ON DIFFERENTIABLY SIMPLE ALGEBRAS(${ }^{1}$)

BY
LAURENCE R. HARPER, JR.

1. Introduction. It is known (see Albert [1]) that every simple commutative power-associative algebra of degree $t>2$ over an algebraically closed field \mathfrak{F} of characteristic $p>5$ is a Jordan algebra. Moreover, in the partially stable case, a characterization of the simple algebras of degree two is given by Albert in [3]. In his theory Albert expresses the structure of simple partially stable algebras in terms of certain commutative associative algebras \mathfrak{B} over \mathfrak{F}. These commutative associative algebras have unity elements, and each algebra \mathfrak{B} is differentiably simple relative to some set of derivations of \mathfrak{B} over \mathfrak{F}. In this paper we shall determine the structure of the algebras \mathfrak{B} and derive a property of simple partially stable algebras which follows from Albert's characterization.

Let \mathfrak{B} be a commutative associative algebra with unity element e over \mathfrak{F}. We shall now define a commutative power-associative algebra \mathfrak{T} over \mathfrak{F} which is the essential subalgebra of a partially stable commutative powerassociative algebra \mathfrak{S} as defined by Albert in [3]. Let $m \geqq 2$ and let $y_{i} \mathfrak{B}$ denote a homomorphic image of the vector space \mathfrak{B} for $i=0, \cdots, m$. Then \mathfrak{I} will be the vector space direct sum

$$
\begin{equation*}
\mathfrak{T}=\mathfrak{B}+\mathfrak{R} \tag{1}
\end{equation*}
$$

where ℓ is the sum, not necessarily direct, of the component spaces $y_{0} \mathfrak{B}, \cdots$, $y_{m} \mathfrak{B}$. Select elements $b_{i j}$ in \mathfrak{B} and derivations $D_{i j}$ of \mathfrak{B} over \mathfrak{F} such that

$$
\begin{align*}
b_{i j} & =b_{j i}, \quad b_{00}=e, \quad b_{0 j}=0 \tag{2}\\
D_{i j} & =-D_{j 2} \tag{3}
\end{align*}
$$

for $i, j=0, \cdots, m$ where then $D_{i i}=0$ for $i=0, \cdots, m$. We now define products in \mathfrak{I} by assuming that \mathfrak{B} is a subalgebra of \mathfrak{T}, that

$$
\begin{equation*}
\left(y_{i} a\right) b=y_{i}(a b)=b\left(y_{i} a\right) \quad(i=0, \cdots, m) \tag{4}
\end{equation*}
$$

for all elements a and b of \mathfrak{B}, and finally that

$$
\begin{equation*}
\left(y_{i} a\right)\left(y_{j} b\right)=b_{i j} a b+\left(a D_{i j}\right) b-a\left(b D_{i j}\right) \tag{5}
\end{equation*}
$$

for all a and b of \mathfrak{B} and $i, j=0, \cdots, m$. The result will be a commutative power-associative algebra of degree two over \mathfrak{F}.

[^0]We shall also require that the $b_{i j}$ and the $D_{i j}$ be chosen so that:
The algebra \mathscr{B} is $\left\{D_{i j}\right\}$-simple.

$$
\begin{equation*}
\text { If } g \text { is in } \mathfrak{R} \text { and } g u=0 \text { for all } u \text { in } \mathfrak{R} \text {, then } g=0 \tag{A}
\end{equation*}
$$

It is one of the principal results of Albert in [3] that these conditions are equivalent to the simplicity of the partially stable algebra \mathfrak{S} mentioned above. It is known [2] that condition (A) implies that

$$
\begin{equation*}
\mathfrak{B}=e \mathfrak{F}+\mathfrak{R} \tag{6}
\end{equation*}
$$

where \mathfrak{R} is the radical of \mathfrak{B} and $x^{p}=0$ for every element x in \mathfrak{N}. We shall completely determine the structure of \mathfrak{B}, and we state our main result as

Theorem 1. Let \mathfrak{B} be a commutative associative algebra with unity e over an algebraically closed field \mathfrak{F}, and let \mathfrak{B} be differentiably simple relative to a set of derivations of \mathfrak{B} over \mathfrak{F}. Then $\mathfrak{B}=\mathfrak{F}\left[e, x_{1}, \cdots, x_{n}\right]$ is an algebra with generators x_{1}, \cdots, x_{n} over \mathfrak{F} which are independent except for the relations $x_{1}^{p}=\cdots$ $=x_{n}^{p}=0$ where $p>0$ is the characteristic of \mathfrak{F}.

In all examples of the algebras \mathfrak{I} given to date the space \mathbb{Z} has been a direct sum of the components $y_{0} \mathfrak{B}, \cdots, y_{m} \mathfrak{B}$. As our final result we shall construct a class of examples of the algebras \mathfrak{I} in which $\mathbb{R}=\left(y_{0} \mathfrak{B}, \cdots, y_{m} \mathfrak{B}\right)$ with $m=2$ and \mathfrak{R} is not a direct sum and cannot be represented as a direct sum in this manner.
2. The algebra \mathfrak{B}. Let \mathfrak{B} be a commutative associative algebra with unity element \bar{e} over \mathfrak{F}, and let \mathfrak{B} be $\overline{\mathfrak{D}}$-simple for some set $\overline{\mathfrak{D}}$ of derivations of \mathfrak{B} over \mathfrak{F}. Then by (6) we may write

$$
\begin{equation*}
\mathfrak{B}=\bar{e} \mathfrak{F}+\overline{\mathfrak{R}} \tag{7}
\end{equation*}
$$

where $x^{p}=0$ for each x in $\overline{\mathfrak{N}}$. The algebra \mathfrak{B}, being finite dimensional, is finitely generated. Let $\left\{\bar{e}, \bar{x}_{1}, \cdots, \bar{x}_{n}\right\}$ be a set of generators of \mathfrak{B} which is minimal in the sense that no set containing \bar{e} and having fewer elements generates \mathfrak{B}. Also let

$$
\mathfrak{A}=\mathfrak{F}\left[e, x_{1}, \cdots, x_{n}\right]
$$

be the commutative associative algebra generated over \mathfrak{F} by generators e, x_{1}, \cdots, x_{n} which are independent except for the relations $e^{2}=e, e x_{i}=x_{i}$, and $x_{i}^{p}=0$ which hold for $i=1, \cdots, n$. It is clear that the mappings $e \rightarrow \bar{e}$, $x_{i} \rightarrow \bar{x}_{i}(i=1, \cdots, n)$ define a homomorphism ϕ of \mathfrak{A} onto \mathfrak{B}. We let \mathfrak{M} be the kernel of ϕ. We see that Theorem 1 will be proved if we can show that $\mathfrak{M}=0$.

We now note some properties of \mathfrak{A}. We may write

$$
\begin{equation*}
\mathfrak{A}=e \mathfrak{F}+\mathfrak{R} \tag{8}
\end{equation*}
$$

where $\mathfrak{N}=\mathfrak{F}\left[x_{1}, \cdots, x_{n}\right]$ is the radical of \mathfrak{A} and consists of all polynomials in the x_{i} with constant term zero. We observe that every element of \mathfrak{A} which is not in \mathfrak{N} has an inverse. For if $a=\alpha+u$ with α in \mathfrak{F}, u in $\mathfrak{N}, \alpha \neq 0$, then $a^{-1}=\left(\alpha^{p}\right)^{-1}(\alpha+u)^{p-1}$. Also it is known [4] that the derivation algebra of \mathfrak{A} consists of all linear transformations $D=D\left(a_{1}, \cdots, a_{n}\right)$ of \mathfrak{N} defined by

$$
\begin{equation*}
a D=\left(\partial a / \partial x_{1}\right) a_{1}+\cdots+\left(\partial a / \partial x_{n}\right) a_{n} \tag{9}
\end{equation*}
$$

where a_{1}, \cdots, a_{n} are in \mathfrak{H} and $\partial a / \partial x_{i}$ denotes the ordinary partial derivative of the polynomial a with respect to $x_{i}(i=1, \cdots, n)$. Thus $x_{i} D=a_{i}$ and the derivations of \mathfrak{A} are completely determined by the images of the x_{i} and these images may be arbitrarily chosen.

Theorem 2. Let D be a derivation of \mathfrak{A}. Then the transformation \bar{D} defined by

$$
\begin{equation*}
\varphi(u) \bar{D}=\phi(u D) \tag{10}
\end{equation*}
$$

is a derivation of \mathfrak{B} if and only if $\mathfrak{M D \subseteq} \mathfrak{M}$. Moreover, every derivation of \mathfrak{B} is induced in this manner by a derivation of \mathfrak{H}.

Proof. Every \bar{u} in \mathfrak{B} is the image under ϕ of some u in \mathfrak{N}, whence \bar{D} is
 ments u and v in \mathfrak{N}. Then $u=v+a$ where a is in $\mathfrak{M}, u D=v D+a D$, and $\phi(u D)$ $=\phi(v D)+\phi(a D)$. But $a D$ is in \mathfrak{M}, so $\phi(a D)=0, \phi(u D)=\phi(v D)$. Thus \bar{D} is well-defined. Conversely, if \bar{D} is well-defined, then $\phi(u)=\phi(v)$ implies $\phi(u D)$ $=\phi(v D)$. Thus, if a is any element of \mathfrak{M} we have

$$
\phi(u D)=\phi((u+a) D)=\phi(u D)+\phi(a D)
$$

from which it follows that $\phi(a D)=0$ and $a D$ is in \mathfrak{M}. We conclude that \bar{D} is well-defined if and only if $\mathfrak{M} D \subseteq \mathfrak{M}$. We will now show that \bar{D} is a derivation of \mathfrak{B}.

Let \bar{u}, \bar{v} be elements of \mathfrak{B} and let α, β be in \mathfrak{F}. Then $\bar{u}=\phi(u), \bar{v}=\phi(v)$ for some u and v in \mathfrak{A}, and

$$
\begin{aligned}
(\alpha \bar{u}+\beta \bar{v}) \bar{D} & =[\phi(\alpha u+\beta v)] \bar{D}=\phi((\alpha u+\beta v) D) \\
& =\alpha \phi(u D)+\beta \phi(v D)=\alpha(\bar{u} \bar{D})+\beta(\bar{v} \bar{D}) .
\end{aligned}
$$

Hence \bar{D} is linear. We also have

$$
\begin{aligned}
(\bar{u} \bar{v}) \bar{D} & =[\phi(u v)] \bar{D}=\phi((u v) D) \\
& =\phi((u D) v+u(v D))=(\bar{u} \bar{D}) \bar{v}+\bar{u}(\bar{v} \bar{D}),
\end{aligned}
$$

so \bar{D} is a derivation.
Now let \widetilde{D} be any derivation of \mathfrak{B}. We shall show that \widetilde{D} is the induced derivation \bar{D} of some derivation D of \mathfrak{N}. Any element \bar{u} of \mathfrak{B} may be written as a polynomial in the generators $\bar{x}_{1}, \cdots, \bar{x}_{n}$. And, as in \mathfrak{A}, \tilde{D} is completely
determined by its action on the \bar{x}_{i} according to the formula

$$
\begin{equation*}
\bar{u} \widetilde{D}=\left(\partial \bar{u} / \partial \bar{x}_{1}\right)\left(\bar{x}_{1} \tilde{D}\right)+\cdots+\left(\partial \bar{u} / \partial \bar{x}_{n}\right)\left(\bar{x}_{n} \widetilde{D}\right) . \tag{11}
\end{equation*}
$$

Choose elements y_{i} in \mathfrak{U} so that $\phi\left(y_{i}\right)=\bar{x}_{i} \tilde{D}$ for $i=1, \cdots, n$. We can define a derivation D of \mathfrak{A} by specifying that $x_{i} D=y_{i}(i=1, \cdots, n)$. Now let \bar{D} be induced by D according to formula (10). Then $\bar{x}_{i} \bar{D}=\bar{x}_{i} \widetilde{D}$ for $i=1, \cdots, n$. Thus if \bar{D} is a derivation we shall have $\bar{D}=\widetilde{D}$. Therefore it remains only to show that $\mathfrak{M} D \subseteq \mathfrak{M}$.

It is readily seen that if $f=f\left(x_{1}, \cdots, x_{n}\right)$ is any polynomial over \mathfrak{F} in x_{1}, \cdots, x_{n}, then $\bar{f}=\phi(f)=f\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)$ is the same polynomial with x_{i} replaced by \bar{x}_{i} for $i=1, \cdots, n$. Thus we may write $\partial f / \partial x_{i}=g_{i}\left(x_{1}, \cdots, x_{n}\right)$ and

$$
\begin{equation*}
\phi\left(\partial f / \partial x_{i}\right)=\phi\left(g_{i}\right)=g_{i}\left(\bar{x}_{i}, \cdots, \bar{x}_{n}\right)=\partial \bar{f} / \partial \bar{x}_{i} \tag{12}
\end{equation*}
$$

for $i=1, \cdots, n$. Now let u be any element of \mathfrak{M}. Then $\bar{u}=\phi(u)=0$, and by (9), (11), and (12) we have

$$
\begin{aligned}
\phi(u D) & =\phi\left(\partial u / \partial x_{1}\right) \bar{y}_{1}+\cdots+\phi\left(\partial u / \partial x_{n}\right) \bar{y}_{n} \\
& =\left(\partial \bar{u} / \partial \bar{x}_{1}\right) \bar{y}_{1}+\cdots+\left(\partial \bar{u} / \partial \bar{x}_{n}\right) \bar{y}_{n}=\bar{u} \tilde{D}=0 .
\end{aligned}
$$

Therefore $u D$ is in \mathfrak{M} and the theorem is proved.
We noted earlier that every element of \mathfrak{A} which is not in \mathfrak{N} has an inverse. From this it follows that every proper ideal of \mathfrak{A} is contained in \mathfrak{N}. Thus $\mathfrak{M} \subseteq \mathfrak{N}$. Recalling that \mathfrak{B} is $\overline{\mathfrak{D}}$-simple for a set $\overline{\mathfrak{D}}$ of derivations of \mathfrak{B} we now state

Theorem 3. Let \mathfrak{D} be the set of all derivations D of \mathfrak{A} over \mathfrak{F} such that the induced derivations \bar{D} are in $\overline{\mathfrak{D}}$. Then \mathfrak{M} is a maximal \mathfrak{D}-ideal of \mathfrak{A}, and an element u of \mathfrak{M} is in \mathfrak{M} if and only if u is in \mathfrak{M} and the elements $u D_{1} \cdots D_{k}$ are in \mathfrak{N} for all values of k and all derivations D_{i} in \mathfrak{D}.

Proof. By Theorem 2, if D induces \bar{D} then \mathfrak{M} is a D-ideal. Thus M is a
 erly containing \mathfrak{M} and let $\bar{\Re}=\phi(\Re)$. It is easily verified that $\bar{\Re}$ is a nontrivial $\overline{\mathfrak{D}}$-ideal in \mathfrak{B} contradicting $\overline{\mathfrak{D}}$-simplicity. Hence \mathfrak{M} is a maximal \mathfrak{D}-ideal. It is also easily seen that the sum of two \mathfrak{D}-ideals is a \mathfrak{D}-ideal from which it follows that \mathfrak{M} is maximal in the strong sense that it contains all other \mathfrak{D} ideals.

Now let u be any element of \mathfrak{M}. Then u is in \mathfrak{N} and $u D_{1} \cdots D_{k}$ is in \mathfrak{N} for all k and all D_{i} in \mathfrak{D}. Conversely, suppose u is in \mathfrak{R} and $u D_{1} \cdots D_{k}$ is in \mathfrak{N} for every product $D_{1} \cdots D_{k}$ of derivations in \mathfrak{D}. The ideal generated by u and all $u D_{1} \cdots D_{k}$ is a \mathfrak{D}-ideal and hence is contained in \mathfrak{M}. Thus u is in \mathfrak{M}, and the proof is complete.

To Theorem 3 we have the following immediate
 \mathfrak{B} if and only if there is some product $D_{1} \cdots D_{k}$ of derivations D_{i} in \mathfrak{D} such that $u D_{1} \cdots D_{k}$ is nonsingular.

Theorem 4. Let u be an element of $\mathfrak{\Re}$ whose terms of degree one are not all zero. Then u is not in \mathfrak{M}.

Proof. We assume without loss of generality that u is in \mathfrak{M} and its term of degree one in x_{1} is not zero. Then we may write $u=a x_{1}+v$ where a is nonsingular and v is in $\mathfrak{F}\left[x_{2}, \cdots, x_{n}\right]$. Thus

$$
\begin{equation*}
x_{1}=a^{-1} u-a^{-1} v=u_{0}+v_{0} \tag{13}
\end{equation*}
$$

where $u_{0}=a^{-1} u$ is in \mathfrak{M} and $v_{0}=-a^{-1} v$ is in the ideal \mathfrak{B} generated by x_{2}, \cdots, x_{n}. We observe that every element f of \mathfrak{B} is a polynomial with terms of the form $x_{1}^{\tau} y$ where y is a monomial in $\mathfrak{F}\left[x_{2}, \cdots, x_{n}\right]$ of degree $t \geqq 1$. If f is not in $\mathfrak{F}\left[x_{2}, \cdots, x_{n}\right]$ we associate with f the number $N(f)$ which is the minimum of the degrees of y for all terms $x_{1}^{r} y$ of f with $r \neq 0$. Note that $1 \leqq N(f) \leqq(n-1)(p-1)$. Now assume it impossible to write $x_{1}=u_{1}+v_{1}$ where u_{1} is in \mathfrak{M} and v_{1} is in $\mathfrak{F}\left[x_{2}, \cdots, x_{n}\right]$. Then we may write $x_{1}=u_{2}+v_{2}$ where u_{2} is in \mathfrak{M}, v_{2} is in \mathfrak{B}, and $N\left(v_{2}\right)$ is maximal. Let $x_{1}^{\tau} y$ be any term of v_{2} with $r \neq 0$ and y of degree $N\left(v_{2}\right)$. By (13) we have for each such $x_{1}^{\tau} y$

$$
\begin{equation*}
\stackrel{r}{x_{1} y} y=x_{1}^{r-1}\left(u_{0}+v_{0}\right) y=x_{1}^{r-1} u_{0} y+x_{1}^{r-1} v_{0} y \tag{14}
\end{equation*}
$$

where $x_{1}^{r-1} u_{0} y$ is in \mathfrak{M} and $x_{1}^{r-1} v_{0} y$ is a polynomial each term of which has the form $x_{1}^{s} z$ with z in $\mathfrak{F}\left[x_{2}, \cdots, x_{n}\right]$ and the degree of z greater than $N\left(v_{2}\right)$. Hence by means of substitutions as in (14) we may obtain $x_{1}=u_{3}+v_{3}$ with u_{3} in \mathfrak{M}, v_{3} in \mathfrak{B}, and $N\left(v_{3}\right)>N\left(v_{2}\right)$. Thus $x_{1}=u_{1}+v_{1}$ with u_{1} in \mathfrak{M} and v_{1} in $\mathfrak{F}\left[x_{2}, \cdots, x_{n}\right]$. But from this it follows that $\bar{x}_{1}=\phi\left(x_{1}\right)=\phi\left(v_{1}\right)$ is in $\mathfrak{F}\left[\bar{x}_{2}, \cdots, \bar{x}_{n}\right]$ contradicting the hypothesis that $\left\{\bar{x}_{1}, \cdots, \bar{x}_{n}\right\}$ is a minimal set of generators of \mathfrak{B}. This proves our theorem.

Before we can prove our next theorem we must develop some notation and prove two lemmas on the combinatorial properties of derivations. Let $S=\left\{n_{1}, \cdots, n_{s}\right\}$ be an ordered set of positive integers, the ordering being the natural one. Let π_{1}, \cdots, π_{r} be ordered subsets of S such that $\pi_{1} \cup \cdots \cup \pi_{r}$ $=S$ and $\pi_{i} \cap \pi_{j}=0$ (the empty set) if $i \neq j$. We shall call the ordered r-tuple $\pi=\left(\pi_{1}, \cdots, \pi_{r}\right)$ an r-partition of S. We now have

Lemma 1. Let a_{1}, \cdots, a_{r} be elements of \mathfrak{N} and let D_{1}, \cdots, D_{s} be derivations in \mathfrak{D}. Let

$$
T\left(\pi_{i}\right)=D_{i_{1}} \cdots D_{i_{t}} \quad(i=1, \cdots, r)
$$

if $\pi_{i}=\left\{i_{1}, \cdots, i_{t}\right\}$ is a nonempty ordered subset of the ordered set $S=\{1, \cdots, s\}$; and if $\pi_{i}=0$, then $T\left(\pi_{i}\right)$ is to be the identity transformation I of \mathfrak{A}. We now assert that

$$
\begin{equation*}
\left(a_{1} \cdots a_{r}\right) D_{1} \cdots D_{s}=\sum_{\pi}\left[a_{1} T\left(\pi_{1}\right)\right] \cdots\left[a_{r} T\left(\pi_{r}\right)\right] \tag{15}
\end{equation*}
$$

where π ranges over all r-partitions of S.
Proof. We induce on s. If $s=1$, each partition has the form $\pi=(0, \cdots, 0,1,0, \cdots, 0)$ and formula (15) becomes

$$
\left(a_{1} \cdots a_{r}\right) D_{1}=\sum_{i=1}^{r} a_{1} \cdots a_{i-1}\left(a_{i} D_{1}\right) a_{i+1} \cdots a_{r}
$$

which is correct. Now assume (15) correct for s derivations. Then

$$
\begin{aligned}
\left(a_{1} \cdots a_{r}\right) D_{1} \cdots D_{s+1}= & \sum_{\pi}\left\{\left[a_{1} T\left(\pi_{1}\right)\right] \cdots\left[a_{r} T\left(\pi_{r}\right)\right]\right\} D_{s+1} \\
= & \sum_{\pi} \sum_{i}\left[a_{1} T\left(\pi_{1}\right)\right] \cdots\left[a_{i-1} T\left(\pi_{i-1}\right)\right] \\
& \cdot\left[a_{i} T\left(\pi_{i} \cup\{s+1\}\right)\right]\left[a_{i+1} T\left(\pi_{i+1}\right)\right] \cdots\left[a_{r} T\left(\pi_{r}\right)\right] .
\end{aligned}
$$

But if $\pi=\left(\pi_{1}, \cdots, \pi_{r}\right)$ is a general r-partition of $\{1, \cdots, s\}$, then $\theta=\left(\pi_{1}, \cdots, \pi_{i-1}, \pi_{i} \cup\{s+1\}, \pi_{i+1}, \cdots, \pi_{r}\right)$ is a general r-partition of $\{1, \cdots, s+1\}$. Hence

$$
\left(a_{1} \cdots a_{r}\right) D_{1} \cdots D_{s+1}=\sum_{\theta}\left[a_{1} T\left(\theta_{1}\right)\right] \cdots\left[a_{r} T\left(\theta_{r}\right)\right]
$$

where $\theta=\left(\theta_{1}, \cdots, \theta_{r}\right)$ ranges over all r-partitions of $\{1, \cdots, s+1\}$. This is formula (15) for $s+1$ derivations, and the lemma is proved.

We also have
Lemma 2. Let $S_{1}=\left\{i_{1}, \cdots, i_{q}\right\}$ and S_{2} be ordered subsets of the set $S=\{1, \cdots, s\}$ such that $S_{1} \cap S_{2}=0$ and $S_{1} \cup S_{2}=S$, and let R be the set of all r-partitions π of S with $\pi_{t}=S_{2}$ for some fixed t. If a_{1}, \cdots, a_{r} are in \mathfrak{A} and D_{1}, \cdots, D_{s} in \mathfrak{D}, then

$$
\begin{align*}
\sum_{\pi i n R} & {\left[a_{1} T\left(\pi_{1}\right)\right] \cdots\left[a_{r} T\left(\pi_{r}\right)\right] } \tag{16}\\
& =\left[\left(a_{1} \cdots a_{t-1} a_{t+1} \cdots a_{r}\right) D_{i_{1}} \cdots D_{i_{q}}\right]\left[a_{t} T\left(\pi_{t}\right)\right] .
\end{align*}
$$

Proof. If $\pi=\left(\pi_{1}, \cdots, \pi_{r}\right)$ with $\pi_{t}=S_{2}$, then

$$
\theta=\left(\pi_{1}, \cdots, \pi_{t-1}, \pi_{t+1}, \cdots, \pi_{r}\right)
$$

is an ($r-1$)-partition of S_{1}. Moreover, the correspondence $\pi \leftrightarrow \theta$ is a 1-1 correspondence of R with the set of all ($r-1$)-partitions of S_{1}. Our result now follows from Lemma 1.

We are now able to prove
Theorem 5. The ideal \mathfrak{M} contains no monomial.
Proof. Theorem 4 asserts that \mathfrak{M} contains no monomial of total degree one in x_{1}, \cdots, x_{n}. Assume that \mathfrak{M} contains no monomial of degree $r-1$ but
that $u=x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}$ has degree $r=r_{1}+\cdots+r_{n}$ and is in \mathfrak{M}. Then for each i for which $r_{i} \neq 0$ we may write $u=a_{i} x_{i}$ where a_{i} is not in \mathfrak{M}. Thus, by the corollary to Theorem 3, there is a product G_{i} of t_{i} derivations in \mathfrak{D} such that $a_{i} G_{i}$ is nonsingular. We let i_{0} be a value of i for which $t=t_{i}$ is minimal. There is clearly no loss of generality if we assume $i_{0}=1$ and $G=G_{1}=D_{1} \cdots D_{t}$ so that $a_{1} G$ is nonsingular. We now apply G to the element u, and by Lemma 1 we obtain

$$
\begin{align*}
u G & =\left(x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}\right) D_{1} \cdots D_{t} \\
& =\sum_{x}\left[x_{1} T\left(\pi_{11}\right)\right] \cdots\left[x_{1} T\left(\pi_{1 r_{1}}\right)\right] \cdots\left[x_{n} T\left(\pi_{n 1}\right)\right] \cdots\left[x_{n} T\left(\pi_{n r_{n}}\right)\right] . \tag{17}
\end{align*}
$$

We observe that the constant term of $u G$ is zero since u is in \mathfrak{M} and $u G$ is in \mathfrak{M}. Let us now compute the linear term in x_{1} of $u G$. Consider first all summands in (17) with $\pi_{1 j}=0$ for some fixed index j. By Lemma 2 the sum of these summands is $\left(a_{1} G\right) x_{1}$ which has a term αx_{1} where $\alpha \neq 0$ is the constant term of the nonsingular element $a_{1} G$. Letting $j=1, \cdots, r_{1}$ we find that the total coefficient of x_{1} from this source is $r_{1} \alpha \neq 0$. Note that any summand in (17) in which $\pi_{i j}=0$ with $i \neq 1$ has x_{i} as a factor and therefore does not have a linear term in x_{1}. Thus there remains only the consideration of those summands of (17) in which all $\pi_{i j}$ are nonempty. For such a summand to have a linear term in x_{1} it must be that some $x_{i} T\left(\pi_{i j}\right)$ has a linear term in x_{1} and all other $x_{h} T\left(\pi_{h k}\right)$ are nonsingular. But again it follows from Lemma 2 that the sum of all summands in (17) having $x_{i} T\left(\pi_{i j}\right)$ as a factor is $w=\left(a_{i} H\right)\left[x_{i} T\left(\pi_{i j}\right)\right]$ where H is a product of fewer than t derivations. Hence $a_{i} H$ is singular and w has no linear term. We conclude that $u G$ has a linear term $r_{1} \alpha x_{1}$ contrary to Theorem 4.

We are now essentially through. Albert has shown [2] that for any nonzero element u of \mathfrak{N} there exists an element v of \mathfrak{A} such that $u v=x_{1}^{p-1} \cdots x_{n}^{p-1}$. Thus if $\mathfrak{M} \neq 0$ then \mathfrak{M} contains a monomial, contrary to Theorem 5. Therefore $\mathfrak{M}=0$ from which Theorem 1 follows.
3. Some consequences of condition (B). Let \mathfrak{I} be the commutative powerassociative algebra described in $\S 1$. By (1) we see that

$$
\mathfrak{I}=\mathfrak{B}+\mathfrak{R}=\mathfrak{B}+\left(y_{0} \mathfrak{B}, \cdots, y_{m} \mathfrak{B}\right)
$$

and, having determined the structure of \mathfrak{B}, we are now in a position to investigate that of \mathfrak{I}.

Let u be any element of \mathfrak{R}. Then $u=\sum_{j=0}^{n} y_{j} b_{j}$ where b_{j} is in \mathfrak{B}. From condition (B) we see that $u=0$ if and only if $\left(y_{i} a\right) u=\sum_{j=0}^{n}\left(y_{i} a\right)\left(y_{j} b_{j}\right)=0$ for all a in \mathfrak{B} and $i=0,1, \cdots, m$. From this it follows that $u=0$ if and only if the relations

$$
\begin{equation*}
\sum_{j=0}^{m}\left(b_{i j} b_{j}-b_{j} D_{i j}\right)=0 \quad(i=0, \cdots, m) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=0}^{m}\left(a D_{i j}\right) b_{j}=0 \quad(i=0, \cdots, m) \tag{19}
\end{equation*}
$$

hold for every a in \mathfrak{B}.
It should be noted that the requirement that the algebra \mathfrak{T} satisfy condition (B) is never inconsistent with the definition of multiplication in \mathfrak{I}. The effect of condition (B) is to completely determine the algebra \mathfrak{T} by determining the kernels of the vector space homomorphisms $\mathfrak{B} \rightarrow y_{i} \mathfrak{B}$ for $i=0, \cdots, m$ and the nature of the sum ℓ. To demonstrate this we let

$$
\mathfrak{T}^{*}=\mathfrak{B}+\mathfrak{R}^{*}=\mathfrak{B}+z_{0} \mathfrak{B}+\cdots+z_{m} \mathfrak{B}
$$

where each vector space $z_{i} \mathfrak{B}$ is an isomorphic copy of \mathfrak{B}. Let products in \mathfrak{I}^{*} be defined in terms of the same elements $b_{i j}$ and derivations $D_{i j}$ of \mathfrak{B} which determined products in \mathfrak{I}. Since \mathfrak{T}^{*} is a direct sum we see that multiplication is well-defined. Now let \mathfrak{U} be the set of all elements u in \mathfrak{Q}^{*} such that $u w=0$ for all w in \mathfrak{Q}^{*}. The set \mathfrak{U} is an ideal of \mathfrak{T}^{*}. The algebra \mathfrak{T} is equivalent to $\mathfrak{T}^{*}-\mathfrak{U}$ and hence exists and is uniquely determined by condition (B) and the choice of the elements $b_{i j}$ and derivations $D_{i j}$ of \mathfrak{B}.
4. A special case with $m=2$. In this section we shall construct a class of examples of the algebras \mathfrak{I} in which $\mathbb{R}=\left(y_{0} \mathfrak{B}, \cdots, y_{m} \mathfrak{B}\right)$ with $m=2$ and \mathbb{R} is not a direct sum. We let $\mathfrak{B}=\mathfrak{F}[e, x, y], \mathfrak{T}=\mathfrak{B}+\left(y_{0} \mathfrak{B}, y_{1} \mathfrak{B}, y_{2} \mathfrak{B}\right)$ and let

$$
\begin{array}{ll}
x D_{01}=e, & y D_{01}=x^{p-1} \\
x D_{02}=x^{2} y, & y D_{02}=x y \\
x D_{12}=-x, & y D_{12}=x y^{2}, \\
b_{11}=0, \quad b_{12}=e, \quad b_{22}=-x^{2} . \tag{23}
\end{array}
$$

The algebra \mathfrak{B} is D_{01}-simple [2] and hence is $\left\{D_{i j}\right\}$-simple. Thus \mathfrak{I} satisfies condition (A). We complete the definition of \mathfrak{T} by imposing condition (B). As a routine consequence of formulas (18) and (19) we now have Lemma 3 which we state without proof.

Lemma 3. In this special case an element $y_{0} b_{0}+y_{1} b_{1}+y_{2} b_{2}$ of \mathbb{R} is zero if and only if $b_{0}=-b_{2} x, b_{1}=0$, and $b_{2}=x^{p-1} f(y)+y^{p-1} g(x)$ where $f(y)$ and $g(x)$ are polynomials over \mathfrak{F} in y and x respectively.

It follows from Lemma 3 that \mathfrak{T} is not a direct sum. In fact we may write

$$
\begin{equation*}
\mathfrak{T}=\mathfrak{B}+\left(y_{0} \mathfrak{B}+y_{1} \mathfrak{B}, y_{2} \mathfrak{B}\right) \tag{24}
\end{equation*}
$$

and we see that $\left(y_{0} \mathfrak{B}+y_{1} \mathfrak{B}\right) \cap y_{2} \mathfrak{B}$ is spanned by the independent vectors $y_{2} x^{p-1} y^{j}$ and $y_{2} x^{i} y^{p-1}$ where $i=0, \cdots, p-1$ and $j=0, \cdots, p-2$. Hence \mathfrak{T} has dimension $4 p^{2}-2 p+1$. We will show next that \mathfrak{I} not only fails to be a direct sum as presently represented, but, furthermore, Albert's construction cannot yield a representation of \mathfrak{I} as a direct sum.

Let $\overline{\mathfrak{B}}=\mathfrak{F}\left[\bar{e}, \bar{z}_{1}, \cdots, \bar{z}_{r}\right]=\bar{e} \mathfrak{F}+\overline{\mathfrak{M}}$ be a polynomial algebra over \mathfrak{F} with
unity \bar{e} and generators $\bar{z}_{1}, \cdots, \bar{z}_{r}$ such that $\bar{z}_{i}^{p}=0$ for $i=1, \cdots, r$ but which are otherwise independent. Suppose there exist x_{0}, \cdots, x_{m} such that $\mathfrak{T}=\overline{\mathfrak{B}}+\overline{\mathfrak{Z}}$ where $\overline{\mathfrak{R}}=x_{0} \overline{\mathfrak{B}}+\cdots+x_{m} \overline{\mathfrak{B}}$ is a direct sum. We will denote by \bar{a}, \bar{b}, etc. elements of $\overline{\mathfrak{B}}$ and by $\bar{b}_{i j}$ and $\bar{D}_{i j}$ the elements and derivations of $\overline{\mathfrak{B}}$ which define multiplication in this new representation of \mathfrak{T}. We observe that $\bar{e}=e$ since $\overline{\mathfrak{B}}$ and \mathfrak{B} have the same unity element as \mathfrak{I}. We may write expressions for the $x_{k} e$ in terms of the original representation of \mathfrak{T}. Thus

$$
\begin{equation*}
x_{k} e=a_{k}+y_{0} b_{k}+y_{1} c_{k}+y_{2} d_{k} \tag{25}
\end{equation*}
$$

where $a_{k}, b_{k}, c_{k}, d_{k}$ are in \mathfrak{B} and $k=0, \cdots, m$. Since \mathfrak{I} is power-associative and p is an odd prime we have

$$
\begin{equation*}
\left(x_{k} \bar{b}\right)^{p}=\left[\left(x^{k} \bar{b}\right)^{2}\right]^{(p-1) / 2}\left(x_{k} \bar{b}\right)=x_{k}\left(\bar{b}_{k k}^{(p-1) / 2} b^{p}\right) \tag{26}
\end{equation*}
$$

for $k=0, \cdots, m$, and similarly

$$
\begin{equation*}
\left(y_{k} b\right)^{p}=y_{k}\left(b_{k k}^{(p-1) / 2} b^{p}\right) \tag{27}
\end{equation*}
$$

for $k=0,1,2$. From (23), (25), (26), (27) and Lemma 3 we see that

$$
x_{0} e=\left(x_{0} e\right)^{p}=a_{0}^{p}+y_{0} b_{0}^{p}=\alpha+y_{0} \beta
$$

where α and β are in \mathfrak{F}. Since $\left(x_{0} e\right)^{2}=e$ it follows that $\alpha=0$ and $\beta= \pm 1$. Thus $x_{0} e= \pm y_{0} e$ and we can now prove

Lemma 4. The algebras \mathfrak{B} and $\overline{\mathfrak{B}}$ coincide as do the spaces \mathbb{Z} and $\overline{\mathbb{R}}$.
Proof. Since $x_{0} e= \pm y_{0} e$ and $\left(x_{0} e\right)\left(x_{k} e\right)=0$ for $k=1, \cdots, m$, we see by (25) that $a_{k}=0$ for $k=0, \cdots, m$. Hence $\bar{\Omega} \subseteq \mathbb{R}$. Since $\overline{\mathfrak{B}}$ is $\left\{\bar{D}_{i j}\right\}$-simple there is a derivation $\bar{D}_{s t}$ of \bar{B} such that $\overline{\mathfrak{M}}$ is not a $\bar{D}_{s t}$-ideal. From this it follows that each of $\overline{\mathfrak{B}}, x_{s} \overline{\mathfrak{B}}$, and $x_{t} \overline{\mathfrak{B}}$ has dimension p^{r}. Thus $3 p^{r} \leqq 4 p^{2}-2 p+1$ which implies $r \leqq 2$. If $r<2$ the dimension of $\overline{\mathfrak{R}}$ is seen to be greater than that of \mathcal{R}. Thus $r=2$ and $\bar{Z}=\Omega$.

We have shown that $\mathfrak{B}+\mathbb{R}=\overline{\mathfrak{B}}+\mathbb{R}$. Now let b be any element of \mathfrak{B}. Then $b=\bar{b}+u$ for elements \bar{b} in $\overline{\mathfrak{B}}$ and u in \mathbb{R}. Let w be an arbitrary element of \mathbb{R}. We see that $u w=b w-\bar{b} w$ is in \mathfrak{B} and in \mathbb{R}. Thus $u w=0$ for all w in $尺$. Therefore $u=0$, and the lemma is proved.

We now have $\overline{\mathfrak{B}}=\mathfrak{B}=\mathfrak{F}[e, x, y]$ and

$$
\mathfrak{T}=\mathfrak{B}+\left(y_{0} \mathfrak{B}+y_{1} \mathfrak{B}, y_{2} \mathfrak{B}\right)=\mathfrak{B}+x_{0} \mathfrak{B}+\cdots+x_{m} \mathfrak{B} .
$$

We shall show that this leads to a contradiction. Setting $a_{k}=0(k=0, \cdots, m)$ in (25) we obtain

$$
\begin{equation*}
x_{k} e=y_{0} b_{k}+y_{1} c_{k}+y_{2} d_{k} \quad(k=0, \cdots, m) \tag{28}
\end{equation*}
$$

Lemma 5. If $\mathfrak{T}=\mathfrak{B}+x_{0} \mathfrak{B}+\cdots+x_{m} \mathfrak{B}$ is a direct sum, then $m=2$ and there exist elements v and w in \mathfrak{B} such that $b_{2}=-d_{2} x+x y v$ and $c_{2}=x y w$.

Proof. The dimension of $x_{0} \mathfrak{B}$ is always the same as that of \mathfrak{B}, and we noted earlier that this must also be true for at least one other $x_{k} \mathfrak{B}$. Hence we may assume that $x_{1} \mathfrak{B}$ has dimension p^{2}. It follows that $x_{k} \mathfrak{B}$ has dimension less than p^{2} for $k=2, \cdots, m$. Hence if $U=x^{p-1} y^{p-1}$, then $x_{k} U=0$ for $k \geqq 2$, and we see from (28) and Lemma 3 that b_{k} and c_{k} are in \mathfrak{N} for $k \geqq 2$. We see also that $x_{1} U \mp x_{0} b_{1} U=y_{1} c_{1} U \neq 0$ since $x_{0} e= \pm y_{0} e$ and $x_{0} \mathfrak{B}+x_{1} \mathfrak{B}$ is a direct sum. Hence c_{1} is not in \mathfrak{R}.

Now let u_{0}, \cdots, u_{m} be elements of \mathfrak{B} such that $y_{2} e=x_{0} u_{0}+\cdots+x_{m} u_{m}$. From (28) and Lemma 3 we see that $c_{1} u_{1}+\cdots+c_{m} u_{m}=0$, and, since c_{1} is not in \mathfrak{R} but c_{2}, \cdots, c_{m} are in \mathfrak{R}, this implies that u_{1} is in \mathfrak{R}. Now, also by Lemma $3, d_{1} u_{1}+\cdots+d_{m} u_{m}-e$ is in \mathfrak{N} and hence d_{k} is not in \mathfrak{N} for some $k \geqq 2$. Without loss of generality we assume d_{2} is not in \Re.

Let \mathfrak{F} be the subspace of \mathfrak{B} consisting of all elements u such that $x_{2} u=0$. Since d_{2} is nonsingular, it follows from (28) and Lemma 3 that $u=x^{p-1} F(y)$ $+y^{p-1} G(x)$ for some polynomials $F(y)$ and $G(x)$. Let s be the dimension of \mathbb{E}. Then $x_{2} \mathfrak{B}$ has dimension $p^{2}-s$, and we see that $s \geqq 2 p-1$. Thus $x_{2} u=0$ for all possible choices of the polynomials $F(y)$ and $G(x)$. Thus $x_{2} \mathfrak{B}$ has dimension $p^{2}-2 p+1$ and $m=2$.

We have shown that the space \mathbb{E} consists of all u in \mathfrak{B} of the form $u=x^{p-1} F(y)+y^{p-1} G(x)$. From Lemma 3 we see that $c_{2} u=0$ and $\left(b_{2}+d_{2} x\right) u=0$ for all u in \mathfrak{E}. It therefore follows that $c_{2}=x y w$ and $b_{2}=-d_{2} x+x y v$ for some v and w in \mathfrak{B}. We can now obtain our main result which we state as

Theorem 6. The algebra \mathfrak{I} cannot be represented as a direct sum.
Proof. We compute b_{02} and single out those terms which possibly give rise to a linear term in x alone. We recall that $\bar{b}_{02}=0$ by (2). Using (20), \cdots, (23) and Lemma 5 we see that

$$
\begin{aligned}
b_{02} & =\left(x_{0} e\right)\left(x_{2} e\right)= \pm\left(y_{0} e\right)\left(y_{0} b_{2}+y_{1} c_{2}+y_{2} d_{2}\right) \\
& = \pm\left(b_{2}-c_{2} D_{01}-d_{2} D_{02}\right)=\mp d_{2} x+\Omega
\end{aligned}
$$

where Ω is a sum of terms each having x^{2} or y as a factor. Since d_{2} is nonsingular $b_{02} \neq 0$. This contradiction proves the theorem.

References

1. A. A. Albert, A theory of power-associative commutative algebras, Trans. Amer. Math. Soc. vol. 69 (1950) pp. 503-527.
2. On commutative power-associative algebras of degree two, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 323-343.
3. -_, On partially stable algebras, Trans. Amer. Math. Soc. vol. 84 (1957) pp. 430-443.
4. Nathan Jacobson, Classes of restricted Lie algebras of characteristic p. II, Duke Math. J. vol. 10 (1943) pp. 107-121.

University of Minnesota, Minneapolis, Minnesota

[^0]: Received by the editors July 9, 1960.
 ${ }^{(1)}$ This paper is essentially the author's Ph.D. thesis at the University of Chicago. Sincere thanks are due Professor A. A. Albert for his encouragement and many helpful suggestions.

