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Introduction

For a long time it has been accepted that Turing machines are more

powerful than generalized sequential machines. Since a generalized sequential

machine is also a Turing machine, the class of Turing machines is at least as

powerful as the class of generalized sequential machines. The purpose of this

paper is to examine the adverb "more" from the aspect of work accomplished.

Three manifestations of work performed by machines are considered, namely

(i) numerical functions, (ii) output tapes as a function of input tapes, and

(iii) the sets of accepted tapes. For each of these expressions of work there is

studied the question of the existence of codes so that the resulting set (i.e.,

the set of numerical functions, the set of input-to-output tape functions, and

sets of accepted tapes respectively) for the class of Turing machines is trans-

formed into a subset of the resulting set for the class of generalized sequential

machines. In other words, the problem under investigation is to see if the

behavior of Turing machines can be reinterpreted as behavior of generalized

sequential machines.

The main results achieved are as follows.

(1) There exist effective mappings/ and g, f transforming a subset of the

natural numbers into sequential input tapes and g transforming a set of se-

quential output tapes into the natural numbers, with the following property.

To each partial recursive function h there corresponds a generalized sequential

machine S so that for each natural number x, g(5(/(x))) = hix), where 5(/(x))

is the output from machine 5 upon application of the input tape/(x). Fur-

thermore, all these machines S have a finite joint input alphabet and a finite

joint output alphabet (Theorem 3).

(2) Given any set of Turing machines in a finite joint alphabet there is a

function / such that (a) / maps all Turing tapes one to one into sequential

input tapes, and (b) for each Turing machine Z there is a generalized sequen-

tial machine S such that 5(/(A)) =Z(A), X being any Turing tape, 5(/(A))

being as above, and Z(A) being the analogous function to Z that 5(/(A)) is

to 5 (Theorem 5).

(3) Given any set of Turing machines there is a function / such that

(a) / maps all Turing tapes one to one into sequential tapes; and (b) for each

Turing machine Z there is a sequential machine 5 such that the set of tapes
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accepted by Z maps, under/, onto the set of tapes accepted by 5 (Theorem 6).

1. Numerical functions. One well-known measure of work performed by

a Turing machine is its associated singulary (i.e., one variable) partially

computable function. For comparative purposes it is therefore natural to

associate with each sequential machine a singulary function defined in an

analogous manner. This we shall do. First though let us recall some pre-

liminary concepts.

It is assumed that the reader is familiar with the basic concepts of Turing

machines. The particular formulation and related theory used here is that of

[l] with the following additions. A (Turing) tape is either (i) a single symbol

of the alphabet (which may be B, the blank symbol) or (ii) a finite, non-

empty sequence of symbols from the alphabet that neither begins nor ends

with B. For each Turing machine Z (always assumed to have a start state,

say Çi) let Z(X) be the following partially defined function from tapes to

tapes. For any tape X, Z(X) is defined if and only if the resultant of qiX

exists, in which case Z(X) is the largest tape contained as a subsequence in

the resultant.

A generalized sequential machine 5 (with a start state) is a 6-tuple

(Ks, 2S, As, qy, ôs, Xs), where

(i) Ks is a finite, nonempty set (of "states");

(ii) 2s is a finite, nonempty alphabet (of "inputs''^1);

(iii) As is a finite, nonempty alphabet (of "outputs") (1);

(iv) <7i is an element of Ps (the "start" state) ;

(v) ôs (the "state" function) is a mapping of a subset of PsX2s into Ks;

and

(vi) Xs (the "output" function) is a mapping of a subset of PsX2s into

the free semi-group (without identity) generated by As. That is, for certain

pairs (q, I) of states q and inputs I, Xs(<Z, I) is a sequence of elements of As.

If, for each state q and each input P Xs(g, I) is either undefined or is an

element of As, then 5 is called a sequential machine.

An input (output) tape is a sequence of elements of 2S(AS).

Let Iy ■ • • h be an input tape to the generalized sequential machine 5.

Xs(pi, h ■ ■ ■ Ik) is said to exist if pi+i=bs(pi, Ii) exists for each i<k; and

Xs(pi, Ii • • -Ik), when it exists is defined to be the output tape

(*) \s(pi, /i)Xs(/>2, It) ■ ■ ■ \s(pk, Ik),

it being understood that each Xs(p», P) which does not exist does not occur

in the sequence (*)(2).

A singulary numerical function is associated with a Turing machine as

(') Because of the special nature of the symbol B, except for Theorem 5, it will always be

assumed that B is not an element of Zs W As.

(') In case 5 is a sequential machine this definition of \s(pi, Ii • ■ • h) differs from that

given in [2].
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follows. Let N denote the non-negative integers. N is coded into the Turing

tapes by a function /, and the set of Turing tapes is coded into A by a func-

tion g. For each Turing machine Z there is then determined a function

g(Z(/(x))) which maps a subset of N into N. The particular functions chosen

for/and g in [l] and used here are/* and g*, where/* maps each non-nega-

tive integer x into the tape 1I+1, and g* maps each tape F into the number of

l's in F.

Clearly there is an analogous procedure for associating singulary numeri-

cal functions with generalized sequential machines given a pair (/, g) oí

functions such that/ maps a subset of N into a set of input tapes and g maps

a set of output tapes into N. Any such pair (/, g) of functions will be called

an interpretation. For any interpretation (/, g) and any generalized sequential

machine S, the singulary function g(5(/(x))) (as a function of x) will be called

the isingulary) numerical function associated with 5 under (/, g)(3).

With respect to associated numerical functions, Turing machines and

generalized sequential machines exhibit similarities as well as differences.

Under the particular interpretation (/*, g*), the function associated with any

generalized sequential machine is a monotonically (where defined) non-

decreasing, effectively calculable function. Hence the numerical functions

associated with any class of generalized sequential functions, under (/*, g*),

form a proper subclass of the partially computable functions. On the other

hand, in view of Theorem 1 below, there is an interpretation under which the

numerical functions associated with the complete sequential machines(4), the

numerical functions associated with all generalized sequential machines, and

the partially computable functions are the same. Moreover, this interpreta-

tion (/, g) is effective, i.e., for both/ and g, there are algorithms that give,

for any argument, their values (if they exist). All partially computable func-

tions are computable by Turing machines in a finite joint alphabet(6). In

contrast, by Theorem 2 below, for no set of complete sequential machines

in a finite joint output alphabet do the associated numerical functions even

include the computable functions. By Theorem 3 below, however, there is a

set of generalized sequential machines with finite joint output alphabet such

that the associated numerical functions are exactly the partially computable

functions.

Theorem 1. There is an effective interpretation under which the numerical

functions associated with the complete sequential machines, as well as the func-

(3) For any generalized sequential machine S, S(X) is the following partially defined func-

tion with input tapes as arguments and output tapes as values. For any input tape X, S(X)

= \s(qi, X) where gi is the start state of S.

(4) A complete sequential machine 5 is a sequential machine in which Xs(«2,1) and &s(q, I)

are defined for every state q and every input /.

(5) For a set of Turing machines, the joint alphabet is the union of the alphabets of the

various machines in the set. For a set of generalized sequential machines, the joint input

alphabet and the joint output alphabet are similarly defined.
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tions associated with all generalized sequential machines, are exactly the partially

computable functions.

Proof. Let f(x) = I*+\ g(X) = U(minv Ti(z, x, y)) if X = E¡+1 and if
P(min„ Pi(z, x, y)) is defined, and let g be otherwise undefined. Here 7 is a

particular input and E0, Ey, • • • are particular distinct outputs; U is the

particular computable singulary function and Pi the particular computable

ternary predicate defined in [l]. Clearly (/, g) is an effective interpretation.

Consequently the function g(S(f(x))) associated with any generalized sequen-

tial machine 5 is partially computable. Thus the set of functions associated

with the complete sequential machines is a subset of the set of functions asso-

ciated with all generalized sequential machines; which, in turn, is a subset of

the set of all partially computable functions. The proof is now completed by

describing, for each partially computable function c, a complete sequential

machine with which c is associated under the given interpretation.

To this end, given c, let z be a number such that c(x) = U(minv Ty(z, x, y))

(cf. [l]); let 5be the complete sequential machine with Ks= {q} (where q is

a particular state), 2s = {/}, As= {Et}, 8s(q, I)=q, and Xs(<Z, I)=EZ. Then

g(S(f(x))) = g(\s(q, f(x)))=gÇKs(q, P+1)) = g(E¡+1) = P(min„ Pi(2, x, y))
= c(x). Therefore c is associated with S.

Remark. The proof of Theorem 1 is easily altered to yield the following

result. For each interpretation (/, g) (with respect to Turing tapes) there

exists an interpretation (/i, gi) (with respect to input tapes and output tapes)

having this property. To each function h associated with a Turing machine

under (/, g) there is a complete sequential machine 5 so that h = gy(S(fy(x))).

Theorem 2. Under any interpretation, the set of functions associated with

any set of complete sequential machines in a finite joint output alphabetic) does

not include all computable functions (and consequently does not include all par-

tially computable functions).

Proof. Assume that the theorem is false, i.e., that there is an interpreta-

tion (/, g) and a set M of complete sequential machines such that all computa-

ble functions are associated with M. Let Co, C\, • ■ • be the computable con-

stant functions with respective values 0, 1, • • • . Then each function c, is

associated with a machine Si in M. Now g(S0(f(0)))=0, so that /(0) is de-

fined. Let d be the length of the input tape/(0). Then each 5¿(/(0)) is one of

the finitely many output tapes of length d in the finite joint output alphabet.

It follows that {g(So(f(0))), g(Si(f(0))), ■ ■ ■ } is finite, contrary to the con-

dition (imposed by the associated functions) that this set is {0, 1, • • • }.

Hence the result.

Remark. It is easily seen that Theorem 2 may be extended by removing

the word "complete."

Theorem 3. There is an effective interpretation and a set of generalized se-

quential machines in a finite joint alphabet such that the associated functions are

exactly the partially computable functions.
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Proof. Let/(x) = 7*+\ g(X) = £7(minw Ti(z, x, y)) if A = (£f1£2)-+1 and

[/(minv Ti(z, x, y)) is defined, and let g be otherwise undefined. Here 7 is a

particular input and £1 and £2 are particular distinct outputs. Clearly (/, g)

is an effective interpretation. Consequently any function associated with a

generalized sequential machine is partially computable. The proof is now com-

pleted by describing, for each partially computable function c, a generalized

sequential machine 5 with which c is associated under the interpretation. To

this end, given c, let 2 be a number such that c(x) = £/(min,, Ti(z, x, y)). Let S

be the generalized sequential machine with Ks = {g},2S = {-f}, As = {Elt E2},

ôsiq, I) = q, and Xs(g, 7) = £ï+1£2. Then g(5(/(x))) = g(Xs(g, /(*)))

= «(Xs(2. Ix+1))=giiE\+1E2Y+1) = UiminyTiiz, x, y)) = c(x). Therefore c is

associated with 5.

2. Input tapes versus output tapes. The work done by a given Turing or

generalized sequential machine will now be represented by the corresponding

function Z(A) or 5(A). A Turing tape will be regarded as an "input tape" or

an "output tape" according to its role as argument or value for Z(A).

It is readily shown that for any generalized sequential machine 5 there

is a Turing machine Z such that 5(A) =Z(A) for any input tape X. On the

other hand, if 5 is a generalized sequential machine then the length of 5(A)

never exceeds the length of 5(A') if X' is a continuation of X, whereas Z(A)

is not thus restricted. In a sense, then, Turing machines as a class "do more

work" than generalized sequential machines. It is not precluded, however,

that by suitable codings of Turing tapes into sequential tapes, all Turing

functions Z(A) might be reinterpreted as generalized sequential functions

5(A). More precisely, for all Turing machines in a given joint alphabet, it is

proposed to map all Turing input tapes one to one into sequential input

tapes, and all Turing output tapes one to one into sequential output tapes.

Can such mappings/and g be found so that for each Turing machine Z there

is a (generalized) sequential machine 5 so that 5(/(A)) =g(Z(A)) ? Theorems

4 and 5 below show that no such mappings can be found with both / and g

effectively calculable, but that there are such mappings for the generalized

sequential machine case with a nonconstructive /. For the sequential ma-

chine case there are no such mappings/and g as the following analysis shows.

Assume that there is a joint Turing alphabet for which such / and g

exist. Let A be any finite subset of the given joint alphabet. Then there is a

Turing machine Z such that Z(A) = X for all tapes X in A. For the sequential

machine 5 associated with Z, 5(/(A)) = g(Z(A)) = g(A) for all X in A. Hence

g maps all Turing output tapes in A into tapes in the finite output alphabet

Ao of 5. Now consider a fixed Turing input tape A0 in A. For each output tape

Yi in A there is a Turing machine Z, such that Zj(A0) = F,-. For the associated

sequential machine Sit 5i(/(A0)) =g(Z,(A0)) =g(F,). Now 5,(/(A0)) is one

of the finitely many output tapes in A0 with length no greater than that of

/(Ao). Consequently the set {g(Fj)|i^l} is finite. Since {F<|j^l} is infinite

and g is one to one, {giYi) |i^ 1} is infinite, a contradiction
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Theorem 4. For any finite Turing alphabet there is no pair (f, g) of effec-

tively calculable one to one mappings with the following properties: (1) / maps

all Turing input tapes into sequential input tapes ; (2) g maps all Turing output

tapes into sequential output tapes; and (3) for each Turing machine Z, there is a

generalized sequential machine S such that S(f(X)) =g(Z(X)).

Proof. Assume the contrary, that is, that there is a finite Turing alphabet

A for which effectively calculable / and g exist. Let Xy, Xt, ■ ■ • be an effec-

tive enumeration, without repetition, of all Turing tapes, and let Si, St, ■ ■ ■

be an effective enumeration of all generalized sequential machines in an

arbitrary joint alphabet. Define a function h as follows. For each Turing

tape Xi, h(Xi) is the first X¡ (which exists since g is one to one) such that

g(Xj)^Si(f(Xi)) if Si(f(Xi)) is defined, and h(X,)=Xt otherwise. In view

of the solvability of the halting problem for generalized sequential machines,

h is effectively calculable. Therefore there exists a Turing machine Z* such

that Z*(X) =h(X). By construction, for each generalized sequential machine

Si, Si(f(Xi))^g(Z*(Xi)), contradicting condition (3). Hence the result.

Note that Theorem 4 holds even if / is allowed to be many to one, and

that the Turing machine Z* providing the contradiction for condition (3)

computes a value for every input tape in its alphabet.

Theorem 5. Given any set of Turing machines in a finite joint alphabet

there is a function f such that (1) f maps all Turing tapes one to one into sequen-

tial input tapes, and (2) for each Turing machine Z there is a generalized sequen-

tial machine S such that S(f(X)) = Z(X).

Proof. Let Zy, Zt, • • • be the given Turing machines, and Xy, Xt, ■ ■ ■

the tapes in their joint alphabet A. Let/ be the following one to one mapping

of Turing tapes in A into sequential tapes in the alphabet AVJ{A, C, D},

where A, C, and D are distinct symbols not in A. For all n ^ 1 let f(Xn)

= An~1DCZy(Xn)C ■ ■ ■ CZn(X„)(«). For each «el, let Sn be the generalized

sequential machine with input alphabet A\J{A, C, D} ; output alphabet A;

states pi, • ■ ■ , pa, Si, • ■ • , <Zn, <Zo; start state pi; and state function 5n and

output function X„ next defined. Let 5„ and X„ be the functions so that, for

each state p and each input I, t>n(p, I)=p and X„(p, 7) is undefined except in

these cases: 5n(pit A)=pi+iif l^i<n, ôn(pn, C)=qh ¿„(g,-, Cj=qi+yii l^i<n,

àn(qn, C)=qo, ~r\n(pi, D)=Zn(Xi) if l^i<n and Zn(X,) is defined, X„(g„, 7)

= 7 if 7 is in A.

The proof is now completed by showing that Sn(f(X,))=Zn(Xi) for all

Turing input tapes Xt. Write/(Z,) in the abbreviated form ^4i_1PF, where

F is a tape in AU {C}. Two cases exist.

(1) i<n. Then 5„(/(X<))=X„(Mi-1PF)=Xn(^i, DY) = Zn(X,)\n(p(, Y)

= Zn(Xj).

(') If Zm(Xn) is undefined (as distinguished from the case that Zm(X„) is defined and is B),

it is to be regarded as causing no separation between C's on either side (i.e., PZm(Xn)Q is to be

regarded as denoting PQ).
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(2) *fc». Then 5„(/(X,)) = X„(pi, A^DY) = X„(pn, UF) =X„(^n, F)
=X„(çi, Zi(A,)C • • • CZ,(A,))=Xn(<zn> ZniXi)C ■ • • CZ,(A<)) = Zn(A<) (if
i = n) ox ZniXi)\niqo, ZB+i(X,)C ■ ■ ■ CZ,(A<)) = Zn(A<) (if i>n).

Remark. Theorem 5 can be strengthened to apply to Turing machines in

an infinite joint alphabet A. In this case a function g would be introduced

for mapping Turing output tapes. The present proof could then be modified

by letting / and g map A into a suitable binary alphabet.

3. Sets of accepted tapes. One well-known manifestation of work per-

formed by generalized sequential machines is that of accepted input tapes.

For a generalized sequential machine 5 (in this section that also includes a

set £ of designated (final) states (which may be empty)), an input tape X

is said to be accepted by 5 if 5s(çi, A)(7) is in £ [3]. The set of all tapes ac-

cepted by such an 5 is said to be a set of accepted tapes. Because the notion

of accepted tapes is formulated without reference to output it is unnecessary

here to distinguish between generalized sequential machine and sequential

machine. It is also known [3, Theorem 11 ] that, as far as sets of accepted

tapes are concerned, it is unnecessary to distinguish between sequential and

complete sequential machines.

An analogous formulation of the phrase "set of tapes accepted by a Turing

machine T" occurs. It is readily seen that the sets of tapes accepted by Tur-

ing machines are precisely all recursively enumerable sets and the empty set.

On the other hand, the sets of tapes accepted by sequential machines form a

subclass of the general recursive sets. From the strict point of view, then,

Turing machines do more work than sequential machines.

Consistent with the view of the preceding sections the following question

arises. Is it possible to translate Turing tapes into sequential tapes so that all

Turing accepted sets are reinterpreted as sequential accepted sets? More

precisely, let / map all Turing tapes in the Turing joint alphabet one to one

into sequential tapes. Can / be chosen so that for any Turing machine Z

there is a sequential machine 5 such that the set of tapes accepted by Z maps

onto the set accepted by 5? Theorem 6 answers this question affirmatively.

It is immediately apparent, however, that neither the function / nor the

procedure for finding the sequential machine 5 for an arbitrary Turing ma-

chine Z can be algorithmic. For if / were effectively calculable, then every set

of Turing accepted tapes, and consequently every recursively enumerable set,

being recursive in a set of accepted sequential tapes, would be general recur-

sive, contrary to fact. Suppose, on the other hand, that there were an algo-

rithm giving, for every Turing machine Z, a sequential machine 5 such that

the set of tapes accepted by Z is in a one to one correspondence with the set

accepted by 5. Then, inasmuch as the decision problem for finiteness of

sequential accepted sets is solvable, the corresponding decision problem for

Turing accepted sets, and consequently for all recursively enumerable sets,

(') <5s(2i, h • • • Ik) is said to exist if each state g¿+i = «5s(g¡, It) for iii exists; and

*s(2i, Ii • • • h), when it exists, is defined to be <2*+i.
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would be solvable, contrary to fact.

Theorem 6. Given any set of Turing machines, there is a function f such that

(1) f maps all Turing tapes in the given joint alphabet one to one into sequential

tapes ; and (2) for each Turing machine Z there is a sequential machine S such

that the set of tapes accepted by Z maps, under f, onto the set of tapes accepted by S.

Proof. The only property required of the set of tapes accepted by Z is that

it is enumerable (no appeal being made to the recursive enumerability). The

sets of tapes accepted by sequential machines in a given joint alphabet will

be called the regular sets. The only properties required of the class of regular

sets are that it includes all finite sets, all Boolean combinations of regular

sets, and (for any tape Y and natural numbers a and b) all sets of the form

{Ya+bn\n^0}  [3].

Of the given Turing machines, consider only those for which the sets of

accepted tapes and their complements are infinite(8). Let Pi, P2, • • • be the

corresponding sets of accepted Turing tapes. A function / will be defined that

maps the Turing tapes one to one onto the set { F" | n = 3}, where F is a

particular sequential tape. It suffices to show that the images of the sets P¿

are regular, for the image of any other set, being either finite or finitely differ-

ent^) from the set { Fn| w^3}, is regular.

For *= 1, 2, • ■ • ; j=l, •••, 2\ define the sets E(i, j) of Turing tapes

thus: P(l, l) = £i and £(1, 2) = Pl For all *>1 and j from 1 to 2i~1, E(i,j)
is to be the set E(i — l,j)C\Ei if the latter is infinite and E(i — l,j) otherwise.

E(i,j+2i~l) is to be the set E(i — 1, j)(~\E~i if the latter is infinite and E(i — l,j)

otherwise.

The sets E(i, j) have the following properties.

(A) E(i, j) is infinite.

(B) For each i, the E(i, j) are exhaustive.

(C) E(i, j)(~\E(i, k) is infinite if and only if E(i, j) ±E(i, k).

(D) For each i, P< = a union of the E(i,j).

(E) If i'è» and j' =j mod 2\ then E(i', j') QE(i, j).
(A) and (B) are easily established by induction on ».

(C) is proved by induction on », with an obvious basis. For the induction

step, note that, for j> 1, any E(i,j) =either E(i — 1, u)r\E(or E(i—1, u)C\Ei

(where u is either j or j — 2'-1). Hence, if E(i, j)C\E(i, k) is infinite; then

either E(i, j)±_E(i-l; u)r\Ei and E(i, k)_^E(i-l, v)r\E~i, or E(i, j)

= E(i-l, u)r\Ei and E(i, k)=E(i-l, v)C\E{. In either case, E(i-1, u)

C\E(i—l, v) is infinite, so that by the induction hypothesis E(i—1, u)

= E(i-l,v). Consequently E(i,j)±E(i, k).

To prove (D) express P¿ as (EiC\E(i, 1))U • • ■ \J(Ei(~\E(i, 2()). By con-

(8) Complements are with respect to the set of all tapes in the given joint alphabet. The

complement of A is denoted by A.

(•) Sets A and B are "finitely different" if Af\B and AC\B are both finite. This relation

will be denoted by "A ̂ B."
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struction, EiC\EH,j) is either =£(î, /) or finite. Therefore £, = the union of

those £(î, j) for which £iPl£(î, j) is infinite.

(E) is proven by induction of i'. The case i'yi is obvious. Hence assume

i'>i and j'=J mod 2*. By construction, £(i', /) is a subset of £(*' —1,/) if

j'g2i'-1 and is a subset of £(¿'-1, j'-2i'-1) if 2i'-1<j'^2<'. But / and

j' — 2i'~1 are congruent mod 2' to j' and hence to j. Therefore, by the induction

hypotheses, £(/' — 1, j') and £(i' —1, j' —2*'-1), and consequently Eii',j'),

are subsets of £(i, j).

Let the sets £(i, j) be listed so that £(i', j') occurs later than £(¿, j) if

i'>i or if *'=* and j'>j. Run through the list, choosing from each £(î, j)

the first Turing tape not already chosen. By (A), each Eii,j) will contribute

a distinct tape A(i, j), and by (B), the Xii,j) will include all Turing tapes.

For each (*', j) (t=l, 2, • • • ; j= 1, • • • , 2¿), let £*(*, j) be the set

{Xii', j') | *' è*. 1 Êi' ^ 2*' and j' = / mod 2*}. The sets £*(*, j) have the fol-
lowing properties.

(F) E*ii,j)QEii,j).
(G) For each i, j, £(i, j) £a union of the £*(i, w).

(F) follows from (E) and the fact that X(i',f) is in £(i', j').

To prove (G), note that, for each i, E*ii, 1)U • • • U£*(j, 2{) includes all

but the finitely many Xii', j') contributed by the £(*',/) preceding £(î, j).

Hence

£(i,i) â iEH,j) H E*Ü, 1)) W • • • W (£(*,/) H £*(*, 20).

If £(î, j)(~\E*ii, u) is infinite, then by (F), so is £(i, j)f\E(¿, m). Then by
(C), Eii,j)2=Eii, u), so that £(t, f)r\E*ii, «)££(«, u)r\E*ii, «)=£*(*, w).
Therefore £(i, j)=the union of those £*(i, m) for which £(i, j)C\E*ii, u) is

infinite.

Now let F be any sequential tape, and define /(A(i, j)) = Y2'+i. Thus /

maps all Turing tapes one-one onto { F"|w^3}. The proof is completed by

showing that the map of each £*(î, j) is regular. For by (D) and (G), the

map of £,• is then regular. For any element Xii', j') of £*(î, j) there is an

integer n^O such that 2<'+j' = 2i-\-j-\-2in. Conversely, for every n^O there

exist i' and j'; where t's£*, lúj'ú21', and j'=/ mod 2'; such that 2''+/

= 2i+j+2i». Therefore E*ii,j) maps onto the regular set { F2*+)'+2'n| n^0}.

Q.E.D.
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