get (3.3) from

(3.14) and (3.16).

Since P($ = (gn, gn) = ||gn||2 we have from (1.1). (3.14) and (2.4),

(3.17) ||g.|| = 2C"V--'2 for « = 2.

Since
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(3-18) £{|£„|   >«|!f.||}^(-Y/,-4/ï
\ r /       we" /2

for large w, we see that for w = (2y log m)1/2, 7> 1,

CO

££{U*|   > (2ylogM)1/2||gn||} < ».
n-2

By the Borel-Cantelli lemma we get

(3.19) £ (lim sup-        „   i, = -y1'2 ) = 1.
V  —    (21ogM)1/2||^|| /

Now, since ß<a/2 we have by (3.17) and (3.19) that

£{ín   =   0(1)}   =   1.

Applying Lemma 3 we complete the proof of Theorem 1.

Proof of Theorem 2. According to (2.4) we can write (3.2) in the form

oo

(3.20) x(f) = 22 nnPnii),
n-1

where-7i = ?i,7;2»'+„ = ¿2»+t,2-'/V2(",+1)? for w = 0, 1, • • • ; v= 1, ■ ■ ■ , 2m. Com-

bining (3.17) and (3.19) we have

(3.21) £Ílim sup-= 4(2Cy)1/2> = 1
I  »—    M^-^OogM)1'2 j

where 7>1. We see from (3.21) that for almost every {w„} there exists a

positive integer N, depending only on this sequence, such that

(log«)1'2
(3.22) | „B|   á8(Cn)»,v

„a/2

for  m>2jv.

Let  now  x (f) = S\ it) + x.y (f), where

Sn(Í)   =   22VnPnit)      and      X.y(f)   =       2~1     VnPn(t).
n-1 »-2^1-1

Since SnQ) is a polygonal line we have

I Sir(tù - SK(tt) |
hm     sup    -.-1-¡-¡-n— = 0,
i-h>+Ih-USi   if1-Í2|a'2!log|fi-f2||I/2

and hence
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| x(ti) — x(*2) |
Um       SUp      -j-:-¡-¡-fi-
ä_H,+ I „_„,<;,    \ti - t2  «/2    log \h - tíW"'2

(3.23) ■     •       ■
. ,. | xif(ti) - xN(li) |

= hm     sup
>-<o+ Ki-i.l ¿> | ii - t2 |a/21 log I ¿i - /2||1'2

Let us consider now the function xn(t). From the definition of Xjy(i) and

from Lemma 1 we have

for « = 2",

for « > 2N.

Also (3.22) implies that

log 2m+1

/Xn(r)dxn(r) =   <
o I»?»

that

/"'J o

for m = 0, 1, • • • ; f = 1, • • ■ , 2m, where C0 is an absolute constant.

We put now a(t) = Cot"l2(l + \log t\112) lor tE(0, 1). One checks easily

that u(t) satisfies the conditions (i), (ii) and (iii) with the constants P = 2,

L = 6/a2 and M=2, respectively. Now using (3.24) we apply Lemma 4 to

the function xn(Í) and we get at last for some absolute constant Ci

çilt

o)xN(8) = Ci —— w(8),
a'

hence by (3.23) our Theorem 2 is proved.

Remarks. (1) Using the same methods one may slightly generalize Theo-

rems 1 and 2. Let us replace the condition (1.1) for the covariance p(t, s) by

(3.25) | p(h, s) - p(h, s)\   = a( | h - h I ),

where the function (w(i)(14-| log i|))1/2 satisfies the conditions (i), (ii) and

(iii). Then the assertion of Theorem 2 will be the following:

There is a Gaussian process {x(t)}, 0 = ¿ = 1, associated with the covariance

p(t, s) such that for some constant C2 (depending on 0)(t))

| x(/i) - x(ti) |
(3.26) lim     sup    -¡-¡—¡-¡-n-< G2

i-*+ U.-I.IS« («(| h - h| ) | log | /i - /¡-II)1'2

holds with probability one.

(2) From the methods of proofs of Theorems 1 and 2 it follows that these

theorems will still be valid if we replace the condition (1.1) by one of the

following conditions:

(a) The inequality

(3.27) | J ' Jo lxi0/2)(r)x!0/2V)p(dr, da) | = C, (£j''
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holds for m=w —2, where C3 is an absolute constant and p is continuous,

(b) The inequality

(3.28) | aIaIpÍI, s)\   g Ci mini/", a")

holds for some absolute constant Ci in the square (0, 1)X(0, 1).

The symbols A2, A2 denote the nonsymmetric second differences with incre-

ments T, <r and acting respectively on the variables f and s.

(3) Let {£„} denote the orthonormal system which one gets by applying

Schmidt's orthonormalization procedure to Schauder's system {<p„}. These

functions are known as Franklin's functions [8, p. 122]. One can prove that

the properties of {<p„} and {£„} are so similar that the results of this section

can be obtained using {£nj instead of {pn}. These properties of {£n} were

investigated by the author, and the results were announced at the Conference

on Functional Analysis in Warsaw in September 1960. The tedious proofs are

not yet published, but will appear in Studia Mathematica.

4. Application. The purpose of this section is to examine some properties

of the Gaussian process associated with the covariance given by (1.6).

Lemma 5. Let pit, s) be given by (1.6). Then

| P(fi, s) - pih, s) |   = 5(12)21 fi - h | {1 + (log | h - h I )2}

for h, h, sE(0, 1) aMd

.1/2

I f Xn(r)xÁ<r)p(dT, da)   = 2"2 (-)
\Jo \m/

for 2 = m ̂  m.

Proof. It is easy to show that

»    1
pit, s) = min(f, s) - ts + 22 — {minis, 2H - [2H]) - i(2¿f - [2<f])

>—i   2%
(4.1) r        n r        ,    ,

+  min(f, 2's - [2<s]) - f(2'5 - [2^])}

where [f ] denotes the greatest integer less than or equal to f.

Let us note that from Parseval's identity we get

CO

(4.2) min(f, s) - ts = 2 <t>*(t)<t>n(s).
n-1

Moreover, by definitions (2.1) and (2.2) we have

2*

(4.3) Pi"+v(2H - [2H]) = 2«''2 £ <Pr«+ï»u-i)+v(t).
i-i

Combining (4.1), (4.2) and (4.3) we obtain
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co       j« °° 1

p(t, î) = EÊ p2"+.(t)p2"+v(s) + 22 —
71=0 »=1 i=l    2"

(4.5)

•   22  23   S02"+»W    £ 02n+*+2nO-l)+.(i)  4-02»+„(s)   22fcn+i+2"U-lHv(t)\  -
n=0 »=1   v y— 1 j'-l /

It is easy to see that from (4.5) we can get the second part of our lemma.

The first part of Lemma 5 one can prove using (4.5) and Lemma 4. The by

now standard computations will be omitted.

Theorem 3. There exists a Gaussian process {x(t)}, 0 = <=1, with covari-

ance function p(t, s) given by (1.6) such that for some absolute constant C5

_i | x(lj) - x(t2) 1 \
P< hm     sup     -¡-¡-j-¡-1,-< C6>  = 1.

(. j-o+ |ii-i,|gj (| h — t2\  \\og\ti — t2\\)112 )

Remark. One can prove also that there exists a positive constant Ce such

that

_/.. 1 *«i) - *«») 1 _\       ,P < hm     sup    -j-¡—|-¡-n-> C6 > = 1.
U-k)+ |i,-«.is» (| /i - <2| [ log I h - t2\\)112 )

The proof is based on (4.5) and on some lemmas given by K. L. Chung,

P. Erdös and T. Sirao (see J. Math. Soc. Japan vol. 11 (1959) pp. 263-274,
Lemmas 2, 3 and 4).

The proof of Theorem 3 follows immediately from Lemma 5, Theorem 2

and Remark 2a given in §2.

References

1. Z. Ciesielski, On Haar functions and on the Schauder basis of the space C(o,i), Bull. Acad.

Polon. Sei. Ser. Sei. Math. Astr. Phys. vol. 7 (1959) pp. 227-332.
2. -, Some properties of Schauder basis of the space Qo,i), Bull. Acad. Polon. Sei.

Ser. Sei. Math. Astr. Phys. vol. 8 (1960) pp. 141-144.
3. -, On the isomorphisms of the space Ha and m, Bull. Acad. Polon  Sei. Ser. Sei.

Math. Astr. Phys. vol. 8 (1960) pp. 217-222.
4. J. L. Doob, Stochastic processes, New York, John Wiley and Sons, 1953.

5. N. J. Fine, On the asymptotic distributions of certain sums, Proc. Amer. Math. Soc. vol. 5

(1954) pp. 243-252.
6. G. Hamel, Integralgleichungen, Berlin, Julius Springer, 1937.

7. M. Kac, On the distribution of values of sums of type 2~ilf(2kt), Ann. of Math. vol. 47

(1946) pp. 33-49.
8. S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, Warsaw, 1935.

9. R. E. A. C. Paley, N. Wiener and A. Zygmund, Notes on random functions, Math. Z.

vol. 37 (1933) pp. 647-668.

Cornell University,

Ithaca, New York


