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1. Introduction. It is known (see Albert [l]) that every simple commuta-

tive power-associative algebra of degree />2 over an algebraically closed

field 3 of characteristic p>5 is a Jordan algebra. Moreover, in the partially

stable case, a characterization of the simple algebras of degree two is given by

Albert in [3]. In his theory Albert expresses the structure of simple partially

stable algebras in terms of certain commutative associative algebras 93 over

g. These commutative associative algebras have unity elements, and each

algebra 93 is differentiably simple relative to some set of derivations of 93 over

5. In this paper we shall determine the structure of the algebras 93 and derive

a property of simple partially stable algebras which follows from Albert's

characterization.

Let 93 be a commutative associative algebra with unity element e over g.

We shall now define a commutative power-associative algebra % over g

which is the essential subalgebra of a partially stable commutative power-

associative algebra © as defined by Albert in [3 ]. Let m 2; 2 and let y ¿93 denote

a homomorphic image of the vector space 93 for i = 0, • • • , m. Then Ï will

be the vector space direct sum

(1) £ = 93 + 2

where ? is the sum, not necessarily direct, of the component spaces y093, ■ • • ,

ym93. Select elements &,-,• in 93 and derivations D^ of 93 over % such that

(2) bn = bn,       boo = e,       b0i = 0 (j 9* 0),

(3) Du = - D¡,

for i, j = 0, • • • , m where then £>¿¿ = 0 for i = 0, ■ ■ ■ , m. We now define

products in % by assuming that 93 is a subalgebra of %, that

(4) iyio)b = yiiab) = biy¡a) (i = 0, • • • , m)

for all elements a and b of 93, and finally that

(5) (yid)(yjb) = btjab + iaD^b - «(4D«)

for all a and b of 93 and ¿,7 = 0, • • • , m. The result will be a commutative

power-associative algebra of degree two over g.

Received by the editors July 9, 1960.

(') This paper is essentially the author's Ph.D. thesis at the University of Chicago. Sincere

thanks are due Professor A. A. Albert for his encouragement and many helpful suggestions.

63



64 L. R. HARPER, JR. [July

We shall also require that the bi¡ and the Z?,-¿ be chosen so that:

(A) The algebra 33 is { /),/} -simple.

(B) If g is in ? and gu = 0 for all u in 2, then g = 0.

It is one of the principal results of Albert in [3] that these conditions are

equivalent to the simplicity of the partially stable algebra © mentioned

above. It is known [2] that condition (A) implies that

(6) 33 = e% + 9Î

where 9Î is the radical of 33 and xp = 0 for every element x in 9t. We shall

completely determine the structure of 33, and we state our main result as

Theorem 1. Let So be a commutative associative algebra with unity e over an

algebraically closed field g, and let 23 be differentiably simple relative to a set of

derivations of 33 over g. Then 33 = g [e, Xi, • ■ • , xn] is an algebra with generators

xi, ■ ■ ■ , xn over g which are independent except for the relations x\= • • •

= xn = 0 where p>0 is the characteristic of %.

In all examples of the algebras £ given to date the space S has been a

direct sum of the components yo33, • • • , y«i33. As our final result we shall

construct a class of examples of the algebras X in which 2= (yo33, • • • , ym33)

with m = 2 and £ is not a direct sum and cannot be represented as a direct

sum in this manner.

2. The algebra 33. Let 33 be a commutative associative algebra with unity

element ë over g, and let 33 be ©-simple for some set 2) of derivations of 33

over g. Then by (6) we may write

(7) 33 = êg + I

where xp = 0 for each x in 9i. The algebra 33, being finite dimensional, is

finitely generated. Let {ë, xi, • ■ • , xn} be a set of generators of 33 which is

minimal in the sense that no set containing ë and having fewer elements

generates 23. Also let

21 = %[e, xi, ■ ■ ■ , Xn]

be the commutative associative algebra generated over g by generators

e, Xi, ■ ■ ■ , xn which are independent except for the relations e2 = e, eXi = Xi,

and xf = 0 which hold for i= 1, • • • , n. It is clear that the mappings e—>ë,

Xi—>Xi (i=l, ■ ■ ■ , n) define a homomorphism p of 21 onto 33. We let 3D? be

the kernel of </>. We see that Theorem 1 will be proved if we can show that

m=o.
We now note some properties of 21. We may write

(8) 21 = eg + 9c
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where 9î = 5[xi, • • • , x„] is the radical of 21 and consists of all polynomials

in the x¿ with constant term zero. We observe that every element of 2Í which

is not in 9Î has an inverse. For if a = a + u with a in %, u in 91, a^O, then

a_1= iav)~1ia+u)p-1. Also it is known [4] that the derivation algebra of 21

consists of all linear transformations 7> = 7>(öi, • • • , an) of 21 defined by

(9) aD = ida/dxi)ai + • • • + ida/dxn)an

where oi, • • • , an are in 2Í and da/dx¿ denotes the ordinary partial derivative

of the polynomial a with respect to x¿ (¿= 1, • • • , «). Thus x¿77 = a¿ and the

derivations of 21 are completely determined by the images of the x¿ and these

images may be arbitrarily chosen.

Theorem 2. Let D be a derivation of 21. Then the transformation D defined

by

(10) <piu)D = PiuD)

is a derivation of 93 if and only if fflDQWl. Moreover, every derivation of 93 is

induced in this manner by a derivation of 21.

Proof. Every m in 93 is the image under <p of some u in 21, whence D is

defined on all of 93. Now assume WDCZW. Suppose « = <£(«) =<p(z>) for ele-

ments u and v in 21. Then u = v+a where a is in ffl, uD = vD+aD, and <piuD)

= <pivD)+<piaD). But aD is_in W, so <p(aD)=0, <piuD)=<pivD). Thus D is

well-defined. Conversely, if D is well-defined, then <piu) =<p(fl) implies piuD)

= 4>ivD). Thus, if a is any element of SDZ we have

PiuD) = p((u + a)D) = p(uD) + <p(aD)

from which it follows that <p(aD) = 0 and aD is in 9JÎ. We conclude that D is

well-defined if and only if 3K7) ÇÇfJÎ. We will now show that D is a derivation

of 93.
Let ü, v be elements of 93 and let a, ß he in g. Then ü = <p(u), v = <p(v) for

some u and v in 21, and

(aü + ßv)D = [p(au + ßv)}D = <b((au + ßv)D)

= ap(uD) + ß<b(vD) = a(ûD) + ß(vD).

Hence D is linear. We also have

(ûv)D = [piuv)}D = Püuv)D)

= PiiuD)v + uivD)) = iuD)v + üivD),

so D is a derivation.

Now let D be any derivation of 93. We shall show that D is the induced

derivation D of some derivation D of 21. Any element « of 93 may be written

as a polynomial in the generators ft, • • • , x„. And, as in 21, D is completely
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determined by its action on the x, according to the formula

(11) üD = (dü/dxi)(xiD) + • ■ ■ + (dû/dxn)(xnD).

Choose elements y¿ in 21 so that <b(yi) =X{D lor i= 1, ■ • • , n. We can define

a derivation D of 21 by specifying that xtP> = y» (i=l, • • • , n). Now let D

be induced by D according to formula (10). Then XiD = XiD for i= 1, ■ • • , n.

Thus if D is a derivation we shall have D = D. Therefore it remains only to

show that 9ftl>ç:9ft.
It is readily seen that if f—f(xi, • ■ ■ , x„) is any polynomial over g in

xi, • • • , x„, then f=4>(f) =f(xi, ■ ■ ■ , xH) is the same polynomial with x,- re-

placed by Xi lor i=l, ■ ■ ■ , n. Thus we may write d//dx¿ = gi(xi, • • • , x„)

and

(12) P(df/dxi) = p(gi) = gi(xi, ■ ■ ■ ,xn) = d'f/dXi

for i = l, • • • , n. Now let u be any element of 9ft. Then ü=<b(u) =0, and by

(9), (11), and (12) we have

4>(uD) = 4>(du/dxi)yi + ■ ■ ■ + <t>(du/dx„)yn

= (âû/dxi)yi + ■ ■ ■ + (âû/dxn)yn = üD = 0.

Therefore uD is in 9JÎ and the theorem is proved.

We noted earlier that every element of 21 which is not in 9? has an inverse.

From this it follows that every proper ideal of 21 is contained in 9Í. Thus

UJîÇZg?. Recalling that 33 is ©-simple for a set © of derivations of 33 we now

state

Theorem 3. Let 35 be the set of all derivations D of % over g such that the

induced derivations D are in J). Then 9ft is a maximal T>-ideal of 21, and an ele-

ment u of 21 is in 9JÎ if and only if u is in 9Î and the elements uDi ■ • ■ Dk are

in 9Í for all values of k and all derivations Di in £).

Proof. By Theorem 2, if D induces D then 9ft is a .D-ideal. Thus M is a

.D-ideal for every D in 3) and hence is a ©-ideal. Let 91 ̂  21 be a ©-ideal prop-

erly containing 9ft and let 9i = <£(9?). It is easily verified that 9Î is a nontrivial

©-ideal in 33 contradicting ©-simplicity. Hence 9ft is a maximal ©-ideal. It

is also easily seen that the sum of two ©-ideals is a ©-ideal from which it

follows that 9ft is maximal in the strong sense that it contains all other ©-

ideals.

Now let u be any element of 93Î. Then u is in 9Í and uDi ■ ■ ■ Dk is in 9?

for all k and all />< in ©. Conversely, suppose u is in 91 and uDi ■ • • Dkisin

9Î for every product Di ■ ■ ■ Dk of derivations in ©. The ideal generated by

u and all uDi ■ ■ • Dk is a ©-ideal and hence is contained in 9ft. Thus u is in

9ft, and the proof is complete.

To Theorem 3 we have the following immediate
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Corollary. // u is an element of 9t, then ü = d>(u) is a nonzero element of

93 if and only if there is some product Di ■ • ■ Dk of derivations Di in 3) such

that uDi ■ • ■ Dk is nonsingular.

Theorem 4. Let u be an element of 9? whose terms of degree one are not all

zero. Then u is not in 9JÎ.

Proof. We assume without loss of generality that u is in SJ? and its term

of degree one in xi is not zero. Then we may write u = axi+v where a is non-

singular and v is in % [x2, • • • , xn\. Thus

(13) Xi = ar1u — a~lv = Wo + Vo

where u0 = a~1u is in 9JÍ and vo= —a_1v is in the ideal 93 generated by

Xi, ■ • • , xn. We observe that every element/ of 93 is a polynomial with terms

of the form x\y where y is a monomial in %[x2, ■ ■ ■ , x„] of degree t—l. If/

is not in 3[x2, • • • , x„] we associate with / the number N(f) which is the

minimum of the degrees of y for all terms x\y of / with r^O. Note that

1 úNif) úin — l)ip — l). Now assume it impossible to write xi = Ui+vi where

«i is in SDî and Vi is in 3[x2, • • • , x„]. Then we may write Xi = u2+v2 where u2

is in SDÎ, Vi is in 93, and Niv2) is maximal. Let x\y he any term of v2 with r¿¿0

and y of degree Niv2). By (13) we have for each such x[y

r r— 1 . r—1 r—1

(14) xiy = xi   («o + vo)y = xi   u0y + xi  v0y

where x[~lUoy is in 9Jc and Xi_1»oy is a polynomial each term of which has the

form x\z with z in $[x2, ■ ■ ■ , xn] and the degree of z greater than Niv2).

Hence by means of substitutions as in (14) we may obtain xi = u3+vz with w3

in ffl, V3 in 93, and Nivn)>Niv2). Thus xi = ui+vi with «i in 3DÎ and vi in

%[x2, • • ■ , xn]. But from this it follows that xi = <p(xi) = Pivi) is in

%[x2, • • ■ , xn] contradicting the hypothesis that (ft, •••,#»} is a minimal

set of generators of 93. This proves our theorem.

Before we can prove our next theorem we must develop some notation

and prove two lemmas on the combinatorial properties of derivations. Let

5= }«i, ■■ -, «8} be an ordered set of positive integers, the ordering being

the natural one. Let 7Ti, • • • , 7rr be ordered subsets of 5 such that 7TiW • • • W7rr

= 5 and riC\rj = 0 (the empty set) if i^j. We shall call the ordered r-tuple

7T=(7Ti, • • • , 7Tr) an r-partition of S. We now have

Lemma 1. 7e¿ ai, • • • , a, be elements of 21 and let Di, ■ • ■ , Ds be deriva-

tions in ©. Let

Tin) = /)„••• Di, (i - 1, • • •, r)

if 7r¿ = {ii, • • • , it} is a nonempty ordered subset of the ordered set

S= {1, ■ • • , s} ; and if r{ = 0, then r(7r¿) is to be the identity transformation I

of 21. We now assert that
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(15) (01 • • • ar)Di ••!>.= £ [air(iri)] ■ ■ • [arT(irr)}

where it ranges over all r-partitions of S.

Proof. We induce on 5. If 5=1, each partition has the form

7T=(0, • • • , 0, 1, 0, • • • , 0) and formula (15) becomes

r

(ai • • • aT)Di = ¿2 ai " - - cti-\(aiDi)ai+i • • • aT
í=i

which is correct. Now assume (15) correct for s derivations. Then

(«!••• ar)Di ■ ■ ■ D,+i = 22 {WiT(iri)] • • • [arT(irr)]} Ds+i
■K

= }2 22 krfcri)] • • • k-iP(Ti-i)]
T i

[aiT(*iU {s + l})][ai+iT(iri+i)] ■ ■ ■ [arT(irr)\.

But if 7T=(7Ti, • • • , 7rr) is a general r-partition of (1, • • • , s}, then

0 = (iti, • • • , ir<_i, 7r,U{s4-l}, irj+i, • • • , irr) is a general r-partition of

{1, • • • , s 4-1}. Hence

(«!••■ ar)Di ■ ■ ■ Ds+i = 22 [aiT(6i)] ■ ■ ■ [arT(8r)}
e

where 0= (0i, • • • , 6r) ranges over all r-partitions of {1, • • • , s 4-1}. This is

formula (15) for s+1 derivations, and the lemma is proved.

We also have

Lemma 2. Let Si= {ii, • ■ • , iq} and S2 be ordered subsets of the set

S= {1, • • • , s} such that Sii~\S2 = 0 and SAJS2 = S, and let R be the set of all
r-partitions w of S with irt = S2 for some fixed t. If fli, • • • , ar are in 2Í and

Di, • • • , Ds in%, then

E  [aiP(xi)] • • • kPOv)]
(16) r in n

= [(ai ■ ■ ■ at-iat+i ■ ■ ■ ar)Dh ■ ■ ■ Diq\[atT(iri)].

Proof. If 7T=(;ri, • • • , irT) with 7r¡ = 52, then

6   =   (7Tl,   ■   •   ■   , 7T¡_1, 7Tí+],   •   •   •   , 1Cr)

is an (r—1)-partition of Si. Moreover, the correspondence tt<-»0 is a 1-1 cor-

respondence of R with the set of all (r — l)-partitions of Si. Our result now

follows from Lemma 1.

We are now able to prove

Theorem 5. The ideal 9ft contains no monomial.

Proof. Theorem 4 asserts that 9ft contains no monomial of total degree

one in Xi, ■ • ■ , x„. Assume that 9ft contains no monomial of degree r—1 but
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that u = x'i • ■ • x'n has degree r = ri+ ■ ■ ■ +rn and is in W. Then for each

i for which r¿?¿0 we may write w = a¿x¿ where o¿ is not in Wl. Thus, by the

corollary to Theorem 3, there is a product G¿ of t, derivations in 3) such that

aid is nonsingular. We let i0 be a value of i for which í = í¿ is minimal. There

is clearly no loss of generality if we assume io = 1 and G = Gi = Di ■ ■ ■ Dt so

that aiG is nonsingular. We now apply G to the element u, and by Lemma 1

we obtain

uG = (xi • • • Xn)Di ■ • ■ Dt
ill)

= E [xiTim)] • ■ ■ [*ir(xiri)] • • • [xn7(7r„i)] • • • [x„r(xnr„)].
■K

We observe that the constant term of uG is zero since u is in W and uG is in

9JÎ. Let us now compute the linear term in Xi of uG. Consider first all sum-

mands in (17) with 7Tiy = 0 for some fixed index/. By Lemma 2 the sum of

these summands is (aiG)xi which has a term axi where a^O is the constant

term of the nonsingular element aid Letting 7=1, • • • , n we find that the

total coefficient of xi from this source is ria^O. Note that any summand in

(17) in which 7r¿¿ = 0 with i^ 1 has x¿ as a factor and therefore does not have

a linear term in Xi. Thus there remains only the consideration of those sum-

mands of (17) in which all 7r¿y are nonempty. For such a summand to have a

linear term in Xi it must be that some x¿r(7r¿y) has a linear term in xi and all

other XhTirhk) are nonsingular. But again it follows from Lemma 2 that the

sum of all summands in (17) having XiTin,) as a factor is w= (a¿77) [x¿r(7r¿;) ]

where 77 is a product of fewer than / derivations. Hence a¿77 is singular and

w has no linear term. We conclude that wG has a linear term riaxi contrary

to Theorem 4.

We are now essentially through. Albert has shown [2] that for any non-

zero element u of 9Í there exists an element v of 2Í such that uv = x\~x • ■ • x£_1.

Thus if 90^5=0 then 30Î contains a monomial, contrary to Theorem 5. There-

fore 50f = 0 from which Theorem 1 follows.

3. Some consequences of condition (B). Let Ï be the commutative power-

associative algebra described in §1. By (1) we see that

£ = 23 + 8 = 93 + iy¿8, . . . , yJQ)}

and, having determined the structure of 93, we are now in a position to in-

vestigate that of X.

Let u be any element of S. Then u = ^"_0 yj°i where b¡ is in 93. From

condition (B) we see that w = 0 if and only if (y¿a)w = 22"-o (yia)(yj°i) =0 f°r

all a in 93 and i = 0, 1, ■ ■ ■ , m. From this it follows that u = 0 if and only if

the relations

m

(18) ¿2 (Mi - bjDij) = 0 (t = 0, • • • , m),
J-0
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(19) 22 (aDij)bj = 0 (i = 0,---,m)
y-o

hold for every a in 23.

It should be noted that the requirement that the algebra © satisfy condi-

tion (B) is never inconsistent with the definition of multiplication in X. The

effect of condition (B) is to completely determine the algebra X by determin-

ing the kernels of the vector space homomorphisms 33—>y»33 for i = 0, ■ ■ ■ , m

and the nature of the sum 8. To demonstrate this we let

X* = 33 + 8* = 33 + zo23 4- • • • + zm33

where each vector space a,33 is an isomorphic copy of 33. Let products in

X* be defined in terms of the same elements by and derivations D,j of 33 which

determined products in X. Since X* is a direct sum we see that multiplication

is well-defined. Now let 11 be the set of all elements u in 8* such that uw = 0

lor all w in 8*. The set U is an ideal of X*. The algebra X is equivalent to

X* — U and hence exists and is uniquely determined by condition (B) and

the choice of the elements è„ and derivations Da of 33.

4. A special case with m = 2. In this section we shall construct a class of

examples of the algebras X in which 8 = (y033, • • • , ym33) with m = 2 and 8

is not a direct sum. We let 33 = g[e, x, y], £ = 234-(y023, ji23, y223) and let

(20) xDoi = e, yDoi = xp~\

(21) xD02 = x2y, yDoi = xy,

(22) xDi2 = — x,        yDi2 = xy2,

(23) *„ = 0,       bu = e,       b22 = - x2.

The algebra 23 is Z?0i-simple [2] and hence is {Di,} -simple. Thus X satisfies

condition (A). We complete the definition of X by imposing condition (B).

As a routine consequence of formulas (18) and (19) we now have Lemma 3

which we state without proof.

Lemma 3. In this special case an element yobo+yibi+y2b2 of 8 is zero if and

only if bo=—b2x, bi = 0, and b2 = xp~1f(y)+yp~1g(x) where f(y) and g(x) are

polynomials over g in y and x respectively.

It follows from Lemma 3 that X is not a direct sum. In fact we may write

(24) X = 33 + (yo33 4- yi», y&)

and we see that (yo234-yi23)fYy233 is spanned by the independent vectors

y2xp~1yi and y2xiyp~1 where i = 0, ■ ■ ■ , p — 1 and j = 0, • • • , p — 2. Hence X

has dimension Ap2 — 2p + l. We will show next that X not only fails to be a

direct sum as presently represented, but, furthermore, Albert's construction

cannot yield a representation of X as a direct sum.

Let 33=g[ê, Ii, • • • , zr] = ëg4-9i be a polynomial algebra over g with
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unity I and generators zi, ■ ■ ■ , zr such that zf = 0 for i=\, ■ • ■ ,r but which

are otherwise independent. Suppose there exist x0, • • ■ , xm such that

£ = 93+8 where 8 = x093 + • ■ • +xm93 is a direct sum. We will denote by ä, b,

etc. elements of 93 and by 5¿¿ and Dtj the elements and derivations of 93 which

define multiplication in this new representation of X. We observe that ê = e

since 93 and 93 have the same unity element as X. We may write expressions

for the x^e in terms of the original representation of X. Thus

(25) xke = ak + y0bk + yxck + y2dk

where ak, bk, ck, dk are in 93 and 4 = 0, • • • , m. Since X is power-associative

and p is an odd prime we have

(26) ixkh)p=[(*vri)/2M) = xk(ht1)l2f)

for 4 = 0, • • • , m, and similarly

(27) iykb)P = ykibirWY)

for 4 = 0, 1, 2. From (23), (25), (26), (27) and Lemma 3 we see that

x0e = (x0e)   = a0 + yobo = a + y0ß

where a and ß are in g. Since (x0e)2 = e it follows that a = 0 and ß= ± 1.

Thus xoe= ±yoe and we can now prove

Lemma 4. The algebras 93 and 93 coincide as do the spaces Ü? and %.

Proof. Since xoe= ±yoe and (xoe)(x^e)=0 for 4=1, • • • , m, we see by

(25) that ak = 0 for 4 = 0, • • • , m. Hence ?Çg. Since 93 is {Da}-simple there

is a derivation Dsi of 93 such that 9Î is not a Dzt-\deal. From this it follows

that each of 93, xs93, and x¡93 has dimension p". Thus 3pr g 4p2 — 2p +1 which

implies r^2. If r<2 the dimension of 8 is seen to be greater than that of 2.

Thus r = 2 and ¡8 = 8.

We have shown that 93 + ? =93 + ?. Now let b be any element of 93. Then

b = b+u for elements b in 93 and u in £. Let w be an arbitrary element of ?.

We see that uw = bw — bwis in 93 and in ?. Thus uw = 0 for all win 8. Therefore

u = 0, and the lemma is proved.

We now have 93 = 93 = % [e, x, y ] and

X = 93 + (yo93 + y&, y#) = 93 + xo93 + • • • + xJ3.

We shall show that this leads to a contradiction. Setting ak = 0 (4 = 0, • • •, m)

in (25) we obtain

(28) xke = yobk + yick + y2dk (4 = 0, • • • , m).

Lemma 5. If £ = 93+x093+ • • • +xOT93 is a direct sum, then m = 2 and

there exist elements v and w in 93 such that b2= —d2x+xyv and c2 = xyw.
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Proof. The dimension of x033 is always the same as that of 33, and we

noted earlier that this must also be true for at least one other Xa33. Hence

we may assume that Xi33 has dimension p2. It follows that Xn23 has dimension

less than p2 for k = 2, ■ • ■ , m. Hence if U = xp~1yp~1, then XkU=0 for k = 2,

and we see from (28) and Lemma 3 that bk and ck are in 9? for k — 2. We see

also that XitZ + Xooit/^yiCit/^O since x0e= ±yoe and x0234-xi23 is a direct

sum. Hence ci is not in 9?.

Now let uo, ■ ■ ■ , um be elements of 23 such that y2e = xoUo+ ■ ■ ■ +xmum.

From (28) and Lemma 3 we see that CiWi4- • • • +cmum = 0, and, since Ci is

not in 9Î but c2, • • • , cm are in 9?, this implies that ui is in 9Î. Now, also by

Lemma 3, diUi+ • • • +dmum — e is in 9Î and hence dk is not in 9Î for some

k = 2. Without loss of generality we assume d2 is not in Sfi.

Let S be the subspace of 23 consisting of all elements u such that x2u = 0.

Since d2 is nonsingular, it follows from (28) and Lemma 3 that M = xp_1P(y)

+yp~1G(x) for some polynomials F(y) and G(x). Let s be the dimension of @.

Then x223 has dimension p2 — s, and we see that s~=2p — 1. Thus x2u = 0 for all

possible choices of the polynomials F(y) and G(x). Thus x233 has dimension

p2-2p4-l and m = 2.

We have shown that the space (£ consists of all u in 33 of the form

u = xp~1F(y) +yp~1G(x). From Lemma 3 we see that c2u = 0 and (b2+d2x)u = 0

for all u in @. It therefore follows that c2 = xyw and b2= —d2x+xyv for some

v and w in 33. We can now obtain our main result which we state as

Theorem 6. The algebra X cannot be represented as a direct sum.

Proof. We compute ¿¡02 and single out those terms which possibly give

rise to a linear term in x alone. We recall that 5o2 = 0 by (2). Using (20), • • •,

(23) and Lemma 5 we see that

b02 = (x0e)(x2e) = + (y0e)(yob2 + yic2 + y2d2)

= ± (bt — c2Doi — d2Doi) = + d2x + Ü

where Q is a sum of terms each having x2 or y as a factor. Since d2 is non-

singular 502^0. This contradiction proves the theorem.
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