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1. Introduction. The purpose of this paper is the investigation of approxi-

mate solutions to a Tricomi problem for the partial differential equation

(1.1)    Lu = K(y)uxx + uyy + a(x, y)ux + b(x, y)u„ + c(x, y)u = f(x, y),

where ii is a continuous function which is positive for y positive and negative

for y negative. Thus the equation is elliptic, parabolic or hyperbolic according

as y>0, y = 0 or y<0.

For y<0 the equation (1.1) has real characteristics given by the two

families

(1.2a) dy/dx= (-K)-1'2,

(1.2b) dy/dx= - (-K)-1'2.

Let A and B be two points on the x-axis with x¿ <Xb- By D we denote the

open domain bounded by the characteristic Ti of the family (1.2b) passing

through the point A, the characteristic T2 of the family (1.2a) passing through

the point B, and by the simple arc T+ in the upper half-plane with endpoints

at A and B. (We will consider only bounded domains.)

The Tricomi problem for the equation (1.1) on D is the problem of finding

a function u, continuous in D, which satisfies the equation (1.1) in D, and

which takes on the boundary values

(1.3) u = pi on r+,        u = pi on Ti,

where (¡>i and 02 are given functions. Such a problem was first solved by

Tricomi [l] for the case K(y) =y, a = b = c=f=0.

We approximate (1.1) by a difference equation

(1.4) LhU=f

in a function U which is defined on a mesh region Dh depending on the orig-

inal domain D. The problem of solving the differential equation (1.1) with

the boundary conditions (1.3) is replaced by the problem of solving the

difference equation (1.4) with suitable boundary conditions, and investigat-

ing the behavior of U as the mesh size tends to zero. Filippov [2] proved that

if the Tricomi problem for the equation
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yuxx + uyy = f(x, y)

has a solution u in D which is sufficiently smooth, then the solution to an

appropriate difference equation converges to u as the mesh size tends to

zero. The techniques used in this paper, as in [2], depend essentially on deter-

mining under what conditions the solution of the difference equation satisfies

a maximum principle, in analogy with the maximum principle for the differ-

ential equation. The latter may be stated in the following form: if Lu^O in

D and m is a nondecreasing function of y on Ti, then the maximum of u on

D, if non-negative, is attained on T+. Such a principle was first discovered

by Germain and Bader [3 ] for the Tricomi equation

yuxx + uyv = 0,

and was extended by Agmon, Nirenberg and Protter [4] to the equation (1.1)

with the coefficients satisfying a complicated set of inequalities. In the pres-

ent paper, we find that solutions to the difference equation have the maximum

property provided that the coefficients of the difference equation satisfy cer-

tain inequalities which are consequences of the conditions of [4] away from

the x-axis. However, near the x-axis, conditions in addition to those of [4]

are necessary in order that the difference equation have the maximum prop-

erty.

Using the maximum principle we prove that, for a sufficiently fine

mesh, the difference equation has a unique solution U for arbitrary functions

/, <pi and <bi, and that U converges to the solution u of the differential equation

(1.1) with boundary conditions (1.3), provided that u exists and is twice

continuously differentiable in D. In §6 we prove that under certain restric-

tions on K near the x-axis, and on the domain D+, the part of D for which

y^O, the regularity conditions on the derivatives of u at the boundary of

the region may be weakened.

2. The difference problem. We assume that K is of class C3i~D) with

K(y)>Q for y>0 and K(y) <0 and K'iy)>0 for y<0. Furthermore, we sup-

pose that a and b are of class C'(7_7) and c and/ are of class C(D).

Integrating the equations (1.2) with respect to y, we obtain the character-

istics of the differential equation in the form x—x0= +G(y), where

(2.1) Giy) =  f  [-Kin)]^dr,; y g 0.

We divide the segment AB into TV equal parts, each of length h, and through

each of the points xk = XA+kh (k=l, 2, • • • , N—l) we draw the character-

istics
x — xh = + Giy).

These characteristics, together with the characteristics Ti and r2, intersect

at the points
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(nh \
xa + — + kh, -yj ;    k = 0,l,---,N-n;    n = 1, 2, • • • , N,

with the ordinates satisfying

G(-yn) = nh/2; n=l,2,---,N.

Taking for y<0 the points given by (2.2), and for y = 0 the points of the

form (xA + kh, mh) (k, m integers) which lie in D, we obtain a mesh region

Dh. For y>0, we define the neighbors of the mesh point (x, y) to be the four

mesh points (x+h, y), (x — h, y), (x, y+h) and (x, y — h). We call the bound-

ary Th of Dh those points of Dh in the upper half-plane for which not all four

neighboring points belong to Dh, together with all points of Dh which lie on

Ti, and the point B. The totality of points of Dh which are not boundary

points we call the interior mesh region Dh. Let DH and D£ consist of all points

of Dh for which y<0 and y>0, respectively, and let Y~ and T^ be the points

of Th for which y <0 and y ^0, respectively. Finally we let 7«, be the points in

Dh lor which y = 0.

We now introduce a difference operator Lh which acts on any function U

defined on Dh. For any point (x, — y„) of D~ we define

1     (   2Xn+1         /        h \
LhU(x,—yn) =-<- Ulx--,  — y„_i]

XnXn+l  vX„ + X„+i \ 2 /

2X„ /        h \ )
+ -———- Ulx- —, -yn+i) - U(x - h, -yn) - U(x, -yn)\

XB + Xn+i      \ 2 / ;

(2.3)       + a(x, -yn) — { U(x, -yn) - U(x - h, -yn)\
h

+ Hx'-yn)^hn7Áu(x-T ~y"-)-U{*-T' -^+1)}

+ c(x, -yn)U(x, -y„),

where Xn = y»—yn-i and yo = 0. At a point (x, y) of Dt we let

LhU(x, y) = K(y) — { U(x - h, y) - 2U(x, y) + U(x + h, y)\
h2

+ - { U(x, y-h)- 2U(x, y) + U(x, y + h)\
h2

(2.4)

+ a(x, y) — { U(x, y) - U(x - h, y)}
h

+ K%,y)— {U(x,y+ h) - U(x, y - h)] + c(x,y)U(x,y).
2«
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and at a point (x, 0) of 7» we define

2   (    y2 h Ï
LhUix, 0) = —<-^— U(x, h) + —-U(x, -yi) - U(x, 0)}

hy2 \h + y2 h + y2 )

(2.5) + a(x, 0)— [U(x, 0) - U(x - h, 0)}
h

+ b(x, 0) — { U(x, h) - U(x, -yi)] + c(x, 0)U(x, 0).
h + y-t

The problem of finding the solution u oí the differential equation (1.1)

in D subject to the boundary conditions (1.3) is replaced by the problem of

finding the solution U of the difference equation

(2.6) LhU=f

on the region Dh, which satisfies the boundary conditions

(2.7) ff = *ionrî,

U = pi on r«.

We have assumed here that pi is a function which is defined and continuous

on the domain D+={(x, y)G7?|y^0}. The equations (2.6) and (2.7) form

a system of linear algebraic equations in the unknown values of U at the

points of Dh, in which the number of equations is equal to the number of

unknowns.

The following result establishes a relation between the difference operator

Ly and the differential operator L for functions of class C2(77).

Theorem 2.1. Let u be of class C2iD). Then on Dh, LhU-^Lu uniformly as

h-*Q.

Proof. Using Taylor's theorem in a neighborhood of the point (x, — y„) of

Dh, we find from (1.1) and (2.3) that for y<0,

Lu — LhU    g K(-yn) +
h

4X„Xn+l

bä 2k
+-«1 H-«2 + «3

2AnAn+l An + An+i

h I  I i

— \b\  \üx
2   '    '(2-8) +l{^+w7777;M^ +

2 2

An + An+1       iii |

H-J-     \b\     |    Uyy\    ,
2 (A„ + X„+l)

where all unbarred functions are evaluated at (x, — y„), and the barred partial

derivatives denote values of the functions at points (x, y) which satisfy

x — h<x<x, —yn+i<y< —yn-i- The quantities ei, e2 and e¡ are the moduli of
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continuity of uxx, uxy and uvv, respectively. In the same way we obtain for

y > 0, the estimate

(2.9) \Lu-Lku\  ^K<-i+(l + — |8|U + y \ a\ | üxx\

and for y = 0,

h 1

(2.10) \Lu- Lhu\  = u + — | a \  \uxx\   + — \ b \ (h + y2) \ ûvy \ .

By hypothesis, K, a, b, uxx and uyv are uniformly bounded on D. Moreover,

as h—»0, y2, ei and e3 tend to zero, uniformly on D. Hence (2.9) and (2.10)

imply that Lhu tends uniformly to Lu as Ä—>0, for y^0. For y<0 we must

evaluate the coefficients appearing in the estimate (2.8). For this it will be

convenient to introduce the inverse function to G. More precisely, if x = G(y)

is the equation of the characteristic of the family (1.2b) passing through the

origin, then we can express it also as

(2.11) y=-H(x).

The relation between H and K can be obtained by differentiating (2.11) to

obtain

(2.12) H'(x) = [-K(y)]-"2

at each point (x, y) on the curve (2.11). Hence H, which is defined for

0^x^(xb—xa)/2, is an increasing function with iî(0)=0, and H' is a de-

creasing function with H'(0) = + ». That is, H(x)>0, i7'(x)>0 and H"(x)

<0 for x>0. Moreover, since we assume that K has three continuous deriva-

tives, H will have four continuous derivatives for x>0.

Let us now return to (2.8). First we note that

/nh\ (nh — h\       h       /nh — 6h\
(2.13) X.- ,.- y..t = *(T) - *(—) - - *(—¡-).

with O<0<1. Since H(x)—>0 as x—>0 we may choose 5>0 so small that

H(8) <e/2. Then for all n and h such that nh/2^8, we have X„<e. On the

other hand, for x^ 5/2, H'(x) is uniformly bounded. Therefore, we may choose

h so small that for nh/2>8, X„<e. Hence for all n, X„—>0 uniformly as Ä—>0.

Using the relations (2.12) and (2.13) we find that

K(-y«) +—\— = K(-yn) + [-K(-yn-a)Yi2[-K(-yn+,)Yl2
4X„X„+i

where yn-i<yn-a<yn<y»+s<yB+i. Therefore since K is continuous, the ex-

pression Ä2/2X„Xn+i is uniformly bounded as h—>0 and



1961] DIFFERENCE METHODS FOR A TRICOMI PROBLEM 409

h2

4AnA„+l

as h—»0. Also, since Xn>Xn+i, we have

i       i
An + An+1 An

2 (An + A„+i)       2

Hence, each term on the right side of (2.8) can be made arbitrarily small by

choosing h sufficiently small. This completes the proof of the theorem.

3. Maximum principles. To establish a maximum principle for the differ-

ence equation on the region Dh, we first prove maximum principles on each of

the regions Dj~ and Dt separately. Let us take as the boundary of DZ the

set TïKJjh, and as the boundary of Dt the set Tt^Jyh. We then denote by

Dh the set D* plus its boundary, and by Dt the set Dt plus its boundary.

From (2.2) we note that each point (x, —y„) of DZ may be uniquely repre-

sented by a pair of indices (A, n), where the first denotes the negatively slop-

ing characteristic and the second the ordinate corresponding to the point.

In this notation the difference operator (2.3) takes the form

1    .
LhUk,n   =  -[(1   -   Ak,n)Uk,n-\  +   (1   +   Ak,n)Uk-l,n+l

(3.1) AnAn+l

— (1 + ak,n) Uk-i,n — (1 — ak,„ — Y*,n)£7*,n],

in which we have defined

A„ — A„+i        A„AB+i
(3.2) Ak,n =-—bix, -yn),

A« + An+1 An + An+1

AnAn+l
(3.3) ak,n =-a(x, —yn),

h

(3.4) yk,n = A„A„+ic(x, — y„).

Theorem 3.1. Let LkU^0 on Dñ and

(3.5) Uo.n+i g Uo,«; »¡¡I.

Assume that the conditions

(3.6) 7*.n g 0,

(3.7) l + a*,n>0,

(3.8) Ak,n g 1,

(3.9) ¿*,„ - a*,n > 0,

(3.10) Ak+i,n-l —  Ak,n —  -í4*,n.4*+l,n-l — «t+l.n-1 + ak,n + ak ,nCtk+l ,n-l

+  (1 + Olk+l,n-î)yk,n è  0,
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are satisfied at all points (k, n) of D~. Then the maximum of U on D~, if non-

negative, is attained on the boundary. If 7^ = 0, then the result holds without

the requirement that the maximum be non-negative.

Proof. Assume that the maximum of U occurs at an interior point (k, n),

and that Uk,n is greater than the maximum of U on the boundary. We con-

sider the set of points in DZ which lie on the positively sloping characteristics

passing through the points (k, n) and (k, n — 1). Using (3.1) to write LkUk,n

^ 0 we have

(1 + ak,n)(Uk-l,n+l -   Uk-l,n)   è   (1   -   A„,n)(Uk.n  ~   Uk,n-i)

+  (Ak.n — ak,n)(Uk,n ~   Uk-l,n+l)   ~ yk.nUk.n è 0,

the second inequality following from the conditions (3.6), (3.8) and (3.9),

together with the assumption that Uk,n is the maximum and is non-negative.

Next we assert that

(1 + aA_y+i,n+y-l)(i/j;_y,„+y —   Uk-i,n+i-l)

=   (A   — a)k-j+l,n+]-l(Uk,n  —   Uk-i,n+j)   è  0,

for j—1, 2, ■ ■ ■ , k. The second inequality of (3.11) follows from (3.9) and

the assumption that Uk,n is the maximum. The first inequality we have

proved for j = l, hence we proceed by induction. We will show that if (3.11)

holds for any j with lújúk—l, then it holds also lor j + l. From LhUt-j.n+j

^0, we have

(1 + ak-i.n+j)(Uk-j-l,n+j+l —   Uk-j-l,n+i) è  (1 —  Ak-j ,n+])(U k-j ,n+i ~  Uk-j ,n+j-l)

+  (A   —  a — y)k-i,n+jUk-j,n+j —   (A   —  Ct)k-j,n+jUk-j-l,n+j+l.

Multiplying (3.11) by the quantity

(A — a — y)k-j,n+j/(A — a)k-j+i.n+i-i

and adding the resulting inequality to the above inequality, we obtain

(1 + ak-j,n+i)(Uk-j-l,n+j+l —   Uk-j-l,n+j)

^   (A   — a)k-i,n+i(Uk,n —   Uk-j-l.n+i+l)  ~ yk-j.n+jUk.n

+ \(1 - Ak-j,n+j) - (A - a - y)k-i,n+A--) >
I \.4 — a/ k-i+i,n+i-i>

'(Uk-j.n+j —   Uk-j.n+i-l).

The second term on the right side is non-negative by (3.6) and the assump-

tion that Uk.n, the maximum, is non-negative. In the last term on the right

side, the first factor is non-negative by (3.9) and (3.10), while the second

factor is non-negative by the induction hypothesis (3.11). Thus (3.11) holds

for/+l and hence ior j=l, 2, • ■ ■ , k.

For j = k, the first inequality of (3.11) can be written
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(A - a\
Uo.n+k   —   Uo,n+k-l  =   I ~- ) iUk,n  ~   Uo.n+k)-

\ 1 +  a/ l.n+l-i

Since it was assumed that the maximum does not occur on the boundary, the

second factor on the right side is positive. From this we conclude that

Uo,n+k> Uo,n+k-i for some k^l, K^l, which contradicts the hypothesis (3.5).

Hence the maximum must be attained on the boundary. The result for yk¡n=.Q

follows by setting 7fc,n = 0 in the proof.

Let us now consider the region Dt, for which we have the following maxi-

mum principle.

Theorem 3.2. Let LhU^0 on Dt- Assume that the conditions

(3.12) K(y)-ha(x,y)>0,

(3.13) l±y*(*,y)>0,

(3.14) cgO,

are satisfied on Dt. Then the maximum of U on Dt, if non-negative, is attained

on the boundary. If c = 0, then the result holds without requiring that the maximum

be non-negative.

Proof. Let M^Q denote the maximum value of U on Dt and suppose that

M is greater than the maximum of U on the boundary. Then there exists a

point (x, y) in Dt at which U=M, and for at least one of its four neighboring

points U<M. Then, referring to the equation (2.4), it follows from the condi-

tions (3.12), (3.13) and (3.14) that LhU(x, y) <0, contrary to hypothesis.

Thus the maximum must be attained on the boundary.

Corollary. Let LhU^0 on Dt, £/g0 on Tt and £7gM on y h with M>0.

Suppose the conditions (3.12), (3.13) and (3.14) are satisfied on Dt. If (x, 0)

is a point of y h at which U= M, then Uix, 0) > Uix, h).

Proof. By Theorem 3.2, U^M throughout Dt. If (x, h) is a boundary

point of Dt, then Í7(x, A)g0 by hypothesis, and the theorem is trivially

satisfied. Therefore we can assume that (x, h) is in Dt- Suppose that t/(x, h)

= M. Then if c(x, h) <0 we find immediately from (2.4) that LhU(x, h) <0,

contrary to hypothesis. On the other hand, if c(x, h)=Q, we must have

LhUix, h)=0 which implies that U = M at each of the four neighbors of the

point (x, h). In particular, Uix, 2h) = M. Repeating this argument a finite

number of times, we either contradict the assumption that LhU^O on Dt,

or we obtain U = M at some point of Tt, contrary to hypothesis.

We may now state and prove the following maximum principle for the

whole domain Dh.

Theorem 3.3. Let LhU^0 on Dh with U satisfying (3.5) on Tï. Assume
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that the conditions (3.6) through (3.10) are satisfied on Dh , and the conditions

(3.12) through (3.14) are satisfied on Dt. Furthermore, suppose that on 7«,

(3.15) a(x,0) g 0,

h
(3.16) 1+—ô(x,0) > O,

(3.17) 1 -— b(x,0) >[0,

(3.18) c(x, 0) glO.

PAe« /Ae maximum of U on Dh, if non-negative, is attained on the boundary.

If c = 0, then the result holds without the requirement that the maximum be non-

negative.

Proof. Let M be the maximum value of U on the boundary r„. Then in

order that the theorem be meaningful, we must require that M^O. Let Mi

he the maximum of U on 7« and suppose that Mi > M. Then the function

V=U-M satisfies LhV^0 on Dh, FgO on rft, and V^Mi-M on yh with

Mi — M>0. Let (x, 0) be a point of 7« where U=M\. Then by the corollary

to Theorem 3.2, F(x, A) < Mi — M, which means that Uix, A) < Mi. Moreover,

since F also satisfies (3.5), we have £/g Mi on D* by Theorem 3.1. By virtue

of the conditions (3.15) through (3.18), the formula (2.5) gives us Pft£/(x, 0)

<0. This however contradicts the assumption that P«£/^0 on Dh. Hence we

must have JlfigAf. Then by Theorems 3.1 and 3.2 we immediately obtain

U g M throughout Dk.

Since our difference equation was obtained from the differential equation

(1.1), it is desirable that the conditions (3.6) through (3.10) and (3.12)

through (3.18) be translated into conditions on the coefficients of the differ-

ential equation. It is clear that because the coefficients are assumed to be

continuous on D, the conditions (3.14) and (3.18) are satisfied if and only if

cgO on D+, while (3.13), (3.16) and (3.17) are satisfied if A is sufficiently

small. If we also assume that there is a ô > 0, such that a(x, y) g 0 for 0 g y g S,

then the conditions (3.12) and (3.15) will be satisfied for A sufficiently small,

since K is uniformly positive for y^ô. The conditions in Dñ are investigated

in the following.

Theorem 3.4. If

(3.19) c g 0 on D-,

and

(3.20) yaix,y)[-Kiy)]-u2^0 as y->0,

uniformly on D~, then for h sufficiently small, the conditions (3.6), (3.7) and

(3.8) are satisfied.
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Proof. (3.6) follows immediately from (3.19) and the continuity of c. Re-

calling the definition of ak.„, we have

| ak,„ |   =
XnX„+l
—;— a(x, -yn) =   \yna(x,-yn)[-K(-yn)]-^\

using (2.12) and (2.13). Therefore, by the condition (3.20), there exists a

5i>0 such that l+ak,n >0 for all y„ with y„^5i. For y„>5i, the quantity

Xn+i/A Ú - [-K(-y,i)]-w

is uniformly bounded. Thus since X„—>0 as h—>0 and a is uniformly bounded

on D~, ak,n—>0 as h—>0 for each n such that y„>5i. This proves that (3.7) is

satisfied on all of Dr provided only that h is small.

Referring to (3.2) we may write

2X„+i
1  -  Ak.n =

Xn + X„+l

1  + — \nb(x, -yn) \.

Since X„—>0 as h—>0 and b is uniformly bounded on D~, (3.8) will be satisfied

for h sufficiently small.

Theorem 3.5. Let (3.20) hold on D~, and let

d   r
(3.21) — [(-K)1'2] + a + b(-K)1'2 < 0

dy

for y<0 on D~. Furthermore, assume that the function H defined by (2.11) has

a derivative of the form

(3.22) H'(x) = x-"H(x)

near x = 0, where 0<«<1 and H is a function having three continuous deriva-

tives with H(x) = m>0/or x = 0. Then (3.9) is satisfied on Dñ for h sufficiently

small.

Proof. From (3.20) we obtain for nh sufficiently small

m    /nh\x-" Mh/nh-h\-a

'•*—„(t) •   ■*" K<-\-r-) •   "s2;

where H(x) £M. Furthermore, by writing

/.nh/i     r / h\~\
\H'(x)- H'[x + —)\dx,

(n-l)h/i L \ 2 / J

and noting that H"(x) ¿(ma/2)x~a~1 for x sufficiently small, we find that

for w^2,
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An        An+1 >

mah2 Inh + AX-"-1

n+i " ~t\~t~)  ■

Combining these estimates, we obtain for «^2,

yn(An — A„+i)/A„A„+i > Co > 0,

with Co a constant. On the other hand, we have

M    /AX1-« M
Ai g-( —)     ,       A2g-h1'".

1 -a\2f 1 -a

If 0gxgA/2, (3.20) yields the estimate

H'ix) - H' (x + — j è Ciar«,

where Ci is a positive constant. This in turn, implies that

Ci /Ay-«

Combining these estimates we obtain

yi(Ai - A2)/AiA2 > d > 0.

Therefore, for all »2L the quantity yn(X„—X»+i)/X„X„+i is greater than a

fixed positive number provided that A and y„ are sufficiently small. We also

have

A« T An+1
y»-:-a(x, -yn)

A

ynaix, —yn)

2(-A(-y„))»'

M     2"

m   1 — a

Thus we may choose A and y„ so small, say yn^S, 5>0, that (3.9) is satisfied.

For yn>S, we choose A so small that y„_2i£8/2. Then for x^(«A —2A)/2

the function if has three continuous and uniformly bounded derivatives. We

may then apply Taylor's theorem to the expression Ak,n—ak,n to obtain

Ak,n — otk,n = —

1        A2

Xn + An+1    4

• //l H" \

UTín)1' 7J„ ;

1        h2 , (4
- -{-Ki-yn)]-^\-i-Ki-yn))112

A„ + A„+i  4 {dy

+ aix. -y„) + *(*, -vJi-Ki-yt))"2 + 0(A)! ,
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where Hn = H(nh/2). Because of (3.22), the expression in the brackets can be

made negative by choosing h small if yn>8. This proves that (3.9) is satisfied

for y„ > S.
It is of interest to ask how restrictive the condition (3.22) is on the func-

tion H. A partial answer is given by considering the class of functions

K(y) = - (-,)-; y = 0,

with m a positive integer. The corresponding function H' is given by

(m + 2    \-«/(«+*)tm + 2    y
ff'w - (— ')

and thus this function satisfies (3.22) with a = m/(m+2) and 27(x) = (1 —a)".

Theorem 3.6. If for y<0 on D~ the condition

2(-K)^-f-2{(-K)-^}-2y{(-K)^2\a-^-a2
dy2 dy 2K

(3.23)
1

- at, - (-K)-"2av-b2 - (-Ky>2bx - by + 2c > 0

is satisfied, then for each 8>0 and for h sufficiently small, the condition (3.10)

holds at each point of DU where yn è ô.

Proof. Fix 5>0 and choose h so small that if yn^8, then yn-i^8/2. Ap-

plication of Taylor's theorem then yields for the left side of (3.10),

[(X„_i + X„)(X» + X.+0]-1— (i?»')4 \-2(H:)-*'2 — (H»')-1'2 + 2(Fn')-1/iB"a
8 L dx2

+ — (HJ)2a2 - ax - Hlay - — b2 - (H¿)-lbx -by+2c + 0(h)\

where a, ax, av, b, bx, by and c denote values of these functions at (x, — y„).

Using (2.12) to replace H by K in the above expression we obtain for the left

side of (3.10),

[(\n-i + \n)(K + K+i)]-l^-\2(-Kyi^[(-K)-^] - 2^-[(-K)^2]a
SK2 1 dy2 dy

1 1 )
-a2 - ax - (-K)-l'2ay-b2 - (-K)l'2bx -by + 2c + 0(h) \ .

2K 2 )

Thus if we choose h sufficiently small, the condition (3.23) will assure the

validity of (3.10) foryn = S.

It is of interest to observe that the conditions (3.19), (3.21) and (3.23)

are essentially the conditions under which the solution of the differential
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equation (1.1) in D~ satisfies a maximum principle, as found by Agmon,

Nirenberg and Protter [4].

4. The existence of the solution to the difference equation. For con-

venience, let us denote by the Conditions A the set of conditions under which

the maximum principle, Theorem 3.3, holds. That is, we denote by Condi-

tions A:

(a) (3.6), (3.7), (3.8), (3.9) and (3.10) hold on DZ,
(b) (3.12), (3.13) and (3.14) hold on Dt,
(c) (3.15), (3.16), (3.17) and (3.18) hold on yh.

Theorem 4.1. Let the Conditions A be satisfied. Then there exists a unique

solution U to the difference equation (2.6) on Dh which satisfies the boundary

conditions (2.7), for any given values of f, <pi and <p2.

Proof. Let F be a solution of the homogeneous system of equations,

,      % LhV = 0 on Dh,
(4.1)

F = 0 on IV

Then by Theorem 3.3, FgO on Z>„. But we may also apply Theorem 3.3 to

the function — F to obtain F^O on Dh. Thus F must vanish identically on

the whole domain Dh; i.e., the homogeneous system has only the trivial solu-

tion V=0. But this implies that the system (2.6) and (2.7) has a unique solu-

tion for arbitrary right sides, i.e., for arbitrary values of/, pi and r/>2.

We now show that the system of linear equations (2.6) and (2.7) can be

solved by means of the Gauss-Seidel iteration procedure. For this we number

the P points of Dh in the following order. First we take the points of Dt with

the largest ordinate and number them in any order. Then we number the

points on the next row down in any order, and continue this process until we

have numbered all the points of Dt and 7*. Next we number the points (1, n)

oí DZ in order of increasing n, then the points (2, n) in order of increasing n,

and so on. If we denote the value of U at the point i (i = l, 2, ■ ■ ■ , P) by

Ui, and solve each of the equations

LkUi = ft

for Ui, we obtain a linear system of equations of the form

i-l P

Ui = £ mVi + £ roui + si-,      i - 1,2, • • •, p.
y-i y-«+i

In the Gauss-Seidel procedure, an arbitrary zeroth order approximation

Uf\ i = 1, 2, • • • , P, to the solution is chosen, and successive approximations

are calculated by the formula

,-Jm+l) Pi        ..(m+D    .       ^ „(m)
Ui       = 2^ rnUj       +   2L, r*flj    + Si,

y-i y-i+i
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where U\m) denotes the mth approximation to Ui.

Theorem 4.2. Let the Conditions A be satisfied. Then for h sufficiently small

and for arbitrary values Uf\ i=l, 2, ■ • ■ , P, £/j   —»£/,- as m—><x>.

Proof.If we let V¡m) be the error in the mth approximation,

v(r = Ui- uT\
then the error terms satisfy the homogeneous system

(4.2) .      Fr+i) = g r^r1'+ tujvr.
j-1 j=i+l

That is, Ft(m) can be considered the mth approximation to the solution of the

homogeneous system (4.1), starting from an arbitrary zeroth order approxi-

mation. Assume that

F,-"" á M; i = 1, 2, ■ ■ ■ , P,

for some M>0. Then referring to (2.4), we see that since the point (x, y)

which corresponds to i=l is on the highest row of DÜ, the value Fj"+1) is

related to the values of F(m) at (x — h, y), (x+h, y) and (x, y — h) at most.

Furthermore, the conditions (3.12) and (3.14) imply that the coefficient of

U(x, y) in (2.4) is negative. Hence we have

„r.,        t 1+H/2-*   1
I       2K+2- ha- h*c)

By choosing h sufficiently small, the fraction on the right side can be made

greater than a fixed number p with 0<p<l. We conclude that

v?+l) á (i - P)M

for h sufficiently small. By induction, this implies that for any point on the

highest row of Dh we have the estimate

F,(m+1> = (1 - p)M.

We now consider the first point in the next row down, say the &th point.

F¿m+1) is related to the value of F(m+1) at the point immediately above (if

that point belongs to Dh) and to the values of F(m> at the other adjacent

points. Therefore, (2.4) gives us

tf*l) Û (1 - P2)M.

By induction we may conclude that this relation holds on the entire second

row. Continuing this process, we arrive at the estimate
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(4.3) F,<m+1) g (1 - p)M,

at each point of Dt, where ris the number of rows in Dt. On yh, we use (2.5) to

obtain

(4.4) VT+1) g (1 - Prc+1)M,

where 0<p0gp. Hence, by virtue of (4.3), (4.4) also holds on Dt.

Due to the manner in which the points of D7 were ordered, the second

sum does not appear in the formula (4.2) for V¡m+1\ But this means that

F^m+1) satisfies the difference equation

LhV?+1) = 0

on DZ, with F(m+1)=0 on TZ. Therefore, by Theorem 3.1, the maximum of

F(m+1) is attained on the boundary of Dr. That is, the bound (4.4) holds

throughout Dt, and therefore throughout Dh. Since we may carry out the

same procedure for — V\m+1\ we obtain finally,

I  T/(m+1)l    *r  II r+1\M
\Vi       I   g (1 - po   )M.

Thus if we now choose an arbitrary zeroth order approximation U¡°\ then

¡Frig(i-;0+irMo

where

Mo = max | Ui — Ui   \ .
t

Hence this shows that V¡m)—»0 as m—* oo.

5. A priori bounds. The maximum principle may also be employed to

establish a priori bounds for functions defined on Dh.

Theorem 5.1. Let the Conditions A be satisfied. Let U be any function de-

fined on Dh such that the quantities

Bi = max | U\ ,       B2 = max | U-T\ ,       B% = max | L%U\ ,
r» r4 Dk

are finite, where

Ur0n =   (Uo,n —   f7o,n+l)/A„+i.

Then for A sufficiently small,

(5.1) | 171   g Bi + CiBi + Bt)

on Dh, where C is a finite, non-negative constant depending only on the domain D

and the functions b and c.
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Proof. Let

F = sup | y | .
D

We now define a mesh function E on Z7« by the equations

E(-yn) = (1 - pAn)£(-y»-i) on Dh,

E(y) = (1 + 2uh)E(y - A) for y = nh;      n = 1, 2, • • • ,

P(0) = e2»r,

where p is a positive constant to be chosen. Let us choose A so small that

pAg 1/2 and pXng 1/2 for all n. Then E is a positive, nondecreasing function

of y. Therefore, since on Dt we have

E(nh) = (1 + 2ph)ne2"Y g e4"y,

£ is uniformly bounded on Dh, independent of A. To find a lower bound for E,

we first note that due to our choice of A small, the inequalities

1 - p\» £ 1/(1 + 2pA„) > e-2"*»

are satisfied. Then on Dt,

Ei-yn) = e2»* ft (1 - MA.) > 1,
<-i

which implies that E > 1 on £>«.

If in addition to requiring that ¿»A g 1/2, pX„ g 1/2, we also take A so small

that

l/yt è *(*, 0)/2,

we may write as a lower bound for LhE on Dft,

LhE ^ ß2 - 3 I ft | u + 2c.

Finally, on TZ,

£;„,„ = p£(-yB) § p.

Therefore we may choose p so large that for A small we have L»E ^ 1 on Da

and Eïèl on TZ.

We now define functions F and IF on DA by

F = 17 + Pi + (5, + B,)E,

W = - 17 + Pi + (Bi + Bt)E.

We then see easily that L„F^0 and P»IF^0 on Dh, and F^O and W-T^0

on r^. Since F^O and IF^O on T«, the maxima of Fand IF are non-negative,
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and the maxima of both functions occur on the boundary, by Theorem 3.3.

The bound (5.1) for U then follows with C=ei"Y-l.

6. Convergence theorems.

Theorem 6.1. Suppose that the differential equation (1.1) has a solution u

in D which satisfies the boundary conditions (1.3), and assume that u is of class

C2(D). Assume that the Conditions A are satisfied for h sufficiently small and

let U be the solution to the difference equation (2.6) with boundary conditions

(2.7). Then U-*u uniformly on Dh as h—>0.

Proof. Theorem 2.1 asserts that given e>0, there exists an A0>0 such

that on Dh

\Lu - Lhu\   < e/2C

for h^ho, Cbeing the fixed constant of Theorem 5.1. But since Lu — LaU=f

on Dh, this estimate may be written

| Lh(U - u) |   < í/2C.

Furthermore, since U = <bi on Tt and u =<bi on T+ and u and <¡>i are continuous

on D+, there exists an Äi>0 such that

| U - u |   < e/2

on rj, for h^hi. Finally, on T», U—u=0. Hence, the bound (5.1) applied to

U—u yields at all points of Dh,

| U - «|   <e

for h^hi = max (ho, hi).

For the case K(y)=y and a = b = c = 0, Filippov [2] has proved a con-

vergence theorem with somewhat weakened conditions on the derivatives of

m at the boundary, provided that the curve T+ satisfies certain conditions.

We will prove an analogous theorem for the equation (1.1), under similar

conditions on T+, and with additional restrictions on the function K.

Let us first extend the definition of the function G, defined for y^O by

equation (2.1), to positive values of y by

(6.1) G(y) =  fV[K(r,)Y'2dr, y > 0.

We will say that the curve T+ satisfies Condition B if there exists an xo with

xa<xo<xb such that for each real number t, the curve

(6.2) x - xo = tG(y)

intersects the curve T+ at only one point.

Lemma 6.1. Let T+ satisfy Condition B. Then if 0 <0 < 1, the transformation
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x = dix - xo) + xo,
(6.3)

Giy) = BGiy) ; sgn y = sgn y,

maps each point (x, y) of D into a point ix, y) of the interior D.

Proof. We note that y is uniquely defined by (6.3) since G is a monotone

function for y>0 and y<0.

Suppose (x, y) lies in D with y>0. Then for some number t, the point

(x, y) lies on the curve (6.2). Therefore, since y<y, the Condition B implies

that (x, y) is a point of D.

For each point (x, y) in D~ we have,

y g 0,       xA + Giy) ûx^Xb- Giy).

Then the point (x, y) given by (6.3) is also a point of D, since

y g 0,       xA + Giy) < x < xB — Giy).

Let us define

Feiy) = [Kiy)/Kiy)Y'2.

Then for each fixed 0 with O<0<1, P« is continuously differentiable and

Feiy)—>1 as 0—>1 if yy^O. In the following theorem, we require that P« have

smooth properties at y = 0. We summarize the properties under the Condi-

tions C.

Conditions C:

(a) For each fixed 0 with O<0<1, Pa is continuously differentiable on D,

(b) Pe(y)->1 and P/(y)-»0 as 0-*l, uniformly on D,

(c) For y<0, y/y is uniformly bounded.

We also need somewhat stronger Conditions A which we will denote by

Conditions A * :

Conditions A hold and there is a 5>0 such that

(a) (3.8) holds with 1 —5 on the right side,

(b) (3.9), (3.10) and (3.12) hold with S on the right side.

Theorem 6.2. Suppose that the differential equation (1.1) has a solution u

in D which satisfies the boundary conditions (1.3), where u is a function of class

CiD) and C2iD), with uy—i — K)ll2ux continuous on D~\JTi. Assume moreover

that the Conditions: A* .are satisfied for all A sufficiently small, and that the Condi-

tions B and C and (3.20) are satisfied. Then the solution of the difference equa-

tion (2.6) with boundary conditions (2.7) tends uniformly to u as A—»0.

Proof. We define a new function u¡ by

(6.4) «t(x,y) = «(*, y),

where (x, y) and (x, y) are related by (6.3). By Lemma 6.1, Conditions C

and the assumption that u is of class C2iD), we find that ut is of class C2(P)
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for each 0 with O<0<1. Furthermore, since (x, y) tends uniformly to (x, y)

as 0—>1 and u is of class C(D), if e>0 is given, then there is a 0O<1 such that

| u — ue |   < e/3

on D for each 0 with 0„ ̂ 0 < 1.

Since m is a solution of (1.1) on D, for each 0 with O<0<1, the function

ue satisfies the differential equation

(6.5) Leue = K(y)ue„ + u6„ + ae(x, y)u$x + b9(x, y)uey + ce(x, y)u> = ft(x, y)

on D, where

a6(x,y) = 8Fe(y)a(x, y),

be(x, y) = 6Fe(y)b(x, y) - F¡ (y)/Fe(y),
(6.6) 2    2

ce(x, y) = 6 Fe(y)c(x, y),

fe(x, y) = d2FÎ(y)f(x, y).

The Conditions C then imply that

(6.7) a«—>a,       be—>b,       ce—>c,       fe—>f       as 6—* 1,

uniformly on D. We next assert that if we define quantities Aek,„, aehK and

79*,n by replacing a, b and c in equations (3.2), (3.3) and (3.4) by a», be and ce,

then for h sufficiently small,

(6.8) Aek,n^> Ak.n,        aek,„—> ctk,n,        7«*.» —> 7fc,n        as 0 —> 1,

uniformly on DZ. The first and third limits of (6.8) are immediate conse-

quences of (6.7) since the quantities multiplying b and c in (3.2) and (3.4),

respectively, are uniformly bounded for h sufficiently small. For the second

limit, we know from (2.13) that

1       r
K\n+i/h = y Xn[-ür(-yn)]-1'2.

Hence XnXn+iA is uniformly bounded for y„ = S>0, and the second limit fol-

lows for yn^8. For yn<8, we have

| «9t.n

and the right side can be made arbitrarily small by making yn small, by

virtue of the Conditions C and (3.20). But from the proof of Theorem 3.4,

we observe that the condition (3.20) also implies that ak,n—>0 as yn—*0. Hence

if we choose 5 sufficiently small, the difference at,n—aeKn can be made arbi-

trarily small for y„<ô.

From (6.7) and (6.8) it follows that the Conditions A are satisfied by the

XnX„+l    _2

//.
6Fe(y)a(x, y)

y» B„ . .    ya(x, y)

— 6Fe(y) -.-î—
2y      W   [-K(v) l'2
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coefficients of the difference approximation to Le provided that A is small and

0 is close to 1, since we have assumed that the stronger Conditions A* are

satisfied for all A sufficiently small. Hence the difference problem correspond-

ing to the differential equation (6.5) with boundary conditions

»e(x, y) = uix, y)    for    (x, y) on V,

has a unique solution Ue, if A is small and 0 is near 1. Moreover, since «« is

twice continuously differentiable on D for each 0 with 0 <0 < 1, Ue tends uni-

formly to Ui as A—>0, by Theorem 6.1. That is, there exist numbers Ai>0

and 0i < 1 such that on Dh,

| ue - Ue |   < e/3

for each A and 0 with 0<AgAi, 0ig0<l.

Let us now compare the solution U of the difference approximation to

Lu =f with the solution Ue of the difference approximation to Leue =/«. We

have

Lh(U - Ue) = if - fi) = (a - a,)UH - (* - b,)Uh - (c - c,)Ut,

where Uex and Ue are difference quotients of Ue defined in (2.3), (2.4) and

(2.5). Since the functions a« and be are independent of A, for each A we may

choose 0 so close to 1 that \a — ae\ <A2 and \b — be\ <h2. Hence, due to the

uniform boundedness of Ue on P« for A sufficiently small, it follows that for A

small

Lh(U - Ue) < t/12C,

where C is the constant of Theorem 5.1. Furthermore, because u is continu-

ous on D, it is clear that if A is small and 0 is near 1,

| U - Ue |   < e/6

on the boundary T«. Likewise, by selecting A and 0 appropriately, it is possible

to make

I U-T- Ue-\   <e/12C,

since U = u and U» = ut on Ti, and due/dy, which is given by

due
— (x,y) = 6Feiy)[uiix,y) - (-A(;y))"2«f(x, y)\
dy

is continuous on Ti and tends to du/dy as 0—»1. If we now apply Theorem 5.1

to the function U— Ue, we find that on Dh,

| U - Ue |   < e/3

for A and 0 such that 0<AgA2, 02g0<l. Taken together, these estimates

imply that given e>0, there is an A0>0 such that if 0<AgA0, then
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| u - U |   < e.

In one particular case, namely that in which the function K is given by

K(y) = | y \m sgn y

for some positive integer m, the function Fe takes on an especially simple form,

with the result that the required conditions are easily verified. From (2.1)

and (6.1) we obtain

2       ,    ,
G(y)   =  -   |  y|(-+2)/2.

m + 2

Recalling that G(y) =0G(y), we find that

y   =   ß2l(m+i)y

Then we can easily calculate

Ft(y)   =  0-»/ 0-+D,

That is, Fe depends only on 0 and not on y. The Conditions C are clearly

satisfied in this case.

In conclusion, it should be noted that the results are still valid for prob-

lems of the type:

(a) to solve Lu=f in D+ with u given on T+ and AB,

(b) to solve Lu =f in D~ with u given on Vi and A B.

The maximum principles, a priori bounds and convergence theorems are

applicable with obvious modifications in the hypotheses. Theorem 6.2 applies

in either case (a) or (b) if the solution u is assumed to be twice continuously

differentiable on DVJAB.

Bibliography

1. F. Tricomi, Suite equazioni linean alle derivóte parziali di 2" ordine di tipo misto, Atti

Accad. Naz. dei Lincei (5) vol. 14 (1923).

2. A. F. Filippov, On difference methods for the solution of the Tricomi problem, Izv. Akad.

Nauk SSSR. Ser. Mat. vol. 21 (1957) pp. 73-88.
3. P. Germain and R. Bader, Sur quelques problèmes à l'équation de type mixte de Tricomi,

Office Nationale d'Etudes et de Recherches Aéronautiques, Publication No. 54, 1952.

4. S. Agmon, L. Nirenberg and M. H. Protter, A maximum principle for a class of hyper-

bolic equations and applications to equations of mixed elliptic-hyperbolic type, Comm. Pure Appl.

Math. vol. 6 (1953) pp. 445-470.

University of California,

Riverside, California


