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0. Introduction. An interesting chapter in modern probability theory

began with the search for all the possible limit distributions for sums of inde-

pendent, identically-distributed random variables. The result—the theory of

the stable laws (see, for instance, [l] or [6])—generalizes and illuminates the

original examples of normal convergence with which the problem originated.

The purpose of this paper is to formalize and study an analogous situation in

the theory of stochastic processes.

To introduce the problem we use an example which has been very well

known for a long time. Let {Xt} be a simple random walk on the line in

which a moving particle starts from 0 at / = 0 and makes transitions at times

t = nr, n an integer. The transitions are moves through a distance 8 to the

right or left, each with probability 1/2. Then if t—»0 and ô—>0, but ô2/t—»1,

the process {Xt} converges to the Brownian motion (Wiener) process in the

sense that the joint distribution of (Xtl, • ■ ■ , Xtk) for the random walks con-

verges to that for Brownian motion for all finite i-sets(2). It is quite natural

to raise the following question : Which processes can similarly occur as limits

upon subjecting a fixed stochastic process to infinite contractions of its time

and space scales? It is essentially this class which we call "semi-stable." The

name is intended to suggest the analogy with the theory of stable laws, and

is rendered more appropriate by the fact (see §2, Example 1 below) that a

semi-stable process, if it is assumed to have independent increments, must

actually be a stable one(3).

1. Foundations. As suggested by footnote 2, we shall consider two sto-

chastic processes {x¡} and {y¡} to be the same if they have the same state

space and finite-dimensional distribution functions; we indicate this by writ-

ing {xt} « {yt}. All the processes considered have states in Euclidean space of

s dimensions, non-negative time parameter, and we assume throughout the

continuity condition
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(2) Actually there is convergence in the more powerful "weak" or "invariance principle"

sense which entails limit distributions for many path-functionals. In this paper, however, we

shall consider only convergence of finite-dimensional distributions.

(3) In [6] there is a definition of "semi-stable laws"; this definition seems no longer to be

in common use and is not related to the way in which the term "semi-stable" is used in this

paper.
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(1) Um Pr(||*i+k - «,|| > e) = 0
A—0

for every /^0, e>0. We shall speak of a "proper" process if xt has a non-

degenerate distribution for every f>0.

Definition 1. Two processes {xt} and {yt} belong to the same type (de-

noted {xt} ~ {Vf} ) if there exist constants b, c, respectively a positive number and

an s-vector, such that {xt} « {èy(+c}.

It is easily verified that this is an equivalence relation, and that the

Markov property, stationary transition probabilities, and the continuity

condition (1) hold either for all processes of a given type or for none.

Definition 2. A process {xt} is "semi-stable" if it obeys the condition (1)

and if for every a>0, {xa¡}~{x<}.

The semi-stable property can be rephrased by saying there exist functions

b(a) with positive real values, and c(a) with values in P., such that for every

a>0, {xat} and {b(a)xt + c(a)} are the same process. This property also

holds for all or none of the members of a given type, so that one can speak of

a semi-stable type of processes. The first theorem, proved below in §3, illu-

minates these notions somewhat.

Theorem 1. // {xt} is a proper semi-stable process, then

(2) b(a) = a"   for some   a ^ 0.

If a^O, the distribution of Xo is concentrated at a point u and

(3) c(a) = co(l - aa).

If ot = 0, then c(a)=0 and the process is trivial in the sense that xt = Xo a.s. for

each t.

Remarks. The constant a is easily seen to be the same for all processes

of the same type ; we accordingly can and will speak of a semi-stable process

or type of order a. We observe that each nontrivial semi-stable type of order a

contains a process with xo = 0 and such that {xat} ~ {a"xt}. Thus in trying to

find or classify semi-stable processes these assumptions may be imposed with-

out loss of generality. It is also easy to establish a one-to-one correspondence

between the processes of one order and those of another; in fact, if {xt} is

semi-stable of order a>0, and x0 = 0, then the process {yt\ defined by

(4) yt = H*,!!"-1*.

is semi-stable of order ß>0. The proof is obvious and will be omitted.

The point of all this is that the semi-stable processes defined above are

the only processes which can result from certain limiting operations. Let

\Xt\ be a discrete or continuous time(4), s-dimensional stochastic process.

(4) If \Xt} is discrete parameter, we shall speak of the random variable X, meaning

really X[t\.
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As suggested by the procedure used in the example in the introduction, we

next assume that there exist real and vector valued functions 0 </(£) / »,

g(£) and a proper s-dimensional process {xt} satisfying assumption (1) such

that

ft i™} - M
in the sense of convergence of finite-dimensional joint distributions. Our main

result is then contained in

Theorem 2. If (5) holds, the process {xt} is semi-stable, and

(6) /(£) = t"Lit),       g(k) = «(0{-£(f)

where a>0, £(£) is a slowly varying function^), and the vector valued function

co(£) has a limit o> as £—>=c. TAe oráer o/ {x¡} is then a, and x0 = co. Conversely,

every semi-stable process of positive order is such a limit for some process {Xt}.

This is also proved in §3. We can now pose two obvious problems: (i)

"find" (or classify, or construct) all semi-stable processes, and (ii) determine

their "domains of attraction." (We say that {-^¡} belongs to the domain of

attraction of {x<} when (5) holds.) Problem (i) has a simple solution, which

is not altogether satisfying but should be mentioned. It is as follows: if {yr\

is a strictly stationary process, — °° <t< », continuous in the sense (1), and

if for some a>0

(7) xt = t"yloe t       for t> 0, x0 = 0,

then {xt} is semi-stable of order a. Conversely, every nontrivial semi-stable

process with x0 = 0 is obtained in this way from some stationary process {yT}.

The proof simply consists of noticing that if }yT} is stationary, then

{xat} ~ {aatayios t+ioga] ~ {aa¿ayiogí} ~ {aaxt),

while if \xat\ ~ {aaX(}, then

{yT+a\ ~ {e-^e-^Xe^} « {e~aTxer} ~ \yr).

One instance of (7) has been used by Doob to deduce properties of the (sta-

tionary) Ornstein-Uhlenbeck velocity process from those of the Wiener proc-

ess.

The unattractive feature of this solution to problem (i) is that the most

interesting class of semi-stable processes has not been identified—the Markov

processes with stationary transition probabilities. Correspondence (7) does

preserve the Markov property but not stationarity. In the example of Doob

mentioned above, for instance, only a =1/2 gives an \xt} with stationary

(6) That is, £(£) is positive and satisfies Z,(c£)/Z,(£)—>1 as {—> oo for any c>0 (see [3]).
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transition probabilities, although \xt} is semi-stable and Markov for all

values of a>0. (See §4.) In the next section we concentrate upon {xt} which

are stationary Markov processes, and present some examples and results

which fall short of finding all such processes.

The second question above, concerning "domains of attraction," seems

even further from a complete solution. For instance, all of the work on condi-

tions under which the central limit theorem is valid for Markov processes,

martingales, stationary processes, etc., is pertinent to determining the "do-

main of attraction" of the Brownian motion process in our sense.

One further remark may be in order. It is natural to ask whether there is

not an analogue of the infinitely-divisible laws in the same spirit in which

semi-stable processes are analogous to stable laws. Some reflection has led me

to the conclusion that the "correct" analogue is simply the class of all con-

tinuous-parameter processes which are continuous in the sense (1), so no inter-

esting new class arises in this way.

2. Examples of semi-stable processes. In this section it will be assumed

that all processes considered are Markovian and have stationary transition

probabilities; also a>0 and xo = 0.

Example 1. Independent increments. A remark about terminology is first

called for. In [6], P. Levy defines a "stable" distribution function as one such

that if Xi and X2 are independent random variables with the given distribu-

tion, then for every ai>0, a2>0 there exists 03>0 satisfying

(8) aiXi + a%Xi = a3X3,

where X$ again has the given distribution. Levy calls the distribution "quasi-

stable" if (8) holds with a constant (depending on ai and 02) added to the

right-hand side. This distinction is not usually maintained today, and all of

these laws are simply called "stable." However, we will now show that a

process \xt\ with stationary independent increments and with Xo = 0 is semi-

stable if and only if the increments have distributions which are stable in P.

Levy's sense. If the stable distribution is of index 7, the order of {xt} is I/7.

To prove this, notice that if the process is semi-stable of order a and

Xo = 0, then

*,(X) = £(«'»•*«>) = £(ei,a<x'*i>) = 0i(*»X).

Since it also has stationary independent increments, we find that

<bi(t"\)<bi(s°\) = <bt(X)<b,(X) = <bt+i(X) = 4>i[(t + J)"X].

This, if a7^0, implies that the distribution of Xi (and so of all increments)

satisfies (8) and so is stable in Levy's sense. The case a = 0 is trivial, for then

all increments are 0 by Theorem 1.

In one dimension the general form of a characteristic function which is
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stable of index 7 in the sense of (8) is as follows:

log <p(t) =
0-(ry\

1 + iCsgnXtan —), 0 < 7 < 2, y ¿¿ 1,

-B\\\  + iA\, T=L

-B\2, 7=2.

It is easily checked that each of these laws leads to an additive process which

is semi-stable of order I/7, proving the converse part of the above statement

when s= 1. The same approach of direct verification, coupled with knowledge

of the form of a stable law in several dimensions [6], suffices also for the

multidimensional cases.

Example 2. Diffusion. We shall consider first a "classical" diffusion whose

state space is a cone with vertex at the origin in s-dimensional space(6). That

is, we assume that the backward equation is of the form

du      1    -i. d2u _, du
(9)-  Z  «tf(*(1), • • • . *(,)) —. + E bi(x^, • • • , *(«>)

dt        2   ~~i dx'dx'        i dxM

where the coefficients are given by

(10)

b(x) — lim E  - I xt = x I,
»-»o     L       h J

a(x)
,.  ^r(*t+h - xt)T(xi+h - xt).      1

= hm E\ —-— I X( = x   .
»-»o     L h J

(Here and below b, x, xt, etc. are row vectors with components Z>,-, x(i), etc.,

a is the sXs matrix [a,y], and the superscript T means transpose.) It is under

these assumptions quite easy to show that the functions a(x) and b(x) are

arbitrary only on a sphere. More precisely, if the above diffusion is semi-stable

of order a then

(11) a(x) = llxll^'-aCü^ü) ;       b(x) = ||x||i-i/<"fo^Y

To derive (11) we first write

a(x) = lim —- I   (y - x)T(y - x)dphix,y),
»-.0   h  J y

where pi(x, y) is the transition probability function of \xt}. We now need

the relation

(6) If a process is semi-stable and x<¡ = 0, the state space must be invariant under positive

scalar multiplication.
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(12) pat(x, E) = pt(a-"x, a-"E).

This is immediate from the definition of semi-stable processes and Theorem 1,

for }x„(} and {a"Xi} are the same process (in the sense of finite-dimensional

distributions) and so must have effectively identical transition functions. Now

a(arax) = lim — |  (y - arax)T(y - arax)dph(arax,y),
a->o h J

and with a change of variable and use of (12) we obtain

al-2a    /.

a(orax) = lim- I  (y - x)T(y - x)dpah(x,y) = a^^x).
ä->o   ah  J

Substitute aa = ||x|| and this becomes the first part of (11); the second part is

obtained in exactly the same way.

The result (11) does not, of course, establish the existence of semi-stable

diffusion processes—especially since the origin is a singular point of (9) except

in very special cases. A recent paper [4] studies convergence to these processes

in the case when the state-space is the positive half-line ; some results on the

domain of attraction can be found there as well as a proof that convergence

is weak(2) rather than simply in the sense of finite dimensional distribu-

tions. Even in this case the definition of a and b on the unit sphere—which

reduces to choice of two constants—is not entirely arbitrary, and in many

cases equation (9) must be supplemented by a reflecting barrier boundary

condition. The higher-dimensional cases have not been analyzed; we only

remark that s-dimensional Brownian motion is semi-stable of order 1/2, and

more generally any direct product of semi-stable processes of order a is itself

semi-stable of order a.

The one-dimensional case has been more completely studied by C. Stone

in his recent thesis [7]. Stone raises and solves a question which may be para-

phrased as follows: When does a one-dimensional diffusion contain in its do-

main of attraction a diffusion or a birth and death process? By our Theorem 2,

a process which does so is semi-stable. It is not quite obvious that every semi-

stable diffusion is among the processes Stone finds, for he requires weak con-

vergence and restricts the class of possible attractees. However, as the simple

proof of the converse part of Theorem 2 (below) will show, any semi-stable

diffusion does have a diffusion in its domain, namely itself, and for this choice

of {Xt} convergence takes place in the weak sense. Thus the results of [7]

answer the first of our two questions entirely in this case. Stone considers

the most general one-dimensional diffusion, so that the backward equation

need not have the classical form (9) and (10). It turns out that these equa-

tions do hold for all semi-stable diffusions (except at the origin) so that (11)

is always valid. Stone also determines all birth-and-death processes which can

be attracted; we refer to [7] for further details.
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Example 3. Purely discontinuous processes. Let us consider an s-dimension-

al Markov process, with Xo = 0, such that the transition probability satisfies

(13) Ptix, E) - [1 - qix)t]f>Eix) + tqix) P(x, E) + o(0,

where $e is the characteristic function of E. P(x, E) is then a distribution

which governs where a jump from x will end, and g(x)>0 determines the

holding time in state x. We shall not discuss here questions about the existence

of such processes, but content ourselves with the remark that if a Markov

process with transition function satisfying (13) is to be semi-stable of order a,

then it is necessary that

(14) qix) - |M|-1/o?(¡rV)>        P(*> £) = P(tT\' INI_1£Y

The proof is similar to the argument above for diffusions. We combine (12)

with (13) and obtain, for any a>0,

qiarax) = aqix),       Piarax, araE) = P(x, E)

from which (14) follows.

Example 4. Zeros of a semi-stable process. Suppose that {x(} isa measura-

ble strong Markov process with Xo = 0, and define

(15) yt = t - sup{r| t|U = 0J.

Then {y,} is a Markov process whose paths consist of a collection of straight-

line segments of slope 1 with left ends on the /-axis, plus the remaining points

of the axis itself. It is very easy to see that if {x<} is semi-stable of any order,

\yt\ is semi-stable of order one. If {x¡} is chosen as one of the one-dimensional

processes of Examples 1 or 2, a class of processes \yt} results which arose in a

different way in [5]. The discussion there contains some information about

the domains of attraction of these processes, and, more important for present

purposes, the form of the transition probabilities is given. These are as

follows:

ptiy, {y + t}) = (—7—)      fory > 0.
Vy + //

/ y\      sinirX /•»ina.wo
MO, [0, y]) = ^-4 7) = —^—J «_x(l - uy-Hu.

Here the Pi_x are "generalized arc-sine laws" and X is a parameter between

0 and 1(7). It is clear that if the strong Markov property is assumed,

Ptix, [0, y]) can be calculated from (16) as follows:

(') Only the cases 0<X£l/2 occur in Example 1, all of them in Example 2 [5]. Taking as

[xt\ the stable process of order y, K-yS2, corresponds to the value X = l — 1/y in (16).



1962] SEMI-STABLE STOCHASTIC PROCESSES 69

(17)

Pt(x, [0, y])

il      if x-Hay,

iJL'-G-r^-GfJ}   ¡f*+,>* '"*>0-
We shall show that (16) and (17) are the only possible form for the transi-

tion probabilities of a process of this sort. The interest of this fact is perhaps

greatest if it is borne in mind that we are essentially determining the sto-

chastic structure of the f-set where x( = 0, where {xi} is any strongly Marko-

vian semi-stable process. The conclusion can be stated more formally as

follows :

Theorem 3. // {x¡} (with x0 = 0) is a semi-stable measurable strong Markov

process with stationary transition probabilities, and {yt}, defined by (15), is a

proper process, then the transition probabilities of {yt} are given by (16) and

(17) for some \E(0, 1).

The proof, which is somewhat lengthy, is presented in the next section.

3. Proofs. We remark first regarding the theorems of §1 that it is only

necessary to consider the one dimensional case, since the arguments we give

are easily extended to the case of vector-valued processes. In fact if a vector

process is semi-stable, so is each component process; this is immediate from

the definition. The function b(a) is common to the s component processes,

so Theorem 1, if true when 5=1, is immediate for any s. As for Theorem 2,

choose a component process which is proper and use the one-dimensional

proof to determine /(£) ; the remaining statements follow easily.

Proof of Theorem 1. We first show that b(a) and c(a) are continuous func-

tions of a>0 if {x<} is a proper process. Indeed, we have from the semi-stable

property that

/ y-c(a+ h)\
Prt^ s ,) = P,(„ s -¿^-¡j-).

From the assumed continuity of the process, the left side approaches

/ y - c(a)\
Pr(^y) = Pr(^ _-)

b(a)

as Ä—>0. Noting that the distribution of Xi is nondegenerate(8) and applying

the theorem on p. 42 of [l] we find that b(a+h)—*b(a) and c(a+h)-*c(a),

the desired continuity.

(8) Actually, if \xt} is semi-stable, then Xt is nondegenerate for all i>0 if it is nonde-

generate for one such /.
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Next observe that again from the semi-stable property we have

/ y - cist)\
PrfeS^Pr^S-^),

and at the same time

Pr(x,( = y) = Pr(xa = J ~C ¿ \ = Yr(Xl =
y - c®\     t, (     ^\y~ CW]*W_1 - cisY

-) = Prl xi ^ -
bit)    I \ bis)

Comparison yields, using again the nondegeneracy of the distribution of Xi,

(18) bis)bit) = bist);       cist) = cit) + cis)bit)i*).

Thus bit) =t" for some constant a, and if a = 0, we also obtain cit) =A log /.

If ctr^O, the functional equation for c is most easily solved by the change of

variable t = ev, s = eu. The function diu) = eis) then satisfies

(19) diu + v) = div) + diu)e™;

the general (continuous) solution is

(20) diu) = Dil - ea"),    or   c(s) = £>(1 - s«).

This result is proved in a familiar way by letting D = d(l)(l— ea), and then

using induction to verify (20) as u varies over the positive integers. Another

induction shows that (20) holds for u = 2_n. But if it holds for two numbers it

holds for their sum, so (20) is correct for all positive dyadic rationals. Con-

tinuity and an appeal to (19) with v= — u completes the verification.

To continue the proof of the theorem, suppose next that a = 0. We have

then

Pr(x, g y) = Pr(*i ^ y - A log /)•

As i—>0 this must approach the distribution of x0, which is impossible unless

^4=0. Substituting in the definition of the semi-stable property we see that

Pr(xo^x, X(^y) is independent of t. If we once again let /—»0, from the con-

tinuity assumption (1) we see that this joint distribution is such that xt = Xo

a.s.

Next consider a>0. Using the results above we have

(21) Pr(xt
/         x- D \

g x) = Vrlxi ^-h D\.

As t—»0, Pr(x<^x) approaches the distribution of Xo by (1). The right side

of (21), however, becomes degenerate at x = D so that D must be the (neces-

(9) If F(  ) is a nondegenerate distribution, o=^0, and F(ay-\-b) = F(cy+d), then a = c and

b=d.
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sarily nonrandom) initial state. Finally, if a<0 and again /—>0, (21) yields

Pr(xx^D) as the distribution of x0; since this is a constant rather than a dis-

tribution function, this case is impossible. This observation completes the

proof of Theorem 1.

Proof of Theorem 2. We shall use the following

Lemma. Suppose that for some an>0, a„>0, and distributions F„, G,,

Gn(anx + bn) —* Fi(x)    and   Gn(anx + ßn) —> F2(x), «—> °o,

in the sense of convergence of distribution functions, and that Pi and P2 are non-

degenerate. Then

an                                    bn — ßn
0 < hm — < oo    and     hm-j¿ + oo

n-»«  an n-.«o an

both exist.

Proof. This lemma is a slight extension of a theorem [l, p. 42] which sup-

poses Fi= Fi and concludes that ctn/an—*l and (bn — ßn)/an-^Q. The present

case is easily reduced to that one. First note that by the theorem in [l, p. 40]

the distributions Pi and P2 must be of the same type; that is,

F,(x) = Fi(px + q)

for some p > 0, q. The second assumed limit can therefore be written as

(u — q \
a™-+ ß»)->Fi(u).

The theorem mentioned above then applies and yields

bn — ( ßn — ff„ — )

«,                                            \                 P/
hm-= 1;        hm - = 0

n->» pau n-»« a„

from which the conclusion is immediate.

This result will now be used to demonstrate (6). To accomplish this, let

j £„ j be any sequence of positive numbers approaching oo. Then by (5) (using

only convergence of one-dimensional distributions) we have when / = 1

Prj^,. Ú m* - g&)} - Mxi Ú x).

But also for any ¿>0, replacing £ by £i and t by 1/t in (5) yields

Pr{X{i ^ f(U)x - g(U)} - Pr(x«_i è x).

From the lemma and the assumption that {xt} is a proper process, this im-

plies that for each / > 0
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hm- = bU)
-» /({<)

exists; since there is a limit for every sequence £—>« the limit holds simply

as £—»°°. But it is known [3] (and not difficult to prove) that the existence

of this limit for all / > 0 implies that

(22) /({) = FLiQ,       L slowly varying,

which is the first part of (6).

To obtain the second part, we shall use the convergence of the initial

distribution, assumed as part of (5):

Pr{Xoa/(Ö*-f(ö}->Pr(*,a*).

Since it was also assumed that/(£)/ °° (which implies a^O), the distribu-

tion of Xo must be degenerate at a point, say w. Then if y is a point of increase

of the distribution of X0, we must have for any e>0,

/({)(« - e) - gi£) úy-e<y + e= /({)(« + e) - git)

for all large values of £. This implies that

(23) hm - = w = Xo,
£-«• /(£)

which together with (22) yields (6). The function g(£) thus can be neglected

just when the process {x(} starts from 0.

The rest of the proof is simple. We have assumed in (5) that

,.   „ YXth + git) x(tk + git)
hm Pr  - s xi, á xh

i—     L     fit)      - /({)
= Pr[xtl g Xi, • • • , *«t á **].

We also have

(24) lim Pr|"{^f + ^| á *}1 = H{*« = «}],
t—     L 1/(0      /(|)       ) J

where the several variables Xaih, • • • , -X"0£<i, etc., are indicated symbolically

by the braces. Using (22) and the definition of a slowly varying function,

the left-hand side of (24) becomes

fXH^^^}]/(«Ö
where «,(£) is a function which approaches 1 as £—» ». When this is written

in the form



1962] SEMI-STABLE STOCHASTIC PROCESSES 73

lim Prl" {-^ + « = a-»(xm(t) + co(l - ««(Öa«))ll
í-»      L Kf(aC) ) A

it is clear that at continuity points the limit must be

Pr[{x< Ú ar"(x - u(l - a"))}].

This shows that the relation

(25) {xat\ ~ {a"xt + w(l - aa)}

holds, and the process {xt} is thus semi-stable of order a and with initial

state w. Note that a = 0 is not possible when/(£) / oo unless the limit process

is improper, since the initial distribution, and hence each distribution if

a = 0, is degenerate.

The converse is trivial, for if {x(} is semi-stable of order a>0, we can

choose for {Xt} the process {x¡} itself. The function/© can then be taken

to be £«, and g(£)a to be w£a. This gives

*[£+£«+Mf5±f*+--}]-
and letting ¿j—> <x>,

lim Príj^-f- — Ú x\] = Pr[{x( < *}].

This shows also that no additional semi-stable processes are obtained by

allowing discrete-parameter processes in the role of {Xt} beyond those arising

when the approximating process has a continuous parameter.

Proof of Theorem 3. To begin with we shall show that the first part of

(16) must hold. Under the hypotheses of the theorem {yt} is semi-stable of

order 1 and yo = 0, so that

(26) pt(x,{x + t}) = pi(j, {7 + 1})==?(t)' say-

By the Markov property, on the other hand, we have

pt+,(x, {x+ t + s}) = pt(x, [x + t))p,(x + t, {x+ t + s}).

This is true since the transition from x to x+t+s in time t+s can only take

place along a straight line(10). Translating this equation into one for the func-

tion q yields

(10) It should be observed that because of the strong Markov property the transition

probabilities are defined and satisfy the above relations for all, not merely almost all, values

of x.
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(27) KtÍ7) = ?(t)?(^)    *»■**'■'> o.

Make the change of variable qiu) =r(w/(M + l)) and (27) becomes

(x        \ /    x    \    /     x + /    \

x+l + s)        \x+ t)\x+ t + s)'

In other words, riab) =r(a)r(è) for all o, ô£(0, 1). This relation can be ex-

tended to all positive numbers by defining r(a) to be ria~*)~l when a> 1 ; the

function r is certainly measurable. It is well known that this implies that

ria) =ax, which in turn means that

>«<*• [x+t])=q(i)=(^y

Since this is decreasing in / and {yt} is proper, X>0.

Now, using the semi-stable property, let

PAO, [0,y]) = /,i(0'[0'7]) - *(j\

where F( ) is a distribution on the unit interval. The transition from 0 to

[O, y] in time 1 occurs if and only if the {yt} process attains the value zero

for some t£ [l— y, l]. By integrating over the possible states of the process

at time 1 — y, we obtain for y>0

Fiy) = f   "[l - Pviu, [u + y})]dp(-^-\
J«=o \1 - yl

as a necessary condition which the unknown function F must satisfy. We

shall see that when X < 1 the function Fi_x of (16) is the only acceptable solu-

tion, and that there is none if \ — 1.

To achieve this let us rewrite the necessary condition above as

<28)      'M-/;[i-|^j']«M.

Next, consider a transformation T of measures on (0, 1 ] defined by

rl    cox(l - y)x
Tuiy, 1] =   I    7-— dphä).

Jo   kl-y) + y]x

It is easily checked that Tpiy, l] is decreasing in y, zero if y= 1 and equal to

¿u(0, l] if y = 0; in particular, if p is a probability measure on (0, l] so is Tp.

The condition (28) is equivalent to stating that the measure generated by
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F(y) consists of a possible mass at 0, plus a measure on (0, l] which is a fix-

point of T.

The transformation T can be used to generate a discrete-time Markov

process {X„} on (0, l](u). Indeed, if any (Borel) probability measure on

(0, l], say juo, is taken as initial distribution then Tnpo is the distribution of

Xn; the transition probabilities from a point £ are defined by applying T to

the measure concentrating unit mass at £. These transition probabilities have

densities which are uniformly bounded from 0 provided £ is bounded from 0.

In view of this it is easy to see that, for each X>0, one or the other of the

following two possibilities must hold: (i) for any choice of X0 there is a posi-

tive probability that Xn—*0 as w—* oo, or (ii) the process {X„} is recurrent in

the sense that any set of positive (Lebesgue) measure is eventually entered

with probability one from any initial state (>0). It is clear that only in case

(ii) can there be a probability measure on (0, 1 ] which is a fix-point of T.

We now appeal to a theorem of T. E. Harris [2] which says that in case

(ii) there is a unique c-finite measure which is invariant under T. Notice

now that for every X>0, the function

du(ui)
(29) —^ = »-*(1 - co)*-1

do)

is the density of an invariant measure on (0, l]; this measure is finite if

X < 1, but infinite if X ̂  1. In the latter case, therefore, no probability measure

on (0, l] is a fix-point of T, and so the only distribution function satisfying

(28) is H(y), the function with a unit step at the origin. Recalling the role of

this function in the transition probabilities of {yt}, we see that if X^l,

y( = 0 a.s. for all t and no proper process exists of the kind we are considering.

Turning to the case X<1, we now see that the "arc-sine law" Pi_\ (of

which (29) is the density) is the only probability measure on (0, l] which is

invariant under T(n) ; hence

pFi-*(y) + qH(y) = F(y),        p, q ^ 0, p + q = 1

is the most general probability distribution on [0, l] satisfying (28). Notice

that Pr(y, = 0)=g for all i>0. Now

(30) Vr(yi+h = 0) = q = pj  ph(u, {0} )dFM (j\ + o\

But clearly

(u) This process is simply a technical device in the proof, and has no relation with the

other processes studied in this paper.

(12) Since (29) gives a finite invariant measure, we must have case (ii) and Harris' theorem

applies.
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ph(u,{0}) = l-ph(u,{u+h}) = l-(-?-) ,
\u+ h/

and so the integral in (30) tends to 0 as h—>0 by dominated convergence. This

leaves us with q = q2. The case q= 1 gives again an improper process {yt}, so

g = 0 and the proof that (16), and hence also (17), must hold is complete.

4. Gaussian and "wide sense" processes. Suppose that {xt} is a real

Gaussian process with mean 0; the continuity condition (1) then implies that

the covariance function

p(s, t) = E(xtxt)

is continuous. We shall now show that the process {xt} is semi-stable of order

a > 0 if and only if there is a nondecreasing function F(£) of bounded variation

such that

(31) p(s,t) = (st)*f    cos ̂ log 7 W*).

To see this, recall from §1 that if {x(} is semi-stable of order a>0, then

{yT = e~aTXeT} is strictly stationary. The covariance function of {yT} is there-

fore of the form

/> CO

cos (a - r)t
o

dF(t)

with F( ) as described above; this translates into formula (31) for the co-

variance of {x¡}. Conversely, if a real Gaussian process with mean 0 has co-

variance function satisfying (as does (31)) the condition

p(as, at) = a2ap(s, t),

it must be semi-stable. Indeed, from this condition we obtain

E

%ati

[XatJ

(Xoij,   '   '   '   ,  xatn) E

a"xh

[a°xt„

(aaxh, ■ ■ ■ , a"xtn)

for any finite set h, • • • , t„. Since means and covariances determine multi-

variate normal laws, this implies that (xatv ■ ■ ■ , xatJ has the same joint dis-

tribution as (aaxtl, ■ ■ ■ , aaXt„), so \xt} satisfies the condition of Definition 2.

It is of some interest to observe that a nontrivial semi-stable Gaussian

Markov process with stationary transition probability and zero means must be,

to within a scale factor, the Brownian motion process. If {x(} is Markovian,

Gaussian, and semi-stable of order a, the stationary process {yT| defined by

(7) is a stationary Gaussian Markov process, and must accordingly (see
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[8], for instance) have covariance function

E(Vry.) = Ae~B^-\        A,B> 0;

the covariance of {xt} is therefore

(f)E(x,xt) = (st)aAl — \  , t^s.

But this is precisely the covariance function of

(32) 2, = A1'na-Bw^

where {wt} is Brownian motion; since the covariance determines the process

{zt} » {xt}. It only remains to see that this process does not have stationary

transition probabilities unless 2B = 1 and a—B = 0; that is, unless it is (scaled)

Brownian motion. Since {x{} is a Gaussian process, the transition probabili-

ties are determined by the covariances, and in particular for s^t,

(33) E(x)\ x. = 0) = At2a^l - (^y^.

It is not difficult to see that this is a function of t — s alone only in the case

a=73 = l/2;q.e.d.
To conclude, we shall briefly discuss the "wide-sense" versions of the ideas

of this paper, in the spirit in which the term is used in Doob's treatise [8].

We consider (not necessarily Gaussian) processes {xjj with x0 = 0 and con-

tinuous covariance functions, and call such a process semi-stable in the wide

sense (s.s.w.s.) if there is a function ¿>(a)>0 such that

(34) E(xa.Xat) = E(b(a)x,b(a)xt).

We say that another process   {^«}, also with continuous covariance, is

attracted in the wide sense to {xt} if there is a function/(£)/ 00 such that

VXU  Xlt\

(35) !?.EmmrEM-
This situation can be investigated by constructing Gaussian processes with

mean 0 and covariance functions equal to those of {x,} and {Xt}, and apply-

ing our previous results for "strict-sense" semi-stable processes to these. In

this way it is easy to establish the following facts: A process {xt} with x0 = 0

(but not Xt = 0 for all t) is s.s.w.s. if and only if there exists a process {Xt} which

is attracted to it in the wide sense. If this is the case, there exists an a>0 and a

slowly varying function L such that b(a) =a" and /(£) =£"P(£). Also, the process

{xt} is s.s.w.s., if and only if there is an a>0 and a bounded nondecreasing

function F such that E(x,xt) is given by (31).
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