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Introduction. The purpose of the present paper is to determine the de-

composition of the Kronecker product of two irreducible representations of

the real 2X2 unimodular group into a continuous direct sum of irreducible

representations.

The irreducible unitary representations of this group have been deter-

mined first by V. A. Bargmann [l](0> and those of the 2X2 complex uni-

modular group by I. M. Gel'fand and M. A. Naïmark [3]. In both cases the

list of these representations contains two continuous series; first, the prin-

cipal continuous series, the members of which can be described by a pair

(m, p) of two variables, m with a discrete, p with a continuous range; and

secondly, the representations of the exceptional interval, characterized by a

single parameter, varying over a finite interval. In the real case in addition

to these there exists a discrete series of representations characterized by

integers. Concerning the representations of the exceptional interval it has

been proved that they do not occur in the decomposition of the left regular

representations of these groups into a continuous direct sum of irreducible

representations.

The problem of finding the irreducible parts for the Kronecker product of

two of these representations by the Reduction Theory of von Neumann [9]

was taken up first by G. W. Mackey, in the complex case, for two factors

taken from the principal series [4; 5]. W. F. Stinespring applied the same

method to the discussion of the analogous case for the real group(2). Recently,

M. A. Naïmark attacked the same problem in the complex case, and gives a

complete discussion of all possibilities |10](3).

In Parts I, II, and III of the present work we give the decomposition of

the product of any two irreducible unitary representations of the real 2X2

unimodular group. To sketch our method, we restrict ourselves, for the sake

Received by the editors September 6, 1960.

(') When speaking of unitary representations in this paper, we mean always representa-

tions, which are strongly continuous. Bargmann's classification was performed under certain

restrictive conditions (cf. [l, (5.6.),p. 601 ]). It has been proved, however, that these conditions

are automatically fulfilled, cf. for instance, [6, p. 545].

(2) Oral communication.

(3) At the time being only the first part, dealing with the product of two representations

of the principal series [lO] is accessible to us.
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of simplicity, to the representations of the three-dimensional Lorentz group

73; it is known that any representation of the 2X2 group is a single- or double-

valued representation of L3. All notions used in the following will be described

in appropriate detail in later sections. We describe £3 as the connected com-

ponent of unity in the group of all linear transformations of three-dimen-

sional Euclidean space, which leave the form x2, — x2 — x\ invariant. Further-

more, we denote the one-parameter subgroups of 73 leaving x0, Xi and x2 in-

variant by Go, Gi and G2 resp. Given any continuous unitary representation

Ta of £3 on a Hubert space H, we denote the infinitesimal generators of the

one-parameter groups of unitary transformations corresponding to G¿ by

Hi (¿ = 0, 1, 2) resp. Forming the operator Q' = H\+II\ — III, °ne can show

that its closure Q is self-adjoint, and commutes with the operators Ta (aE£3).

In other words, Q is affiliated with the center of the weakly closed operator

ring generated by this representation. Hence in particular, in the case of an

irreducible representation, it is of the form ql, where g is a real number and

7 is the unit operator. As Bargmann 's list shows, the number q determines the

corresponding irreducible representation uniquely; its range is the interval

0<<7< + » for the two continuous series, and 0 = 0, — 1, — 2, ■ ■ • for the

discrete series. Conversely, one can show that a representation, for which Q

has the form ql, is a multiple of the corresponding irreducible representation.

Therefore, if we decompose the Hubert space of the representation Ta into

a continuous direct sum of Hubert spaces diagonalizing Q, then at the same

time we get a decomposition of Ta into a continuous direct sum of unitary

representations, each of which is a multiple of some irreducible representation.

From this, one can see that the problem of finding the irreducible components

of a unitary representation essentially amounts to that of determining the

spectrum of the corresponding operator Q. To decide which members of the

discrete series occur in the decomposition, is made easy by the fact that they

appear always as discrete summands. Therefore in the following we deal with

the problem of finding the irreducible components belonging to one of the

continuous series. Let Ta be an irreducible representation of this kind. Since

Go C£3 is the group of rotations of the unit circle, Ta, when restricted to Go,

breaks up into a discrete direct sum of one-dimensional representations, and

one can show that the trivial representation occurs exactly once. For an ir-

reducible representation of the discrete series the trivial representation does

not occur at all. From what has just been said, it is clear that if for a repre-

sentation Ta we have Q = ql (g>0), then, denoting by 9)îo the subspace of all

vectors which are left invariant by the restriction of Ta to Go, Ta is a

dim Wo times multiple of the irreducible representation belonging to q. From

this we can deduce the following general rule. Let Ta be an arbitrary unitary

representation of £3 on the Hubert space 77; we form the corresponding oper-

ator Q and define the subspace 9Jfo as above. SDîo obviously reduces Q; we

denote its part in it by Qo. One knows that one can represent SDio in a unique
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manner as a sum 22?-i ©SD^ such that each 9K„ reduces Q0, and the part

Co"' of Qo in Wlv is a p-fold copy of an operator with a simple spectrum; finally,

the spectra of Q^ and Q^ for v^p are pairwise disjoint(4). In this case Ta

is a direct sum of two representations T\ and T\. T% is a discrete direct sum of

irreducible representations of the discrete series and of the trivial representation ;

T^is a direct sum of a sequence T^ (j> = 1, 2, • • • ) of unitary representations,

such that Pa"' is a continuous direct sum, with respect to a weight function

equivalent to the spectrum of Q^\ of v-fold copies of irreducible representations

from the continuous series.

Up to now we have been discussing the case of an arbitrary unitary repre-

sentation of Lz, and have arrived at the conclusion that the main difficulty in

determining its irreducible components is that of finding the spectral proper-

ties of Ço (with the notations used above). Turning, for example, to the par-

ticular case of the Kronecker product of two irreducible representations of

the continuous series of L3, and making use of Bargmann's description of

these representations in terms of function spaces, we have to deal, among

other things, with problems of the following type. Consider an integrable posi-

tive-definite function K(d>) on the circumference of the unit circle; suppose

that fi/ß/Kfy —yp)f(p)f(p)d<j)dp is positive for every continuous function f(<p).

Then define an inner product for any pair f(<p) and g(ip) of continuous func-

tions by (/, g)=jl*jl,rK(<p—,p)f(cp)g(p)d<pdp. In this fashion we get a pre-

Hilbert space; denote its completion by H. Then we are to investigate the

spectrum (including multiplicity) of a self-adjoint operator, obtained as the

closure of a certain linear differential operator of second order defined on the

sufficiently smooth elements of H (cf. (B) in Chapter II of the present Part

I). In a similar fashion, when discussing the decomposition of a product, with

one factor of type Dt, the other of D^,(b) we shall have to consider differential

operators of second order on certain Hilbert spaces, formed from analytic

functions on the unit disk.

As a feature common to all cases of Kronecker products we wish to note

the following two facts: (a) either no representation from the principal con-

tinuous series occurs, or every representation from the principal continuous

series occurs, with a weight function equivalent to the Lebesgue measure,

(b) representations of the exceptional interval appear as discrete direct sum-

mands only.

The purpose of the present Part I is the discussion of products with factors

from the two continuous series, of Lz. Its plan is as follows. In Chapter I we

give a detailed discussion of the method, outlined above, to obtain the ir-

reducible components of any unitary representation of the 2X2 real uni-

(4) We say that the spectra of two self-adjoint operators Ai and At on the Hilbert space H,

with the spectral resolutions E\ and E\ are disjoint, if the measures corresponding to the

functions HEx'/H* an<^ ll^xêlr °f bounded variation are disjoint for any choice of/, gEH.

(') For these cf. the end of I.A.
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modular group. The fact that we have been anxious to give, as far as this is

possible, a self-contained treatment, explains its length. In §A of Chapter II

we determine the irreducible components belonging to the discrete series; in

§B those of the continuous series. This is achieved through discussion of the

operator Q0, as indicated above.

Part II will treat those products in which at least one factor belongs to the

discrete series. Finally, Part III will discuss the product of two representa-

tions belonging to the continuous series, one or both of the factors being

double-valued representations of £3. These will be published later.

Most of the results of the present paper were obtained during the author's

stay at the University of Chicago in January-March, 1958. The author is

indebted to Professor I. E. Segal for proposing the subject of the present

research.

Chapter I. Preliminaries

A. Irreducible representations of ©. In this section we summarize certain

results concerning general representation theory, and in particular, concern-

ing irreducible representations of the 2X2 real unimodular group.

Following Bargmann, we consider, instead of the group of all 2X2 real

unimodular matrices, the isomorphic group of all 2X2 complex matrices of

the form

V/9   a/

We denote this group by @. We observe that © is locally isomorphic with

the three-dimensional Lorentz group £3, by which we mean the connected

component of unity in the group of all nonsingular linear transformations of

£3, leaving the form x2,— x2 — x2 invariant. As a matter of fact, £3 is isomorphic

to the factor group of © according to the subgroup of order 2 consisting of

±e, where e is the unit matrix.

Next we consider the following one-parameter subgroups of ©:

/e~il'2   0    \ /   ch//2      ¿sh*/2\

*« = U **)'        *lW = Ush;/2     cht/2)'

/ch t/2   sh t/2\
gt(t) -I  .    .„     ,,„) (-»</< + »).

\sh t/2    ch t/2/

Let us suppose that Ta is a continuous unitary representation of the

group © on the Hubert space //. Defining the self-adjoint operators

77y(/=0, 1,2) on 77 by

Tvm = exp(-¿//y0 (j = 0, 1, 2)

one easily verifies, by aid of the reasonings [2, pp. 601-602], that the operator
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Q' =H\+H\ — Hi formally commutes with all the operators of the representa-

tion Ta, hence by the theorem in [12] it is essentially self-adjoint, that is, it is

densely defined and its closure Q is self-adjoint on //. We call Q the Casimir

operator belonging to our representation. In particular, if Ta is irreducible, then

Q is of the form ql, where q is real, and / denotes the unit operator on //. In

the following we reproduce Bargmann's classification of all nontrivial ir-

reducible unitary representations of © [l, p. 609], with minor modifications

in the notation(6). Since the one-parameter subgroup go is compact, the oper-

ator i/o has a pure point spectrum consisting of integers or half-integers (we

parametrize go in such a way, that go(2x) = —e, go(4x) =e, where e is the unit

in ©). It turns out that each eigenvalue occurs with the multiplicity one.

Then the set of all nontrivial irreducible representations of © can be listed

as follows:

(1) Principal continuous series

(a) integral case C°Q (q=-1/4; m = 0, ±1, ±2, • • • ),

(b) half integral case Cs1/2(g>l/4; m = 0, ±1/2, ±3/2, • • • )•

(2) Continuous series; exceptional interval

Eq(0 < q < 1/4; m = 0, ± 1, ± 2, • ■ • ).

(3) Discrete series

(a) mimmalm:D%(q = k(l—k)\m = k,k + l, ■ ■ ■ ;k= 1/2,1,3/2, • • ■),
(b) maximal  m: Dk(q = k(l — k);  m=—k,   — k — 1, • • • ;  è = 1/2,   1,

3/2, • • • )•

An irreducible representation Ta with T-e = /, is a single-valued representa-

tion of Li. From among the representations listed above C^(l/4^g< + =°),

Eq (0<g<l/4) and Dk, Dk, where k is an integer, possess this property. We

see that the conditions £_«. = / and 0<g<-f-°° determine an irreducible

representation of L% uniquely.

B. Decomposition into irreducible representations. The purpose of the

subsequent considerations is to show that the problem of finding the decom-

position of a continuous unitary representation of © into irreducible parts

can to a large extent be reduced to the investigation of the spectral properties

of the Casimir operator associated with this representation (cf. §A). Though

the following statements could be directly obtained from known results (cf.

beside what is going to be quoted in the course of the proof [6, §§4-6;

7, Theorem]), for the convenience of the reader we prefer to give a complete

discussion, making use of the present special situation. Here we shall need

the more elementary part of the Reduction Theory only, for which we refer

the reader to [9, §§1-14].

(6) In view of the particular role played by the representations of the exceptional interval

(cf. [l, §8]) in the decomposition of the Kronecker products (cf. Introduction) we denote them

by Eq instead of C° (0<g<l/4) as used by Bargmann.
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Bl. Let Ta be a continuous unitary representation of @ given on the separa-

ble Hilbert space H. Then there exists a decomposition, with respect to a weight

function cr(X) over the real line, of this Hilbert space into a continuous direct sum

of Hilbert spaces H\, a continuous unitary representation Ta(K) of © on //*

such that (a) for each aG© we have Ta= 2^«00, (D) the Casimir operator

Q(\) of Ta(K) equals X7.
First we suppose that for our representation T-, = I.

We denote the Lie algebra of © by §1 (cf. [l, 4.b, p. 595]). For x£9l we

put gx(t) =exp xt, and we define 77x through the condition

Tgx(t) = exp(-¿£v)-

We denote the element of SI corresponding to the subgroups g,-(0 (cf. §A)

by Xi resp., and as before, we put 77< = 77x. (¿ = 0, 1, 2). By Theorem 3.1 in

[l 1 ] there exists a dense linear manifold 33 EH, such that (a) 53 is in the inter-

section of the domains of definition of all IIx (xG9I), and the restriction Hx'

oí Hx to 33 is essentially self-adjoint, that is IT** = HX, (b) we have 77x23

C93 (xGSl) and £.33^93 (a£©), (c) the mapping x~*iHx gives a repre-

sentation of 3Í by the essentially skew-adjoint operators illx , finally (d) the

operator H\+Hl~Hi is essentially self-adjoint on 93 and commutes with

Ta (aG©); its closure, commuting again with Ta, is the Casimir operator of

our representation; and will be denoted again by Q (cf. [l, I.e., p. 587, 5.e.,

p. 601 ], and [12, Theorem]). If P is any projection commuting with

Ta iaE<&), and 9JÎ the corresponding subspace, then it is clear that the

Casimir operator of the restriction of Ta to 9J? is the restriction of Q to 30?.

Hence without loss of generality we may assume in the following that (ce) Q

is bounded, iß) Q does not possess nontrivial eigenvectors. For if 3Kx is the

eigenspace belonging to the eigenvalue X of Q, then it is invariant under Ta,

and the Casimir operator of the part of Ta in 2J}\ is X7.

Let Di be the domain of the operators 77¿ (¿ = 0, 1, 2) resp. We show that

DoEDiC\D2. Indeed, if fED0, by (a) above we can find a sequence/„ of ele-

ments in 93, such that lim„^00/„=/ and lim«^«, Hofn = H0f. But we have

\\Hoifn  -fm)\\2 +   (Qifn   ~ fm), fn   ~ fm)   =   || Hl(f» - fm)\\ * +  ||W«   ~ U)\\2

and hence, by virtue of our assumption concerning the continuity of Q, we

see that the sequences {/£/„} (¿= 1, 2) converge too, along with {/„}, which

proves that fEDiC\D2.

Since the subgroup go is compact, and since £_e = 7, we have

reo(i) = ¿2 <rintPn,
(«)

where the Pn(n = 0, +1, ±2, • • • ) are pairwise orthogonal projections, with

a sum equal to 7; we denote the subspace corresponding to Pn by 9Jc„. Since
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Win ED o, we have fflnEDir\D2; in what follows we show that putting i/+,

i/_ for the closures of the operators Hi+iH2, Hi — iH2 resp., we have HJ$fln

CSOÎn-i, H+WnQWln+i (» = 0, 1, 2, ■ ■ ■ ). What follows is essentially an

adaptation of the reasoning of 5f on [l, p. 603]. If x = «'x'+«"x" («'. «" real,

and x'> x"£2i)> then Hx = a'Hx'+a"Hx" on 93, and since the restriction of

any Hx to 3) is essentially self-adjoint, the same relation holds for any

fEDxC\Dx... We have

X = go(Oxi[go(0]_1 = cos/Xl + sin/X!,

X = go(0x2[go(0]_1 = - sin^, 4- cos/x

and putting Ut = exp( — itH0)

Hx = UtHiU-t,       Hf = UtBtU-t.

Therefore, if gEWln, then

eintUtHig = cos tHig + sin tH2g,

eintUtH2g = - sin tHig + cos tH2g

and therefore

UtH+g = e-^+V'H+g,

UtH^g = e-^-'Xtf-g.

Hence

- (£7, - I)H+g = - («-«»+»« - \)H+g,
t t

- (Ut - /)//_g = - (<r-««-i>< - l)7/_g.
t t

Since in each case the right-hand side tends to a limit, if t—>0, we have H+g,

H-gEDo, and

27077+g = (re 4- I)H+g,

HoH-g = (re - l)F_g

which proves our assertion.

Furthermore, we have

g2(0xi[g2(0]_I = sh/Xo4-ch/Xi

We put 7J, = exp iH2t. If g is in the domain of the operators HiH¡ (i,j = 0, 1,2),

then

HiUtg = Z74(sh tHo + ch /ffOg;

hence
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7/i j— (Ut - I)g\ = r1 sh lUtHog + rKch tu, - I)Hig.

If /—>0, then the right-hand side tends to Hog+iH2Hig. Therefore, in par-

ticular, whenever gEWln, we have

iHiHi - HiHi)g = - Wog

and

(//_//+ - H+H-)g = 2Hog

and finally, by definition

(*) (//-//+ + H+HJ)g = 2(0. + Hl)g.

In what follows, we denote the operator ring consisting of all bounded

functions of Q by R. Let us consider the decomposition of 77, with respect to

the weight function <r(X), into a continuous direct sum of Hilbert spaces /£,

to which the ring R belongs. For this we write

H =  f   0 Hid*.
Js>

We may obviously assume that it is the multiplication by X which cor-

responds to Q. We put £0= ]CPo(X); then dim £o(X) is a measurable func-

tion of X, and it is positive almost everywhere. For otherwise we would have a

projection PER such that £o£ = 0. Let n be the integer with smallest absolute

value, for which £„£^0. We suppose that re>0; the opposite sign can be

treated in an analogous way. If/^0, £„£/=/, then 77_/=0, since //-/GüDín-i

and P commutes with 77_ and £n-i. But using relations (*) we get

0 = //+//_/ = iQ + n(n - 1)/)/ = 0.

In other words,/ is an eigenvector of Q, hence/=0, since we assumed that

Q does not have nontrivial eigenvectors, which gives a contradiction.

In the following we suppose, by possibly restricting our representation Ta

to a subspace, the projection of which belongs to £, that dim £o(X)

= m>0 im =1,2, • • -, +»). Then we can find m vectors e(i> (¿=1,2, • • • ,m)

in 9Jîo, such that if

e(i) =   f  e^i^ido-iX))1'2
J R1

then e(i)(X) form a complete orthonormal system in the subspace SOîo(X) of

/7x belonging to the projection £0(X). We put

,(•) (¿) Ai) r»    (¿) ,        .(i) «   (t)
fo    = e    ,        f,    = H+e    ,    and    r_, = 77_e
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and

f? = j Ax)(<MX))1/2 (* - 1, 2, • • • ; i = 1, 2, • • • , m).

We are going to prove that (/^'(X), /iW(X))=0, a.e. with respect to a, if

either i^j or S9it. For this it is enough to show that under this assumption

(Aff\f/))=0 for any AER. If s^t this is evident, because %RS and 9J?, are

orthogonal and each of them reduces every operator of R. To prove that

(Afi\ ft) = 0 observe that this is true for k = 0 since /ó" = e(i) and by virtue

of our choice of e(i) (i—1, 2, ■ ■ ■ , ire). Suppose now that our statement has

already been proved for k—1, 2, • ■ ■ , s. Then using relations (*) we get

(AfH\,fl+\) = (AH+fl^H+fJ) = (ABS+f?,f?)

= (AQf;\fli)) + s(s+l)(tffli)) = 0.

Similar reasoning applies if 5<0. Moreover we have for any AER

(Afs+\,fl+\) = (A(Q + s(s + \)I)f?,f.\

Incidentally, this gives that Q = 0, because otherwise we would have for an

appropriate .4 >0, ,4G£and 5 = 0, | \Al'2ft)\\2 = (QAff?, fP )<0. Therefore in
the following we may assume that the a measure of the half-line ( — °°, 0)

isO. PuttingPj(\)=-(i+j(j-1)) 01,2, • • • ;XèO),andrs(X)=-Il5=ip}/2(X)
(5=1,2, • • ■ ) we have

||/8(i,(X)|| - r.(X)

almost everywhere with respect to <r. Similarly

(Af-LiJ-Li) = (A(Q + s(s + 1)1)/-., f-1).

Hence we get

||/_, (X)|[ =. r,(X)    almost everywhere.

Summing up, after omitting a set of (/-measure 0, and putting

e0  (X) = e   (X),

el%) = -^¿TW,
r,(\)

«ÍÍÍO) =—~/-?(X)   (5=1,2, .-.;*- 1,2, ••-,»),
r,(X)
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we get that for each X the sequence {es (X) j forms an orthonormal system in

the space H\. We are going to prove now that for each X this system is com-

plete. To see this, it is obviously enough to show that the system

{■4/s(i>} 04 G£) spans the Hilbert space 77. But this follows from the fact

that for a fixed s the set {^4/?'} (^4G£; i=l, 2, ■ ■ ■ , m) spans the space

üDís. To prove this, we proceed again by induction. For s = 0 the statement

is clearly correct. Let us suppose that it holds true for O^k^s. If g^O,

gG9tts+i and iAfXi, g)=0 iAER,i=l,2,---,m), then iAff, 7/_g)=0,
and hence, by virtue of our assumption, 7/_g = 0. But as we know, this im-

plies that g is a nontrivial eigenvector of Q, which we excluded. Similar argu-

ment applies to a negative s.

Now let us define the operators 77^ (X), 77? (X) and 77^ (X) (/=1,2, ■ ■ ■ ,m)

in the Hilbert space /£ (X — 0) by

Ho\\)e?(\) = seTi\),

7/f(X)e!y)(X) = (X + sis + DÏ'MU»,

H-\\)e(sJ)i\) = (X + sis - l))1/îeu)1(X)

and

H-\\)e?\\) = 7/f (X)e!°(X) = H-\\)e?\\) = 0

if i^j (5 = 0, ±1, +2, • • • )• We denote the closure of the operators

(l/2)(/7Ï)(X)+77(Î)(X)) and -(¿/2)(77?(X)-7/íí(X)) by T/'/^X) and H?(k)
resp. Now we use the result of [l, §§6-8], according to which there exists a

continuous irreducible unitary representation T^QC) of © in the subspace of

77x generated by the vectors e^(X) for a fixed j, such that

r£(()(X) = exvi-ÜHfiX)) Ü = 0, 1, 2)

and the corresponding Casimir operator equals X times unity. We put 77,(X)

= ¿CjLi i/j (X); then Z£(X) is the infinitesimal generator for the one-

parameter subgroup £8,(i)(X) (¿ = 0, 1, 2) resp., where £a(X) is the representa-

tion of © on 7/x, which is a direct sum of the pairwise unitary-equivalent

representations Ta\\) (J=l, 2, • • • , m). We are going to show that for

each aG© we have Ta= ^£a(X). Since every element aE® can be repre-

sented in the form go(h)gi(t2)go(h) [l, 4.12, p. 595], it is enough to show

that

exp(-UHj) = 22 exyp( — itHj(\))

for/ = 0, 2. We begin with/= 2. Observe first that putting

^-/^XXoVÍX))1'2,
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we have

Hie1/' = f [ff2(X)rer'(X)(<MX))1/2 (re = 1, 2, • • ■ )•

Now using the fact that the support of <r is contained in a finite interval

[O, A] (since we assumed that Q is bounded), and taking in view the expres-

sion for p„(X), we can conclude that for a>l there exists a K>0, not de-

pending on re and X, such that

\\[H2(X)]ne{J\\)\\ <Ka" (0 5¡ X = A),

and

||[Hi]%.W)|| <Kan (« = 0,1,2, • • ■)•

But this proves that the series

^ (-¿Qn[/z2(x)MJ)

n=o «!

and

-    (-*<) [ff2] e.

n=o re!

strongly converge to exp( — itH2(\))e¡\\) and exp( — itH2)e, resp., from

which we conclude easily that

exp( — itH2)e,    =   I   exp( — UH2(\))eB  (X)(d<r)

(j=l,2,---,m;s = 0,±l, ±2,- • • ).

This implies the same relation for Aéf (AER) instead of ef1; but since ele-

ments of this form span the space, this is true for any f EH. The fairly simple

proof for the case j = 0 we leave to the reader.

Hence the statement, announced at the beginning of Bl, has been proved

for the case P_e = /. If P_e= — I, the proof is very much similar. Here we have

Pmo = Z) <riU+1/2),P»+1/2.
(»)

We denote the eigenspace of II0 belonging to the eigenvalue

re + 1/2 (n = 0, ±1, ±2, • • • )

by 3JÎ„+i/2. After having performed the same reductions as before, we choose
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m vectors e(i) (* = l, 2, • • • , m) in $U?i/2 and define

fl/2=e     ,    fi/i+, =   (//+) /l/2,     /l/2-, =   (//-) /l/2 (i =   1, 2,  •   •  • ).

Here we can show that not only Q~=0, but even Ç^//4. The sequence

{/i/2+>} has the same properties as the sequence {/„} had before, with the

only exception that putting

P.(X) - (X - 1/4 + s2) is =1,2, ■■■;\> 1/4)

and

we have

r.(X) ̂ II P/ (a),      n'W-IIp/W,
i-i y-o

fi/i+.(X)|| - r.(X),       ||/i/2_.(X)||^r/(X).

The definition of the operators 77+(X), H-ÇK) and H¡P(\) is as before, only

the range of s must be replaced by the half-integers, in the corresponding

formulas. Otherwise the same argument literally applies to the present case.

Finally, for any representation Ta, one can find a projection £ commut-

ing with it, such that ££_„ = £ and (7-£)£_e= -(1 -P) which settles the

general case. We leave the proof of this statement to the reader. Since for the

Kronecker product of two irreducible representations £_«= ±7, actually we

shall make use of these cases only.

B2. £e/ Ta be a unitary representation of © on the Hilbert space H, such

that its Casimir operator Q is of the form ql, where q is a real number. Then Ta

is a direct sum of a finite number of representations Tf (i=l, 2, • • • , m),

each of which is a multiple of some irreducible representation. The irreducible

representations belonging to Ta*\ T%\ i^j, are inequivalent.

It will turn out that the maximum value of m is 3.

Since most of the reasonings needed in the following have already been

used, we can be quite short. We use the same notations as before.

Suppose first that £_e = 7. If we have /GS0Î, (s=l, 2, • • • ) /^0 and

Z/_/=0, then 0 = //+//_/= (s(s — l)+g)/, or q= — sis— 1); the same is the

situation if /eäJU./^O and H+f=0. Therefore, if g>0, then SOco^O). Let
e(>) (¿=1, 2, • • • , m; 1=jw^ + ») be a complete orthonormal system in it.

We put

/.   = (B+) e    ,

,«)        «)
fo=e,

f.. = (HJ)'eW is - 1, 2, • • • ; » - 1, 2, • • •, m).
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Then we have (f/\ fr)=0 if Í9áj or s^t. Denoting the subspace of H,

spanned by the sequence {/s(i)} with a fixed i, by 9í¿, we have H= 22?-i®^i,

and the part of P„ in any of these subspaces is an irreducible representation

with Q = ql. But combined with the assumption that P_e = /, this character-

izes a representation of type C^ uniquely (cf. end of §A). If g<0, then

a»o=(0), because if H0f=0 and f^O, then H_H+f=qf, or \\H+f\\2 = q(f, f),
which implies q — 0. Let t be the smallest positive integer such that at least

one of the equations H0f=tf, H0f= —If possesses nontrivial solution. In both

cases we get q = t(l—t). Suppose first that 3^(^(0). Let e(i) be a complete

orthonormal system in Wt- We form the sequence

/.(<) = (7/+)S_íe(<) (s = t, t + 1, ■ ■ ■ ; i = 1, 2, • • • , m).

Since \\fi%i\\2=(H-H+f¡), ff) = (»(» + 1) -t(t-1))^]2, jf never vanishes.
Putting iifti for the subspace spanned by the vectors {ff*; s^t}, one has

22?-i®c3}i= 2«ai©3^«- Moreover, one sees at once that each 5ft¿ is in-

variant and irreducible under the joint action of the operators Ho, H+, i/_,

hence it is an irreducibly invariant subspace under Ta. Since the range of the

spectrum of //o in any of the subspaces is m = t, t + 1, ■ • ■ , the part of Ta in

ïïîi is of the type D/ (cf. §A). Similarly, one can show that the part of Ta in

^„ii©SJî-u is a multiple of the representation D¡ . This proves our state-

ment for the case g<0. Finally, if q = 0, then the part of Ta in SJio is the trivial

representation, and one easily proves, by aid of the reasoning just applied,

that the part of Ta in its orthogonal complement is a multiple of Dy and Di.

The case when P_e = — / can be treated in an analogous manner. Finally, in

the general case, one applies the reduction mentioned at the end of the pre-

vious section.

B3. We formulate the following Theorem I in a more general form than

needed in the future, since its proof is essentially the same.

Theorem I. Let Ta be a continuous unitary representation of © such that

T-„ = I or £_<,= —/, and Q its Casimir operator. Denoting the ring of all

bounded functions of Q by R, there exists a sequence SOL (« = 0, 1, 2, • • • ) of

pairwise orthogonal subspaces the projections of which are in R and whose sum

is the whole space, with the following property. If P^"' denotes the part of Ta in

3)în (w = 0, 1, • • • ), then T^ is a discrete direct sum of representations of the

discrete series and of the trivial representation ; 7¿B' is an n-fold copy of a repre-

sentation Sf1, such that, denoting the subspace and Casimir operator correspond-

ing to the latter by H and Q resp., we have

h = J e //xW1/2,     sin) = 22 Sa(\),

where 5„(X) is a continuous irreducible representation in H\from one of the two

continuous series, and in addition, Q= 22Q00 = 22^1-
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For the proof we again take the case £_e = 7 first. We can write Q in the

form Qo+ 22?=i A»(?i., such that the Qv are pairwise orthogonal projections in

£, Qo does not possess nontrivial eigenelements, and QoQv = 0 (f = 1, 2, • • • ).

Now take those from among the projections (7„, for which X„ is of the form

i(l — s) (s = l, 2, • • • ), and denote their sum by £0. Then we may conclude

by aid of what was proved in B2 that the part of Ta in the corresponding

subspace is a discrete direct sum of representations of the discrete class and

of the trivial representation. If X, is not of this form, then, again by B2, it is

>0, and the part of Ta in the corresponding subspace is a multiple of a

representation of the type C^. On the other hand, by §1 we can find a se-

quence of pairwise orthogonal projections £„ (ra= 1, 2, • • • ) in £, the sum

of which is orthogonal to 22> Q», sucn tnat the Part 0I ^« m ^ne subspace

corresponding to Pn is a continuous direct sum of unitary representations,

each of which is an «-fold copy of an irreducible representation from one of

the two continuous series. But adding to Pn those Qv, with X„>0, which are

sums of n irreducible projections, the new projection obtained in this way

obviously possesses the properties claimed for Pn above ; we retain for it the

same notation. To describe the situation in detail, we denote the subspace

corresponding to £„, the part of Ta in it and its Casimir operator by 9Jîn,

Ti"1 and Qn resp. We may put

mn =   f  © //x(oV)1/2    and    Tan) = X ^"'(X),

such that Qn= ]C(?n(^) = ]CX£ What concerns Tan)(\), we have a system

ei<}(X) (¿=1, 2, • • -, k; s = 0, ±1, ±2, • • • ) of vector functions, such that

for each fixed X the corresponding sequence of vectors forms a complete

orthonormal system in 77x, and, denoting the subspace spanned by the

sequence ef (X) for a fixed i by 90^', and the part of £<B)(X) in it by 5"'(X),

the latter is an irreducible representation with a Casimir operator (7(i)(X)

= 2^X7. Defining for i?¿j a unitary mapping U from W\ onto SDÎx' by

£ef(X)=e,w(X), then evidently Sf (X) goes over into ^'(X). Putting finally

mw = f © mfido-)1'2 a = i,2,---,n),

we have 5D?„= XX1 9JJ(i)- The parts of Tan) in any two of these subspaces are

unitary equivalent, and any of them, along with the corresponding subspace

possesses the properties claimed for San) and £7 in the formulation of Theorem

I. Of course, we have 22n=oPn = L

The proof for the case £_„= —7 is similar, and details will be omitted.

As we shall see later (cf. also Introduction), in the decomposition of the

Kronecker product of two irreducible representations of © either no repre-

sentation from the principal continuous series occurs, or every representation

from the principal continuous series occurs with the same multiplicity, and a
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weight function, equivalent to the Lebesgue measure. The representations of

the type Eq appear, similarly to the representations of the discrete series, as

discrete direct summands and, as one can see from the classification in §A,

they occur in the case P_e = / only.

In the following 9Jîo and SCTii/2 will have the same meaning as in (1) and (2).

The purpose of Corollaries A and B is to give an indication for the effective

determination of the irreducible components of Kronecker products. The

reason for their being formulated in the following way was given above.

Corollary A. Let Ta be a unitary representation of © such that T-e = I,

and Q its Casimir operator. Suppose that the part Qo of Q in SDîo ti a direct

sum of an operator Q0, which is an n-fold copy of an operator with a simple

spectrum, and of an operator of the form

m

22 X..P» (m = 1, 2, • • • , » ; X, =■ 0; X„ t¿ XM for v ̂  p).
v=l

Then Ta is a direct sum of two representations Tl and Pf. T\ is again a direct

sum of two representations. The first is an n-fold copy of a representation, which

is a continuous direct sum of irreducible representations Ta(X) of type E\ if

0 <X < 1/4 and Cl if 1/4 ^X, with respect to a weight function, equivalent to the

spectral resolution of Qa. The second is a discrete direct sum of dim P,-fold

copies of irreducible representations of type E^ if 0 <X„ < 1/4 or C^ if X, ̂  1/4.

Pf is a discrete direct sum of representations of the discrete series and of the

trivial representation. The number of times Dt (D/) occurs in T% equals the

dimension of the subspace

{/; H-f = 0, Hof = sf}  ({f; H+f = 0, H0f = - sf} resp.)        (5 = 1, 2, • • • ).

Corollary B. Let P„ be a unitary representation of © such that P_e = —I,

and Q its Casimir operator. Suppose that the part Q0 of Q in the subspace of

SÍJÍi/2 orthogonal to the closed subspace {/; fE^iin, H-f=0} is an n-fold copy

of an operator with a simple spectrum. Then Ta is a direct sum of two representa-

tions T\ and Tl-Tcais an n-fold copy of a representation, which is a continuous

direct sum of irreducible representations Ta(K) of type Cx/2(X>l/4) with respect

to a weight function, equivalent to the spectral resolution of Q0 in the interval

fi/4, 00 ]. T% is a discrete direct sum of representations of the discrete series

and of the trivial representation. The number of times Dt (D~/) occurs in Pf

equals the dimension of the subspace

[f; H-f = 0, Hof = sf}  ({/; H+f = 0, H0f = - 5/} resp.)    (5 = 1/2, 3/2, • • • ).

The proof for both corollaries can easily be put together from the con-

siderations of §§B1-B3).

C. Kronecker products of irreducible representations. For a theory of
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tensorial (Kronecker) products of Hilbert spaces we refer the reader to [8,

Chapter II]. Here we restrict ourselves to a few simple remarks which will

be useful in the following.

Cl. Suppose that A, is a self-adjoint operator on the Hilbert space

Hj (j=l, 2) resp. We put t/,°' = exp( —¿.4,0- We form the Hilbert space

H=Hi®Hi and define Ut=U¡1)®U¡2) (-»</< + »). Suppose that

Ut = expi — iAt). If fjEDAj 0'=L 2) resp., then fi®f2EDA and we have Aifi

®fi) = A if i ®fi +/i ®Aifi.
For the proof we recall that for any one-parameter group Ut = expi~iAt)

on a Hilbert space 77, we have

lim — (Ut — I)f = — iAf strongly,
<->o  /

HfEDA,

and conversely, if the limits on the left-hand side exist, then /G7>x, and it

equals —iAf. But

1
U,ifi®fi) + iiAxfi) ®fi+fi® iiAifi)

- (t/((1) - I)fi ® U¡2)fi + iiAifi) ® fi

+
1 (2)

— (Ut    -I)fi+fi®iAif2
1/

iít-^0

from which our statement easily follows.

C2. Let £¡f'' and T^ (0<ffi, a2< + °°) two irreducible representations

of the type C\ or E„ in the Hilbert spaces 77Sl and Hqi resp. We know (cf.

[l, p. 604]) that for any irreducible representation T¡¡" of the above classes

there exists a complete orthonormal system e¡ ij = 0, ±1, ±2, • • • ), such

that

Hoe¡ = jej,

H+ej= iq + jij + l)Yl2ej+i,

77_e,= iq+jij- l))1/2ey_i

(for the definition of 770, 77+ and //_ cf. §B). We denote the notions corre-

sponding to £Í¡) by //¿°, 77+', Z7(i' and ef resp. (¿=1, 2). Now we form

the unitary representation Ta=TaQl)®Ta,*) on Htí®Hq¡. Then the system

{e^'OeJi2'} (j, k = 0, +1, ±2, • • ■ ) is a complete orthonormal system in

773l®77,2; in particular, the system {ef ®e_)} (j = 0, ±1, ±2, ■ ■ ■ ) is com-

plete orthonormal in 9Tf0. From (1) we can conclude that
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Hof

(*) H+f

H-f

where Ho, H+ and //_ correspond to Ta, f is a finite linear combination of

members of the system jej1'®«®} < finally, we simply wrote í/q1', H+\ 7/-'

instead of flj0®/, /Ï+0®/, /P^®/, etc.

C3. Let Q be the Casimir operator corresponding to Ta, and Ço its restric-

tion to SDÎo. Moreover we put fm = ei1' ®e(-L (w = 0, ±1, ±2, • • • )• Next we

assert that Qo is the closure of its restriction to the set D of all finite linear com-

binations of the system {fm}.

For the proof observe that, using relations (*) above, an easy calculation

gives

Qofm =   (1/2) (¿7+77- 4" H-H+)fm =  Am+l,m/m+l 4" hm,mfm + hm-l,mf m-1,

and hm,n = hn,m. Hence [l, Lemma 3, p. 608] the closure of the restriction

of Qo to SOîo is self-adjoint, which proves our statement.

An analogous result holds for the product of any two irreducible represen-

tations (if P_e= —/, 9J?o is to be replaced by 3Dii/2). But since its proof re-

quires trivial modifications only, we omit it.

Chapter II. Products of representations of the

continuous series of L3

In what follows we shall investigate the decomposition of the product

Ta = PÓ4l)®Pii2) (a£@), where the representations

TÏqi\ T™ (0<qi,qi< + <°)

defined on the Hilbert spaces Hq, and Hq% resp. are from one of the series

C\ or £j (cf. LA). We know that their Casimir operators equal qj. and q2I

resp.

(A) It follows from Theorem I in I.B that our representation is a direct

sum of two representations Pf and Tl, made up of representations of the

discrete and continuous series resp.(7). Now we are going to show that Pf

is a discrete direct sum of representations, containing exactly one summand from

each of the classes Dt, DJ (5=1,2, • • • ) resp. By Corollary A in I.B we have

to show that for fEHQl ®Ht2 and a positive integer s the equations H0f=sf,

//_/=0, and H0f= —sf, H+f=0 have exactly one solution resp.

We recall that with the notations of I.C.2 we have i/o = //0 4-//q ,

H+ = H<-+)+Hf, //_ = //™4-//i?) on finite linear combinations of the system

{ßj1'®^2'}. In the following we deal with the case 5>0 only; the opposite

(7) It will turn out later (cf. II.B.4) that Ta does not contain the trivial representation.

= H?f+H?f,

= H?f+H?f,

= H^f+Hmf,
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sign can be settled in an analogous way. It is clear that H0f=sf implies

v->      / W -,    <2\ v->    I      I2
f =   2-,  a;(ey    ® e,-j), ¿^   \ ai\   < +  °° •

y=—» j=—»

Writing out the condition for 77_/=0 purely formally, we get

rr    r V"> ,„(')    0)    _       <«).      . A .   (I)   _,    „(2)    (2)

j=— 00 J=—00

Z, ,     ... ,\\1/S.   O)    _,      (2),«y(?i +j0 - !))    («y-i ® *.-y)
y=—oo

+   ¿  «,-(?* + (/ - í)(/ + 1 - í))1'2(ey(1)® eZi-i)

=   £   (ay+i(<Zi+/(/+l))1'2
y=-eo

+ ay(?2 + ij -s)ij+l- s)j")(e? ® Zi-i) = 0.

This gives

«y+i(?i +/(/ + l))1'2 + ay(02 + (/ - s)ij + 1 - s))1'2 = 0.

Consequently, if ao^O, then ay5¿0 (j= +1,   +2, • • ■). Furthermore, for

n=\, 2, ■ ■ ■ , a„+i = Y„ai, with

r- = (-D-(n(
\/q* + (j + 1 - s)(j - s)y

?!+/(/+  1) )")

= (-1)" IIy-i

1 -
2s

+
S+Ç2    }

j + 1        jij + 1)

1 +
Ci

j(j + 1)

Hence ( — l)nyn~Cn-\ where C does not depend on n. Similarly a-n = bHao

with

Sn  =(-1)- n
y=o

1 +
?i

yo- +1)
i + 2*  , s2 + s + °2

/ +1    jij +1)   j

Hence ( — l)B5B~Ci«-*, Ci not depending on n. So we have

.¿2   k|2< + ».
J—«

1/2

(»-1,2, ..-).
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Conversely, one easily verifies that the element

, V> ,   (1)   Ä      (2),

J=-00

satisfies all of our requirements. We have already seen that it is uniquely

determined by them.

We shall see later that PÍíl' ® P£'2> does not contain the trivial repre-

sentation (cf. 4.a.j3 in §B).

B. Our next objective is to investigate the spectrum of the restriction

<2o of the Casimir operator Q of T^^^T^ to SD?o (cf. Corollary A in I.B).

In order to do this, first we represent Wo as a certain Hilbert space of func-

tions by aid of Bargmann's description of representations of the type C°q and

£g. Then Ço will turn out to be a certain linear differential operator of second

order. We know that through the spectral properties of Ço we shall be able

to determine the part T*a of Pa5l) ® P^, made up of representations of the

continuous series.

Bl. First we recall the description of the representations T^ (0 <q < + oo )

(cf. [1, §§6, 8]).
(a) For g2:1/4, T^EC^. Let Hq be the Hilbert space of the square-

integrable functions, with respect to the Lebesgue measure, over the circum-

ference P1 of the unit circle, with a norm

(/,/) - — f2T\f(P)\2dp.
¿ir J o

For

-CD' i-i'-w-i.
we put w(a, <j>)=a+ßei't', and define <p~' = a<p through the condition

eiV = ei*w<a^ ,p)/w(a, <f>).

Then for f EHqTf is defined by

(T{aq)f)(p)=[p(a,p)]ll2+'f(a-lp)

where o = (1/4—q)1'2, Im <r>0 and p(a, <j>) = \w(a, <p)|2. Observe that if

/¿-toll     o     \
foto = L ...) (0úrú2ii)

\0 e1T'2/

then

(TZnfHP) = /(<*>+>)•
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(b) If 0<g<l/4, T® is of the type £,. The Hilbert space 77, is defined

as follows. For cr= (1/4 — a)1/2>0, we put

K.(4>) = 2-'/27r(£(<r, 1/2))"1(1 - cos p)"-1'2

where £(x, y) is Euler's Beta function r(x)r(y)/r(x+y). This function is in

£l(£1); moreover we have

1   r2*-I     KM)
¿r J o

in

e-™*dp = Xm(«r)

where

™  /j - 1/2 - o\

and  Xo(<r) = l, Xm(<r) =X_m((r)(w = 1,   2, • • • )•   Hence   for  any  square   in-

tegrable function

f(<t>) ~ Z ameim*

we have

(/,/%=tt^tt rr r ^ - P)f(p)7W)dPdp
(27r)2 Jo    •/ o

00

= 22 ^mi<r) | aro|2 < + ».
—00

We define Hq as the completion of £2(£1) with respect to this norm. For

a sufficiently regular fEHq we have again

In particular

iT(a°)f)ip) = [ßia,p)]m+'fia-1p).

(T^f)(P)=f(P + T).

In both of the cases (a) and (b) putting —¿7/y = Ay (j = 0, 1, 2), the latter

are differential operators, defined as follows

a a
Ao =- >        Ai = cos A-(1/2 + a) sin <p,

dp dp

a
A2 = sin p-1- (1/2 + <t) cos p.

dp

B2. (a) Now we are going to determine the space WoEHqi®Hqi. Here

we have to consider three cases.
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(a) gi, q2^ 1/4. Then i/5l ®//32 is the space of square integrable functions

over ^XT1. Since for/ in this space and a = go(r)

(Tlq¡) ® TÏ92)f)(d,i, pi) =f(Pi + r,p2 + t),

SDîo is the subspace consisting of functions of the form f(<bi — 4>2). Of course,

this is isomorphic to L2(P1) in an obvious way.

(ß) gi^l/4, 0<g2<l/4. If fEHqi®//,2 is sufficiently regular, then we

have

11/112 " 7T77 Cf     í   f^1' p2)f(Pi,PÍ')Ka(p2' - pí')dPidpídpl'
(2ir)i Jo    Jo    Jo

(<T=(l/4-qi)ll2>0).

Similarly, as in (a) one sees that if in addition /Gäfto, then it must again be

of the form f(4>i — cj>2), and in this case we have

^ n 2jr    /» 2ir    /» 2ir

IMI2 = 7TT7 f(Pi - Pi)fWzrPIr)Ka(P2 -Pl')dpidpldpl'
(2ir) 'Jo    Jo    Jo

= 77T7 f(P')fW)Ki(4>' - p")dp'dp".
(2t)z Jo    Jo

Hence Wo can be identified with Ht2 in a natural way.

(7) 0<gi, g2<l/4.  Proceeding as before, fE*33io is again of the form

f(4>i-<p2). Putting (r = (l/4-gi)1'2, r = (l^-^)1'2, we have

IMI2 = 7T77 f      iff   /(*i - *2')/^1 - *")*'(*i - *i')^r(*» - 02')
(2tt)2 J 0    J 0    J 0    J 0 .   ..   .

■ dpidpidpi dp2

■{ t» 2t    /» 2ir /  1      /* 2t \

= 7^T7 I       I     /WÏW   r I     «".(«i - 02 - P)KT(p)dp)dPidp2
(2tc)1 Jo    Jo \2tJo /

1 /» 2tt     /» 27T

= 7T77 I       I    f(Pi)fW)K,,r(<t>i - pi)dPidp2
(2ir)i Jo    Jo

where Kc¡T(di) is l/2ir times the convolution of the two integrable functions

K„(<j)) and KT(<p). We denote the completion of this by HC,T. For convenience

we extend this definition as follows. We define i/„,T as Li(T1XT1) if a and r

are both purely imaginary or zero, and Hq if a is purely imaginary or zero,

and t= (1/4 —g)1/2(0<5<l/4), or conversely. Then summing up, in all cases

9Q?o can be identified with i/„iT in a natural way if a= (1/4 — gi)1'2 and

r = (l/4 — q2)112 (the sign of the square-root has already been disposed of in

each case). Finally, putting Xro(<r) = l (m = 0, ±1, ±2, • • ■ ) for a purely

imaginary or zero, and X„,T(m) =\m(a)\m(j) (m = 0,  ±1,  ±2, • • • ) for er, r
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either purely imaginary, zero, or between 0 and 1/2, the system of functions

em(P) = (X^,T(w))-1/2eim*

forms a complete orthonormal system in Ha,T. For/, gG/£,r we denote the

inner product by (/, g)a,r.

(h) Next we compute the Casimir operator Q of TaQl) ® Ta,i} and its re-

striction Ço to 9JÎ0. Let f(pi, pi) be a sufficiently regular function in 3Dî0, and

Ay' and Aj2' (j = 0, 1, 2) the operators, described in Bl, acting on <pi and 4>2

resp. Then for any such /

n flW   J_    A°V fA(1)_LA(2V /A(1)     L    A(2N2Q = (Ao    + A0  )   - (A!    + Ax  )   - (A2    + A2  ) .

Inserting   the   expressions   for  Aj1'   (¿=1,   2;  j = 0,   1,   2),   and   putting

A=a + l/2,B = T + l/2 ((r=(l/4-0l)1'2j r = (1/4-ga)1'2), we get

( a2 a
6 = ?i + q2 + 2 \ (1 - cos^! - p2))-B sinOx - p2)-

I dpidp2 dpi

a )
+ A sin (0i - pi)-AB cos ipi - p2) > .

dp2 )

Putting for reasons of convenience £= —Co/2, we have for a sufficiently regu-

lar fEH.,T

Lf = (1 - cos p)f" + i A + B) sin pf + iAB cos <p - (öl + q2)/2) f.

Furthermore, for f(p) = (1 -cos d>)-^+^l2vip)

7(1 - costf.)-^"2^) = (1 - cosp)-^+T)i2L°vip)

where

¿ d» 1 1
L°v(4>) = — (1 - cosp) — + i—iA - B)2-)(1 - cos<b)v  (Og^ 2x).

dp dp        4 4

Finally, observe that as a consequence of I.C.3 Ço is the closure of its

restriction to the sufficiently regular elements of H„,T.

B3. In order to investigate the spectral properties of Ço, we are going to

determine the operator (<2o — X/)-1 = £(X) in HCT for Im X^O. First of all, we

determine the solutions of L°f—X/=0. Making the substitution t = sin2 <p/2

(OU<i>úr) in this equation, it goes over into

d2f      (3 \df      (1       (A-B\2       X\
r(l-r) —+(-2r) — -(-(-)   +— )/=0.

dr2      \2 / dt      \4       V     2    /        2r/

Performing   the   further   substitution   /(r) = Tvg(r)   with   p = — 1/4 +

(1/4 + 2X) 1/2/2, we see that g(r) satisfies the hypergeometric equation
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(*) r(l - r) p- + (c - (a + b + l)r) % - abg = 0
drl dt

with

a =1/4+(a- r)/2 + ß/2,     b = 1/4 - (<r - r)/2 + ß/2,     c=l+ß

where ß= (1/4 + 2X)1'2. What concerns ß, we shall specify the value of the

square root later.

As it is well known (cf. [2, p. 247]), the two linearly independent solu-

tions for (*) are (0<rgl)

yi(r) - F(a,b,c,r),

yt(r) - t*-»F(\ + a - c, 1 + b - c, 2 - c, r).

Since sin2 p/2 = (1— cos (j>)/2, the two independent solutions for the equa-

tion Lof—X/=0 in the interval 0<p^r are given by

fi(P, X) = (1 - cos0)-1'4+"/2£(a, b, c, sin2 p/2),

f2(P, X) = (1 - cos<¿)-1/4-"/2£(l + a - c, 1 + b - c, 2 - c, sin2 0/2

with the values of a, b, c given above.

Putting fiP) =fi2r-(p)i0¿(b^2r), one sees at once that (£°/)r = £°(/r);

therefore/i and/2 give two independent solutions for L°f—X/=0 in the inter-

val r^p<2r too. So finally we can determine two independent solutions

giip, X) and g2(p, X) of L°f—X/=0 in the interval (0, 27r), such that gi(<£, \) =

/i(0, X) for O<0^7r, and g2(0, X) = (gi(0, \))T = gi(2r-<p, X) if O<0<2tt.
In the following we denote the class of functions on the circumference of

the unit circle, indefinitely differentiable and vanishing in a neighborhood

of 0, by C. As it is known, for/GC the expression

Fip,\) = l/D(K)igiip,\) f fiP)g,iP,\)dp
J o

+ f i(*, A) f )(P)g2ÍP, \)dp) (0<p< 2t)
J A

gives a solution of the equation £°£—X£=/, where

gi(Ti A)    giir, X)

tffcr.X)    g2'(x,X)
/7(X) = 2 = - 4gi(T, X)gi'(x, X),

taking in view that gi(ir, X) = g20r, X), and g( (r, X) = — g{ (r, X).

Observing that, putting a(<£) = (1—cos <¿>)-<<,+T"2, we have for /GC Q0a (p)f

= -2aip)L°f, it is clear that
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(*)

*f(P,\) = a(4,)/D(\)(g2(d>,\)  (   gi(P,\)(a(P))~1f(P)dp
J o

+ *i(*,X)  f   g2(PA)(a(P))-W)dP)
J o

satisfies Qotyf—\<Stf=f, provided that we replace 2X by —X in p occurring in

gi and gi. Concerning the function p we make the following choice. Let Z0

be that domain of the complex plane which is the complement of the half-

line 1/4-tí (í^O). In the future p will denote that branch of (1/4-X)1'2,

which is positive for X<l/4. It is singlevalued and regular everywhere with-

in Zo- For Im X>0 we have Re ^>0.

It is clear that if X is chosen in such a way in the upper half-plane that

Re p is sufficiently large, then ^/(p, X)EHa,T and thus we may write St/ =

P(X)/, where £(X) = (Q-X/)-1(8).

Before proceeding with the analysis of the operator Q0, we compute

gi(x, X) and gi (it, X). For this we recall the following three relations concern-

ing the hypergeometric function (cf. [2, p. 251, and p. 267, example 8, p. 248,

example 2]).

(a) If Re(c-a-&)>0 then

r(c)T(c-a-b)
I (a, b, c, 1) = - •

T(c - a)T(c - b)

(ß) If Re(c-a-b)<0 then

F(a,b,c,r)      T(c)T(a + b-c)
lim   -= - •
r-i-o (1 - t)^--6 T(a)T(b)

d ab
(y) — F(a, b, c,r)=-F(a+l,b+l,c+ 1, r).

dr c

Since in our case c — a — 6=1/2, and

gi(P, X) = (1 - cos 0)-1'4+"'2P(a, b, c, sin 2p/2) (0 < d> Ú tt)

we have

gi(r, X) = 2-1'*+«/2P(a, b, c, 1)

r(i4-M)r(i/2)
= 2-1M+W2—_:- -

T(3/4 4- 0 - r)/2 + /t/2)r(3/4 -(a- r)/2 + p/2)

and

(8) With a Re /a sufficiently large */(£, ^EL^T1), and the latter can be identified with

a dense subset of Ha,T-
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g{ ir, X) =   lim   (m/2 - 1/4) sin 0(1 - cos 0)-1'4+"/2£(a, 6, c, sin2 0/2)
0->ir-O

+ 2-1'4+"/2   lim (sin 0/2) (cos 0/2) F'ia, b, c, sin2 0/2)
oi->ir— 0

ab
= 2-1/^/2   lim   (l — T)i/» — /?(a + 1, ¿ + 1, c + 1, t)

t->i-o c

r(i + M)r(i/2)
_ 2-1/4+o/ä_-_.

T(l/4 + («r - r)/2 + ,i/2)r(l/4 - (<r - r)/2 + M/2)

Observe that both gi(7r, X) and gí (r, X), and hence D(K) are regular

functions of X in Z0, since in that case l+jit^O.

B4. In the following we denote the subspaces of T/„,T generated by the

systems of functions {cos«0} and {sinw0J (n = 0, 1, 2, • ■ • ) by H*r and

77~Tresp. It is clear that they are orthogonal toeach other and /7,,T = //£Tffi//~T.

Moreover, each of them is left invariant by Co. We denote the part of 0> in

77^T and 77~T by Q0+ and QQ~ resp. Our chief objective in this section will be to

investigate their spectrum, which will solve the question of the irreducible

representations of the two continuous series occurring among the irreducible

components of our Kronecker product (cf. Theorem and Corollary A in LB).

It turns out that the spectrum of both are simple and fill out the interval [1/4, » ],

where they are equivalent to the Lebesgue measure. If in addition Re(<r+r) > 1/2

(in which case, of course, a and t both are real), Qa+ possesses an eigenvalue

Xo = (l-(<r+r-l/2)2)/4, 0<Xo<l/4. In other words, Ço is the direct sum

of a two-fold copy of an operator with an absolutely continuous spectrum,

and possibly of a scalar multiple of some one-dimensional projection.

(a) Case of 7£jjr. (a) To prove that the spectrum of Q0+ is simple, it is

enough to show that the linear span of the sequence (<2o)"/o (w = 0, 1, ■ ■ • ),

where/o(0) = l, contains the system {cosnp}. For this it is obviously

enough to show that Q cos v<p is an even trigonometrical polynomial of degree

v + 1. For v = 0 the statement is trivial. We assume it true for 0 ¡Spa« — 1 (w> 1).

It is clear that Q cos «0 is at most of degree w + 1; but an elementary com-

putation shows that the coefficient of cos(w + 1)0 is — (n + 1/2 + a) X

(w + l/2+r)/4?!i0, which proves our statement.

iß) Next we discuss the part of the spectrum of Qo in (~ œ, 1/4)- As in

B3 we put again £(X) = (Qo-X/)-1 for ImX5¿0. UfEC,fT=f, then/G/C-
and (£(X)/, f)c,r — hf(K) is an analytic function of X for Im X^O. Moreover,

since Qo^O, this is true even for X<0. Now we are going to prove that h/(K)

possesses a continuation over the segment [0, 1/4), which is regular except

possibly for a pole at 0<Xo<l/4, if Re(cr+T) > 1/2. We know that for Re ß

sufficiently large £(X)/=^/(0, X), where M'/(0, X) is defined by expression (*)

in B3. We have, along with /, [%(p, X)]T = %ip, X). Next we form the

Fourier coefficients an(K) of 4'/(0, X) (/ being kept fixed, we omit it in the

following).
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1    riT 1    rr
«»(X) = — I     *(0, \)e~in*dp = — I    \P(0, X) cos re0¿0,

2ir J o t «7 o

a»(X) « a_„(X) (re = 0, 1, 2, • ■ • )(»).

a„(X) possesses an analytic continuation, which is regular except possibly

on the interval 0, oo, since it is (Xy,T(reî))~1/2 times (R(X)f, em)<,,T (lor the defini-

tion of em, cf. 2.a). Next we shall find an analytic expression for a„(X), valid

for each X such that ReX<l/4 or ImX>0; we denote this domain by D0 in

the following. First we write ^(<f>, X) in the form

(1 - cos0)-<*+'»2-1'4+'*'f¥i(>>X).

Suppose that f(<¡>) vanishes if 0 <<b — 5. Then for such a <b, taking in view

that for 0<<p^w

gi(p, X) = (1 - cos0)-1'*+<"2P(<i, b, c, sin2 0/2),

we have

*!(>, X) m F(a, b, c, sin2 <p/2)/D(\) f   (a(P))~1gi(P, X)f(P)dp
J o

from which it follows immediately that Vi (0, X) =0. Putting a(X) =*i(0, X)

and $(<p, X) = *i(0, X) -aQi), we have

a„(X) = an (X) 4- an (X),

where

and

an\\) = a(X)/ir f\l - cos*)-«^'1-1'*4-'» cos«0<70
J 0

an\\) = 1/r f   (1 - cos0)-("+T)/2-1/4+"'2 4>(0, 2) cos «0 ¿0 (re = 0,1, 2, • • • ).
•To

We are going to discuss these two expressions separately.

For Re 5 > 0 we have the formula

T  J 0

2'-1'2B(s, 1/2)
(1 - cos 0)8~1/2 cos w0 dp =-■-— Xm(i)

where, as before,

T(x)T(y)

B(-x>y) = w   -l   \Y(x + y)

(») We suppose (cf. footnote 8) that in these formulas X is restricted to an appropriate

domain, such that *,(<£ X) is integrable.
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and

m // — 1/2 — j\
Us) - 1,       Xm(s) = II (--{tt—) im = 1,2, ■■■).

y_l \J -  1/2 + s/

Hence, supposing X chosen in such a way that

/     1 1       1     \
Re^--i<T + r)+- + jßj>0,

we have

Ci,           aiW-^Bjs, 1/2)
am (A) =-Xm(s)

with s= — (<r+r)/2 + l/4+ju/2. But the factor of a(X) in this expression for

a^'(X) is an analytic function of X in 770, except possibly for one pole, when

s = 0, since always Re s> —1/2. On the other hand we have

a(\) = 1/£(X) f   iaiP^giiP, X)fiP)dp.
Jo

To make it easier to prove that expressions like this are analytic, we recall

the following well-known facts. We denote by Wi(0, X) and w2(0, X) those solu-

tions of the equation £°w+Xw/2 = 0, for which

UiiP, \) = 1,       u{ (0, X) = 0

and

M2(0, X) = 0, «2'(0, A) ■  1.

Then w<(0, X) (¿=1, 2) are continuous jointly in 0 and X, if the former

varies over a closed subset of the interval (0, 27r). Moreover, m«-(0, X)

(•—1, 2) is an entire function of X for any fixed O<0<27r. In our case we

have

gi(0, A) ■ gi(jr, X)«i(0, X) + g{ ir, X)m2(0, X)

and

g2(0, X) ■ gi(7T, X)«i(0, X) - glir, X)m2(0, X).

Since 7>(X) = —4gi(7r, X)g/ (r, X) (cf. B3), we have

a(\) = - lßg{(r,\) f TiaiP))-1UiiP,\)fiP)dp
J o

+ 1/4*,(*, X)  f *iaiP^UiiP, \)fiP)dp.
«7 o
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After this, in order to prove that o(X) is analytic in D0 it suffices to remark

that in this case both Re(3/4±(ff-T)/2 4-/i/2) and Re(l/4± (<r-r)/2-b*/2)
are positive, hence (cf. the expressions for gi(ir, X) and g{ (ir, X) in (3)) l/gi(7r, X)

and 1/gi (it, X) are regular.

For later use observe that a(X) remains bounded if 0 <X < 1/4, X—»1/4.

Thus we have shown that ^'(X) is analytic in Do, except possibly for one

pole in the interval (0, 1/4).

Next we are going to discuss the expression

(2) 1    CT
am (X) = — I    (1 - cos 0)-("+^2-1'4+"/24»(0, X) cos trup dp    (m = 0, 1, • • • ).

IT   J 0

First of all, we observe that this expression exists for any X£7-}0. For if

O<0<S we have

$(0, X) = (F(a, b, c, sin2 0/2) - l)a(\) = O(02)

and Re( —(ct-[-t)/2 —l/4+ju/2)> —3/4. Let us suppose that we have chosen

€>0 in such a way that 0<e<5, and a bounded domain D with a closure

75CP»o. We put

1   c'
Fi(\, e, m) = — I    (1 - cos p)-^"2-1'^»'2^, X) cos w0 dp

IT   J 0

and

1   /•«
F2(\,e,m) = — I    (1 - cos0)-('+T>/2-1/4+"/24>(0,X) cosw0¿0.

IT   J t

We recall that $(0, X) =^i((p, X) — a(X), where a(\) is analytic in D0, and

that

(1 - costi-W'hPifaX) = l/D(X)(g2(p, X)  f   (a(P))~1f(P)g2(P, \)dp
J o

n 2t

+ gi(4>, X) I     (aWryWgM, X)#).
J *

Making use of the expression of g¿(0, X) by aid of the functions

Ui(4>, X) (i=l, 2) described above, we may conclude that the integrand in

P2(X, e, m) is of the following type. It is a sum of expressions of the form

Vi(P, X) f fi(P)wi(P, X)#
J o

and

/> 2t MP)w2(p, \)dp (0 ^ É)
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where /<(0) are continuous and vanish if 0 ^ 0 ^ §; z>¿(0, X) and

Wii<p, X) (*—1, 2) are continuous if the pair (0, X) varies over the product

of the interval [e, r] with D; finally, for each fixed e^p^r, v,i<p, X) and

w,(0, X) (¿=1, 2) are regular functions of X in D0. But from this it easily

follows that for each 0 <e and m £2(X, e, m) is regular too in every point of £V

Next we turn to £i(X, e, m). We write

Fia, b, c, x) — 1 = £'(a, b, c, x')x (0 < x' < x).

Suppose we have already proved that | £'(a, b, c,x)\ ^M, if X varies in D and

0<x<7, 7 fixed, with an il7 depending on D only. Then we have the follow-

ing estimate for £i(X, e, m) :

M C'
|£i(X,€,f»)|  =S—        (1-cos0)1'4+(Re""2d0

2rJ o

which tends to 0 with e, uniformly in \ED. Since a®(X)=£i(X, t, m)

+ £2(X, e, m), this proves that a^QC), and hence am(X) =a™)(X)+a®(X) is

regular in 7>o for each m = 0, 1, 2, ■ • ■ .

In order to prove the statement concerning £'(a, ô, c, x) used above, we

recall that for \z\ <1 we have [2, p. 249]:

)      r1-     t"-H
-b)Jo

Tic)
Fia, b, c, z) =- /""'(I - ty-^il - zt)-"dt

T(b)T(c

provided that Rec>Reo>0. This condition is fulfilled in our case, since

Re(c-o) = Re(3/4 + (cr-T)/2+Al/2) è 1/2 if XG7>o. From this formula we get

ar(c) r '
£'(a, 6, c, z) =-       l"(l - O'-'-'Ü - zty-Ht.

Tib)Tic-b)Jo

The factor of the integral in this expression is a continuous function of X, if

it varies over D ; denote the upper bound of its absolute value by Mi. Putting

moreover a and ß for sup Re a and inf(l, inf Re(c — b))(KED) resp., we have

^ Mi f  il
J o

| F'ia, b, c,i)|   ¿Mi       (1 - 0i_1(l - yt)-a~ldt = M
J o

(0^x^7; \ED), where 17 depends on D only, which proves our statement.

For later use observe the following two facts, which are easy consequences

of the above discussion. First, given any compact set C inside 77o, we have

|a®(X)| =K, where K depends on C but not on m. Secondly, for each

m, am(k) remains bounded if X—>l/4 from the left along the real line.

Summing up, we have am(X) = (£(X)/, em)0T(X„(w))~1/2 for Im X>0, and

a(X)2-1'2£(i, 1/2) (2) ,
am(X) =-X„(j) + am (X) (m = 1, 2, • • • )
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where s= —(a+r)/2 + l/A:+p/2, and am(X) is regular in D0, except possibly

for 5 = 0.

To obtain an expression for h/(K), which gives the analytic continuation

of (RQi)f, f),,T over Do, observe that we have

ÇH /j - 1/2 - z\      r(l/2 4- z)

/_i \j - 1/2 + z)      r(l/2 - 2)

where e„(z)—>0 if re—»4- oo, uniformly on any compact subset of the complex

plane, not containing the points zt= —(k + l/2) (k = 0, 1, 2, ■ • • ). Since

Re 5 = — Re(ff4-r)/2 4-1/44- (Re p)/2> —1/4, we have for any compact subset

CCP'o |XB(s)| <K(C)n112 (»=1,2, • • • ), where K(Q does not depend on ».

Suppose now that we have

00

/(0) = S a»«in*-
— 00

We recall that by virtue of our assumption, according to which f(<j>) is in-

definitely differentiable, if w—>+<x> o„—>0 faster than any negative power

of re, and that \t,T(m) = 1. Therefore the following two series

a(X)2.-i/2 «
/i(X) =-2-1 Xm(s)dn\„,T(m)

IT _oo

and

/ä(X) = 23 am Qi)äm\,jT(m)
—CO

represent regular functions in D0. Putting

Ä,(X) = B(s,l/2)fi(X)+f2(X),

we have h/(\) = (R(\)f, f)a,r for ImX>0; therefore it is this function which

gives the desired analytic continuation over the whole of Do. It is regular

everywhere, except possibly for that Xo, 0<Xo<l/4, for which 5 = 0.

Before continuing the discussion of the spectrum of Qo, we recall the

following well-known theorem (cf. [13, 3.5, p. 47]):

Let

F(\)
r°°  do-(t)

—— (Im X * 0)
J _oo    '  —   X

where er(i) is of a bounded variation over the real line. Then P(X) is an an-

alytic function of X on the upper and lower half-plane, and for íi<í2 we have

1 rh
— lim   I     Im F(t + iS)dt = <r(h - 0) - <j(h + 0).
■k a->o J t,
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Furthermore, let us recall that for fEC we have (/,/),,rá(l/27r)/o2,r|/(0)| 2d0,

which implies that C is dense in 77ff,T (and hence in 7/^T and H~T) along with

£2(£1)- Next we put Qo=f1atdEt, and consider the following two cases.

(ßi) Re((7+T)^l/2. In this case Re 5>0 if OgX< 1/4, hence A/(X) is regu-

lar everywhere in 7>0. Let us choose u such that 0 <u <l/4. Since

f(\)=   f "      " (Im X ̂  0)
,    / - X

we have by the theorem quoted above

2 1 cu
||£„-o/||ff,r = — lim   I     Im hf(t + iS)dl = 0,

r  6->o J _„

since from Im A/(X) = Im(£(X)/, /)(,,s0 for X<0, it follows the same for

0 iSX < 1/4, and by virtue of Ç0+ ̂ 0, £_u = 0 for u> 0. Since C is dense in //+T

and u was arbitrary 0<w<l/4, we may conclude that if Re(er+T) 5= 1/2,

then the spectrum of Qq is empty in the interval 0¿t< 1/4.

ißi) a+T>l/2. In this case the equation 0 = 5= -(o-+r)/2 + l/4+/x/2

has the solution 0<1/4-(o"+t-1/2)2<1/4, at which point £(5, 1/2) has a

simple pole. Since for X?£XoA/(X) is regular, we may conclude as above that

Et is constant for 0 <i < 1/4, except possibly for a jump at £ = Xo. To see that

this jump does exist, consider the relation

a(X)2«-1'2£(5, 1/2) (î)
(R(\)f, eo) = ^-^-^ + ao   (X) (X G D0)

r

deduced above. This expression can be regular at Xo for a fixed /G C, only if

we have

/I  2T

(a(4>))-lg*(t, *o)f(P)dp.
0

We know that £(X) is regular in T>0 and therefore the factor of the integral

in the above expression cannot be 0. Hence from the validity of the above

relation for any fEC, f=f it follows that gi(r, Xo) =gi(r, Xo) =0, which is

impossible (cf. the expression for gi(7T, X) in B3).

Observe that by (a) the eigenspace belonging to X0 is one-dimensional.

Summing up: // a+T> 1/2, then the spectrum of Q„ in the interval 0^t< 1/4

consists of a simple eigenvalue 0 <X0 < 1/4 determined by\0 = 1/4 — (c+t —1/2)2.

(7) Our next objective will be the discussion of the spectrum of Qq in the

interval [l/4, + » ]. First we prove that every point of this interval belongs to

the spectrum of Q0+. The idea of the proof is as follows. We show that for any

fEC(~\Ht,r the function defined for ImX>0 by (£(X)/, f)„,r possesses an

analytic continuation A/(X), which is regular at every point of the interval

fi/4, + » ]. Assuming this assertion proved, we show that the above state-
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ment concerning the spectrum of Qo is a simple consequence of it. As a mat-

ter of fact, we can assume l/4<íi<í2 to be chosen in such a way that

£i2_0 — Ety+OT^O; for otherwise Et would be constant, except for at most two

jumps 0<Xo<l/4 and 1/4, which is impossible by (a). We have

||(£i2_o - £<1+o)/||2 = — lim   f    lmh](t + iô)dt = — f \{(t)dt,
17   S->0   J|, If   J t,

where Vf(i) = lm hf(t) —0. By a former remark C is dense in Ht,-,, hence for

an appropriate choice of /, the left-hand side of the above equation differs

from 0. Therefore in this case vf(t) does not vanish identically when 1/4 <i<

4-00. Moreover, since by our assumption hf(X) is regular at every point of

this interval, v¡(t) is positive except possibly for a finite number of points in

every closed interval [íi, i2] with l/4<íi<í2. This evidently proves our state-

ment concerning the spectrum of Qo .

Actually this reasoning shows that the spectrum of Qt is equivalent to the

Lebesgue measure in the interval [l/4, 4- oo ]. For this we recall that given a

self-adjoint operator A =flxtdEt on a separable Hilbert space H, its spectrum

is called equivalent to the Lebesgue measure if a Borel set £ is of a (Lebesgue)

measure 0, if and only if it is of a measure 0 with respect to all measures,

corresponding to the nondecreasing functions ||£¡/j|2 (fEH, — oo <í < 4- °=).

It is not hard to show that the spectrum of A is equivalent to the Lebesgue

measure, even if in the above definition we restrict ourselves to a family of

functions {||£(/||2}, where/ runs over a set H'EH, which is dense in H.

Since C is dense in Ht,T, our assertion concerning the nature of the spec-

trum of Qo" becomes clear.

Now we turn to the proof of the fact that (R(X)f,f)a,T(lm \>0,fECr\H+)

possesses an analytic continuation hf(X), which is regular at every point

l/4<X<4-°o. We recall that according to our choice of p as a branch of

(l/4-X)1/2, Reju>0 if ImX>0 and gO if \ = x+iy, ygO, x>l/4. In other

words Re p changes its sign from the positive to the negative if X crosses

the interval [1/4, 4- oo ] in the direction of the half-plane Im X <0. We choose

a point Xo, 1/4 <Xo < 4- =o, which we keep fixed in the following. Next we re-

sume the reasonings of (ß) step by step, and show that the h/(\), regular

around X0 can be constructed in a similar fashion as it was done in (ß). We

use the notations of (ß) without further explanation, and whenever possible,

avoid unnecessary repetitions.

We again consider the expressions

(X,,T(»0r1/2(P(X)/, em) m am(\) = £> (X) + <£' (X),
(m = 0, 1, • ■ • )

0m(X)  ■ ff-m(X).

We know that the functions ö^(X) (t=l, 2) are regular for Im X>0. In

particular, we have
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U, a(X)2-1/2£(5, 1/2)
am (X) =-Xm(í).

r

Since /i is purely imaginary for Xo, we have in this case Re s > 0, and

Re(l/2±(<r-T)/2+jLt/2), Re(3/4±(o--T)/2+;u/2)>0. From this it is clear

that if X varies in a sufficiently small neighborhood of Xo, l/gi(ir, X) and

1/gi (r, X), and hence a^(X) is a regular function of X. Moreover, for Im X>0

the latter coincides with its definition given in iß).

In the same way we can show that a®(X) depends regularly on X, provided

that X is close to Xo in such a way that Re ß> — y, where 7>0 is a suitable

constant. We have |am'(X)| <K everywhere in this neighborhood, with a £

not depending on m and X, and for Im X>0, a®(X) again is identical with its

previous definition.

Finally, under the same restrictions on X we have an estimate |X„(5)|

<Knk, where K, k>0 do not depend on n.

Summing up, if

then the series

f(P) = E anein*,

22 am(X)amX„,T(wO

is a uniformly convergent series of functions, analytic if |X—Xo| <5, where

5 is sufficiently small. Denoting its sum by h/(K), it is clear that for Im X>0

it is identical with (£(X)/, /)«-,,-, and thus it gives an analytic continuation of

it, if ImX^O.
Since Xo was arbitrary in the interval (1/4, +»), the existence of the

analytic continuation of (£(X)/, f)„,T with the required properties has been

established.

In order to complete the discussion of the spectrum of Q0+, we have to

show that Et is continuous at the point 1/4. This question has still been left

open.

Assuming the opposite, we put £0 = £1/4+0 —£1/2-0, and we can suppose

that fEC(~\H+ and m have been chosen in such a way that (£0/, em)„,T7£0.

By virtue of (a) and iß) we have for 0<X<l/4, Xf^Xo

ai a2 r°°   vu)
(R(\)f, em),,r =- + —- + -^- dt,

Xo - X      1/4 - X     J mt - X

where a2= (£0/, em)„,T, and v(t) is a function, integrable over [1/4, + » ], de-

pending on /and m. Hence in order to arrive at a contradiction, it suffices to

prove that
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lim    (X - 1/4) (R(\)f, em)a.r = 0.
X->l/4-0

But (cf. (ß)) this amounts to showing that

^Va(\)2^2B(s,l/2)        (2)     "I
hm    (1/4 - X)-(- am (X)    = 0.

X—1/4-0 L X J

By remarks made during the discussion of a(X) and a^'(X) we know that they

remain bounded when X approaches 1/4 from the left. Therefore it suffices

to prove that limx.1/4_o (l/4-X)B(s, 1/2) =0. Since 5= -(o-4-t)/24-1/44-

p/2, this is clear if (<j+t)/2 ^1/4; but even in the remaining case we have

(l/4-X)B(s, l/2)=0((l/4-X)1'2), which completes the proof.

Putting together the results of B4.a (a)-(y) we have obtained the follow-

ing: The part Qo of Q in the subspace Ht,T of i/„,r has a simple spectrum, which

is equivalent to the Lebesgue measure over the interval [1/4, 4- oo ]. The number

1/4 cannot be an eigenvalue of QÖ. The spectrum of Qo is empty in (— oo , 1/4),

except when a + t > 1/2, in which case QÖ has an eigenvalue Xo = 1/4 —

(<x+t- 1/2)2.

(b) Case of Qö. In order to complete the discussion of the spectrum of Co

in T/j.t, we now consider its part Qö in H~T. Since much of what follows is

closely parallel to the corresponding steps in (a), we can sometimes be quite

short.

(a) In order to show that the spectrum of Qö is simple, it suffices to prove

that the linear span of the system (Qo)nfo (»=1,2, • ■ • ) where fo(<b) = sin mcp

EH~T, contains the system {sin»z0}. For this it is enough to show that

Q sin v<f> is an odd trigonometric polynomial of degree v + 1. Assuming the

statement true for l^v&m — l (m>l), an elementary computation shows

that Q sin m<p is odd and at most of a degree m + 1; moreover the coefficient

of sin (m + l)4> is —(m + l/2+a)(m + l/2+r)/4:9i0, which completes the

proof.

(ß) Since Co" ̂ 0, when discussing the part of its spectrum in (— co , 1/4),

we may restrict ourselves to the interval 0^X<l/4. Next we show that for

fEH~C\C, the function defined for IraX^O andX<0by (P(X)/,/)ff,Tpossesses

a continuation h/(K), which is regular for 0^X<l/4. Since h/(\) is real for

X<0, so is it in [0, 1/4). Proceeding as in a.ß, this result yields

1 /» u

||£u_o/|UT lim — j     lm(R(t 4- U)f,f),,r)dt = 0
S--0   IT   J -u

for any fECC\H~ and 0<»<l/4, provided that Qö =f-*tdEt, which implies
£¡ = 0 for i<l/4. In other words, the spectrum of Qö is empty in the interval

(-«,1/4).
In order to obtain the required continuation, we are again going to study

the Fourier coefficients of ^(0, X), corresponding to a fixed fE C, f = —/. We
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know that for Re ß sufficiently large SK0, À) is square-integrable, and £(X)/ =

4>(0, X) (cf. B3). Furthermore in our case we have ^fT=— ty. Therefore,

writing as in a.ß

we get

*(0, X) = (1 - cos 0)-<»-'>/2-1/4+>'/2*1(0, X)        (0 < 0 < 2tt)

1   clT
am(X) = — * (0, \)e~im* dp

2r J o

r% J o

(« = 1, 2, • • • )
r

(1 - cos0)-(<r+r)/2-1/4+"/2^i(0, X) sinmpdp

and a_ro(X) = -a„(X).

Observe that the expression on the right-hand side exists for any X in D0,

where the latter again denotes the union of the half-planes ImX>0 and

ReX<l/4. To see this, it suffices to remark that ^1(0, X) is continuous at

0 = 0, and the function (1 —cos 0)~((r+r)/2_1/4+"/2 sin m(p is integrable over

[0, r]. Moreover, for Im X>0 we have am(X) = (£(X)/, em),,T(\„im))-11*. Next

we show that öm(X) depends regularly on X in the neighborhood of any

O^Xo<l/4. The proof is almost identical with that proving the analyticity

of a®(X) in the same interval given in a.ß.

Suppose that/(0) vanishes for 0^0 ^5; choosing 0<e<5 we put

1   /••
£i(A, e, m) = — |    (1 - cos 0)-<"+'>'2-1/4+"/2xj/1((¿)) X) sin w0 ¿0,

x¿«7 0

1   rT
£2(X, e, m) = — j    (1 - cos 0)-<"+''"2-1/4+>''2*1(0, X) sin m<p dp.

riJt

The arguments for the analyticity of £2(X, e, m) around any XoG/^o are the

same as those for the analogous expression in a.ß and will not be repeated.

To complete the proof of our statement, it suffices to show that for any com-

pact set CCT>o I ̂ i(P, X) I g M, if 0 á#á« and XG C, where M depends on C
only. Since in this case

ViiP, X) - Fia, b, c, sin2 0/2)/7J(X) f   iaiP))~1fiP)giiP, \)dp
■7 0

and the factor of £ is an analytic function of X in D0, it is enough to show that

I £(a, b, c,x)\   ^ M,

if 0^x^7, 7 fixed, and XGG, with an M depending on C only. But this is

easily achieved by aid of the integral representation

Tic)      rl
Fia, b, c, z) =-—- I   /»"»(I - O'^Kl - zt)-°dt

K '   ' Tib)Tic-b)Jo
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valid for Re c> Re b>0, \z\ <1, as was done in asimilar case in a.j3. Thus we

have proved that am(X) depends on X regularly, if X£PV

Keeping e, 0<e<S fixed, we choose a compact set CEDo. Then we have

| P2(X, e, m) | <Ni (m= 1, 2, • • ■ ), with an TYi depending on C only. Further-

more

| Pi(X, e, m) | ^ — I   0(1 - cos 0)-3'41 *i(0, X) | ¿0 < mN2,
■K   J 0

where 7Y2 again depends on C only. Hence we get |am(X)| <Km (m= 1, 2, ■ • •)

for any fixed compact set CEDo, with K independent of X and m.

For later use observe that for each fixed m am(X) remains bounded if X

tends to 1/4 from the left along the real line. Thus if

OO

/(0) = Z ameim*
—oo

the series

00

A/00 = X ^m(\)âm(Xa,r(nt))
—CO

represents an analytic function in DQ, which for ImX>0 coincides with

(P(X)/,/),,,.
Hence the proof of the statement made at the beginning of the present

section (ß) has been completed.

(7) As the final step, we consider the spectrum of Qö in the interval

[I/4, 4- =0). The result is as follows: The spectrum of Qö fills out the interval

[1/4, 4-00) and is equivalent to the Lebesgue measure. Its spectral resolution is

continuous at the point 1/4. This is a consequence, in the same way as in a.7

of the following fact: For any fECC\H~tT there exists a function h/Qi) which

coincides with (P(X)/,/)„-,,- lor Im X>0, and which is regular at each point of

the interval (1/4, +00). To prove this statement, we again consider, as above

in (j3), the functions am(X) (m = 1, 2, • • • ) for a fixed X0, l/4<Xo<4-°o.

Then one has to show first that they are regular functions of X in a common

neighborhood around X0, and secondly that the rate of growth of the sequence

I am(X) I, if X is restricted to this neighborhood, is not faster than a fixed power

of ire. To establish all this the reasonings of (j3) require only trivial modifica-

tions, so that we omit further details. Similarly as in a.7 the only thing we

have to take care of is that Re p changes its sign when X crosses the real line

between 1/4 and + 00 in the direction of the half-plane ImX<0. But all

considerations of (ß) remain valid if Re p> — 7, with a sufficiently small

fixed positive 7; but this condition is satisfied if X remains sufficiently close

to Xo.

Finally, making use of the remark made in (ß), according to which for
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each fixed w|aOT(X)| remains bounded, if X—»1/4 — 0 along the real line, we

may prove as in a.7 that 1/4 cannot be an eigenvalue for Q0~.

Thus the proof of the statement concerning the structure of Ço, made at

the beginning of B4, has been completed.

Hence, combining the results of ILA and II.B with Corollary A to Theo-

rem I, we get the following:

Theorem 11. £e/ Ta be the Kronecker product of two irreducible representa-

tions of £3 taken from the continuous series C\ and Eq, with the Casimir oper-

ators qj and q2I (0 <qx, q2 < + ») resp. Then Ta is a direct sum of two repre-

sentations T°a and £f. If Re(o-+r) ^ 1/2, where 0 = (1/4 — gi)1/2 and

t = (1/4 —a2)1/2, then ££ ¿5 a two-fold copy of a representation, which is a con-

tinuous direct sum, with respect to a weight function equivalent to the Lebesgue

measure, of all representations of the principal continuous series; otherwise the

direct sum of a representation of the previous type with an irreducible representa-

tion of the type £3o, where g0= 1/4— (a+r—1/2)2. T^is a discrete direct sum of

irreducible representations of the type 77/, D~ (5=1, 2, • • • ), each of them

occurring once.
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