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1. Introduction. In this paper: "ring" means commutative ring with unit;

a subring must always have the same identity element as the ring of which

it is a subring; "dimension" (of a ring) means Krull dimension (the supre-

mum of the lengths of all chains of prime ideals in the ring) ; ring T is an over-

ring of ring R if R is a subring of T, and T is a sub-ring of the total quotient

ring of R.

Cohen [2], generalizing work of Krull [4] and Akizuki [l], proved that

every overring of a 1-dimensional Noetherian domain is Noetherian. Kap-

lansky suggested the question of whether the converse of this theorem holds.

Precisely: If every overring of a domain is Noetherian, is the domain then

either a field or of dimension 1? This question can be rephrased and suc-

cessfully treated in the context of rings with divisors of zero. Call a ring a

C-ring ("C" for Cohen) if all of its overrings are Noetherian. In §3 we give a

rather precise characterization of C-rings.

In considering the question of C-rings we came upon a condition neces-

sarily satisfied by every nondomain which has a Noetherian integral closure.

(The condition is trivial for domains.) In §4 we address ourselves to the

problem of determining to what extent this necessary condition is sufficient.

Among other results, we obtain a modest generalization of the theorem of

Mori and Nagata [7] which asserts that the integral closure of a 2-dimen-

sional Noetherian domain is Noetherian.

2. Preliminary notions. A Z-ring (ring of zero-divisors) is a ring in which

every nonunit is a zero-divisor. A Z-ideal is an ideal consisting entirely of

zero-divisors. An NZ-ideal is an ideal containing a non-zero-divisor. A ring

is said to be of restricted dimension n in a positive integer) if it possesses an

A^Z-prime of rank n, but no iVZ-prime of greater rank. We shall adopt the

convention that Z-rings are of restricted dimension 0. The following technical

lemma contains several completely elementary facts which the reader can

easily establish for himself. We shall use these points repeatedly, both ex-

plicitly and implicitly.

Lemma. Let K be an overring of R, and let S be a multiplicatively closed

subset of R — {0}. Then :
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(1) Ks is an overring of Rs- In particular, if R~s is a Z-ring, then it is the

total quotient ring of Rs.

(2) Every overring of Rs contained in Ks is of the form Ts, where T is an

over-ring of R contained in K.

(3) // R is integrally closed in K, then Rs is integrally closed in Ks.

3. C-rings. Cohen's Theorem (1-dimensional Noetherian domains are cu-

rings) provides us with a class of nondomains which are trivially C-rings:

the class of those Noetherian rings which are direct sums of Z-rings and 1-

dimensional domains. A ring R of this class has the property that for every

maximal ideal M of R, RM is either a local Z-ring or a 1-dimensional local

domain ; that is, each Rm is a local C-ring. This local property is indeed char-

acteristic of C-rings. We shall first prove this fact. Afterwards, in order to

characterize C-rings, it will be enough to describe, as we shall, all local C-

rings. We assure the reader that the class of C-rings is larger than the class of

trivial examples described above(2).

Proposition 1. C-rings are of restricted dimension not greater than 1.

Proof. We shall show that every ring of restricted dimension exceeding 1

must necessarily possess a non-Noetherian overring. Call the ring in ques-

tion R. Let M be an NZ-prime in R of rank greater than 1, x a non-zero-

divisor in M and P a prime contained in M and minimal over the ideal xR.

Let y be a non-zero-divisor in M — P. We claim that if S is the set \x/yn,

n positive}, then the ideal generated by 5 in the overring R [S] can have no

finite basis. Otherwise SP[S] is principal, generated by, say, x/yn. It follows

that for sufficiently large integers m and t and appropriately selected elements

r¿ of R, we have:

x/yn+1 = [r0 + rx(x/ym) + ■ ■ ■ + rt(x/ym)']x/yn.

Multiplication of this equation by y™t+"+l/x shows that (1— yr<¡)ymi lies in

xR. Since y was chosen outside of P, it follows that 1— yr0 lies in P. The

resulting contradiction that 1 lies in M completes the proof.

Thus, the converse of Cohen's Theorem:

Corollary 1. A C-domain is a field or of dimension 1.

Moreover:

Corollary 2. If R is a C-ring, then for every maximal ideal M of R, RM is

a C-ring.

Proof. If M is a Z-ideal, then Rm is a Noetherian Z-ring, and therefore

(a) For an explicit nontrivial example consider the ring R — Z[X]/(X2,2X), where Z is the

ring of rational integers, and X is an indeterminate over Z. Every iVZ-ideal of R is principal.

From this fact it follows that every overring of R is of the form Rs, where 5 is a multiplicatively

closed set of non-zero-divisors of R. Thus every overring of R is Noetherian.
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trivially a C-ring. If M is an AfZ-ideal (and therefore of rank 1), then since

R — M meets every nonminimal prime of K, the total quotient ring of R,

Kr_m is a Z-ring; that is, Kk-m is the total quotient ring of Rm. Since every

overring of Rm is then of the form Tr-m, where T is an over-ring of R, it

follows that every overring of Rm is Noetherian.

Proposition 2, our first step towards establishing the converse of Corollary

2, is of some independent interest; we shall consider it further in §4.

Proposition 2. // the ring R has a Noetherian integral closure, then for

every maximal ideal M of R, Rm is a Z-ring or a ring without nilpotent elements.

Proof. Let R and K be respectively the integral closure and total quotient

ring of R. Suppose that * is a non-zero-divisor in the maximal ideal M of R.

If y is a nilpotent element of Rr-m, then since Rr-m is integrally closed in

K.R-.M, it follows that y/x lies in Rr-m. Thus, if N is the ideal of nilpotent ele-

ments of Rr-m, then xN=N. Since x clearly lies in every maximal ideal of

Rr-m, by Nakayama's Lemma, N=iO). Since Rr-m is an overring of Rm,

it follows that Rm has no nilpotent elements.

Definition. A ring R is said to be locally nilpotentfree if for every maximal

ideal M of R, Rm is a Z-ring or a ring without nilpotent elements. In this

terminology:

Corollary 3. C-rings are locally nilpotentfree.

The proof of the converse of Corollary 2 requires two technical lemmas;

we state them here in the generality demanded by several later applications.

Lemma 1. Let land Jbe submodules of some R-module. If for every maximal

ideal M of R, Im= Jm, then I=J. If every Im has a finite basis, and there exists a

finite set of elements of I which is a basis of IM for all but a finite number of M,

then I has a finite basis.

Proof. To prove the first statement it suffices, by symmetry, to show that

/ contains /. Let x be an arbitrary element of J. For every maximal ideal

Ma oí R there is an sa in R — Ma such that xsa lies in /. Since no maximal ideal

contains all the sa, for appropriate r, in R, l = Siri+ ■ ■ ■ +strt. It follows

that x = xisiri+ • • • +strt) = ixsi)ri+ • • • +ixst)rt, an element of I. To

prove the second statement let {*<} be a finite set of elements of /which gen-

erates all but a finite number of Im. Since every Im has a finite basis, there

is a finite set {y,-} of elements of / which is a basis for each of the exceptional

Im. {xí, y¡] is a basis for every Im- The second statement now follows from

the first.

Lemma 2. Let R be a ring with only finitely many minimal primes P. If

each R/P is Noetherian, then R can have only finitely many rank 1 primes which

contain more than one minimal prime. In particular, a Noetherian ring can have

only finitely many rank 1 primes which contain more than one minimal prime.
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Proof. If the lemma is false, then we may assume that infinitely many

rank 1 primes contain at least two minimal primes, of which one is the

minimal prime P. Let x belong to every minimal prime different from P, but

not to P. It follows that the Noetherian ring R/(P, x) has infinitely many

minimal primes—impossible.

Proposition 3. // R is a Noetherian ring such that for every maximal ideal

M of R, Rm is a C-ring, then Ris a C-ring.

Proof. We must show that in any overring T of R, every ideal / has a

finite basis. It follows from the fact that every Rm is a C-ring (and therefore

it and all of its overrings are Noetherian and of restricted dimension not

more than 1) that there are but finitely many maximal ideals of T lying over

any given maximal ideal of R. Further, for every maximal ideal M of T,

Tm is Noetherian. We intend to exploit these facts for the purpose of apply-

ing Lemma 1. Let J=Ii~\R.

Case I. / is contained in no minimal prime. Let x belong to J, but to no

minimal prime. Any A^Z-prime of R containing x is minimal over xR; there

are but finitely many of these, and each is, by Proposition 1, a maximal ideal.

It follows that x is contained in only finitely many maximal ideals of T.

Thus, for all but a finite number of maximal ideals M of T, Im = xTm= Tm.

By Lemma 1, I has a finite basis.

Case II. J is contained in a minimal prime. Let x belong to J, but to no

minimal prime that does not contain /. Any AfZ-prime which contains x,

but does not contain J, is minimal over xR; there are but finitely many of

these. Therefore all but a finite number of maximal ideals of R, and so of T,

either contain J or do not contain x. It follows from Lemma 2 and Corollary

3 that for all but a finite number of maximal ideals M of T, Tr-m^r is a do-

main. Thus, for all but a finite number of maximal ideals M of T, either

Im = xTm= Tm or Im= (0). An application of Lemma 1 finishes this case and

thereby completes the proof of Proposition 3.

Remark. Both Cohen [2] and MacLane and Schilling [5] have shown

that any overring of a Dedekind ring is also a Dedekind ring. Let us note

that a much simplified version of the preceding argument yields this result.

The crucial point is that the local ring associated with a maximal ideal of a

Dedekind ring is a very simple sort of C-ring: a discrete valuation ring. Let

T be an overring of the Dedekind ring R. That for every maximal ideal M

of T, Tm = Rmç\r, a discrete valuation ring, is a triviality; we must show that

T is Noetherian. If / is a nonzero ideal of T, let x be a nonzero element of

I(~\R. Only finitely many maximal ideals of R, and so only finitely many

maximal ideals of T, contain x. Thus, for all but a finite number of maximal

ideals M of T, Im = xTm= Tm- By Lemma 1, I has a finite basis.

It now remains to find all local C-rings. We already know that a local C-

ring which is not a Z-ring must be 1-dimensional and free of nilpotent ele-
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ments. It is a theorem that these two conditions guarantee that a local ring

is a C-ring. The proof of this fact rests heavily on Cohen's arguments, of

which, for the convenience of the reader, we present here enough to satisfy

our immediate needs.

Lemma 3 (Cohen's Theorem). If T is an overring of the l-dimensiona

local ring R, and x is a non-zero-divisor in the maximal ideal of R, then T/xT

is a finite R-module. The NZ-ideals of T are finitely generated.

Proof. Let Ai = RC\xiT. Since the ring R/xR has the minimum condition,

there exists an n such that for m = n, iAm, x) = iA„, x). We claim that under

the natural homomorphism of T onto T/xT, An/xn maps onto T/xT. (It

follows from this fact that T/xT is a finite P-module.) Let / be an arbitrary

element of T; we must show that t has a representative (mod xT) oí the form

a/xn, with a in A„. Let t = u/v be a representation of t as a quotient of elements

of P(3). There is an m = n such that xm lies in vR. Therefore t = uxm/vxm

= w/xm, with win Rf~\xmT = Am. Now suppose that m¡zn is minimal such that

t has a representative (mod xT) of the form a/xm, with a in Am. We claim that

m = n. Otherwise, since (^4m+i, x) = iAm, x), a = bx+c, with b in R and c in

Am+i. Let c = xm+H', with t' in T. Then t = a/xm=ibx+xm+H')/xm = b/xm~l

+xt' (mod xT). Since b clearly lies in Am-i, this congruence contradicts the

minimality of m. The first statement is thereby established. The second

statement follows from the first.

Remarks. 1. Observe that the preceding argument does not require the

full force of P's being Noetherian ; it is enough to assume that the maximal

ideal (and so all AfZ-ideals) of R is finitely generated. As there do exist exam-

ples of rings satisfying the weaker hypothesis, it is well to be aware of the

stronger result. However, Lemma 3, as given above, will do for our purposes.

2. Note that Lemma 3 and the argument given in Case I of the proof of

Proposition 3 show the following: If T is an overring of a Noetherian ring of

restricted dimension 1, then the ideals in T of positive rank (ideals not con-

tained in minimal primes) are finitely generated. Thus, should a ring such as

T fail to be Noetherian, the offending (i.e., nonfinitely generated) ideals are

all of rank 0.

Proposition 4. A l-dimensional local ring without nilpotent elements is a

C-ring.

Proof. Call the ring in question R. In view of the preceding lemma, it

suffices to show that in any overring of R, the Z-ideals are finitely generated.

Denote the minimal primes of R by Pi, • • • , P». We proceed by induction

on n. Since R is a domain when »=1, we may assume that »> 1. If I is a Z-

ideal in some overring of R, then IC\R is contained in a minimal prime, say

(3) Here, as elsewhere in this paper, we assume that in the representation of an element

of a total quotient ring as a fraction, the denominator is a non-zero-divisor.
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Pi. Let Q be the intersection of Pi, • ■ ■ , Pn, R = R/Q, and denote by x (for

x in R) the image of x under R-+R/Q. Let I also denote the set {xa/ya, xa and

ya in R} of elements of the ideal /; let I he {xa/ya}. By the induction hypoth-

esis, R is a C-ring. Thus the ideal 7i?[J] has a finite basis {xi/yi, ■ • ■ , xt/yt}

in the ring 2?[7]. If x/y is an arbitrary element of I, then it follows that

x/y = üiXi/viyi+ ■ ■ ■ +ütxt/vtyt, with the Ui/v, in R[l]. Then x/y = uxxx/vxyx

+ • • • +utXt/vtyt + u/v, with u in Q. Now u is clearly in Pi; thus u = 0. Then

{*>/y*} is a basis for /.

The promised characterization of C-rings:

Theorem 1. If R is a Noetherian ring, then the following statements are

equivalent.

(1) R is a C-ring.

(2) For every maximal ideal M of R, Rm is a C-ring.

(3) R is of restricted dimension not greater than 1 and locally nilpotentfree.

(4) R is of restricted dimension not greater than 1, and the integral closure

of R is Noetherian.

Remark. Call a Noetherian ring a D-ring if all of its overrings are

integrally closed(4). It is not hard to see that an integrally closed C-ring is a

.D-ring. In part II of this study [3] it is seen that the following statement can

be added to the list given in Theorem 1.

(5) The integral closure of R is a D-ring.

We conclude this section with the observation that the only C-rings in

which (0) is an unmixed ideal are the "obvious" examples. Specifically:

Proposition 5. Let Rbea Noetherian ring in which (0) is an unmixed ideal.

Then R is a C-ring if, and only if, it is a direct sum of primary rings and a 1-

dimensional ring having no nilpotent elements.

Proof. The sufficiency of the direct sum condition is clear; we turn to the

question of its necessity. Let Qx, ■ ■ ■ , Qn be those primary components of (0)

whose associated primes are maximal ideals, and let Q be the intersection of

all the other primary components of (0). By the Chinese Remainder Theorem,

R is the direct sum of the R/Qi and R/Q. Each R/Qi is a primary ring, and

every maximal ideal of R/Q is an iVZ-ideal. Since each of the summands (and

in particular R/Q) must be a C-ring, R/Q is 1-dimensional, and for every

maximal ideal M of R/Q, (R/Q) m has no nilpotent elements. By Lemma 1,

R/Q has no nilpotent elements.

4. Noetherian integral closures. In this section we consider some of the

implications of Proposition 2. First, a more or less standard fact for which we

shall have considerable use throughout this section :

(4) "D" because B-domains are Dedekind rings. The example described in the footnote on

p. 3 is a .D-ring.
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Lemma 4. Let R be a ring having no nilpotent elements and only finitely

many minimal primes, Pi. Then T, the direct sum of the R/Pi, may be regarded

as an overring of R; T is a finite R-module. Further, the integral closure of R is

the direct sum of the integral closures of the R/Pi.

Proof. Since (0) is the intersection of the Pi, R may be imbedded, by

means of the homomorphisms R-^R/Pi, as a subring of T. It is easily seen

that each of the idempotents associated with this direct sum is a fraction

(i.e., a quotient of elements of R). Consequently T is an overring of R and a

finite P-module; thus T is integral over R. Clearly then, T and R have the

same integral closure, the direct sum of the integral closures of the R/Pi.

We may now record a curious consequence of Proposition 2 :

Theorem 2. An integrally closed local ring is a Z-ring or an integral domain.

Proof. If the ring in question is not a Z-ring, then, by Proposition 2, it

has no nilpotent elements. In this event, by the preceding lemma, the ring

is a direct sum of as many domains as it has minimal primes. As it has but

one maximal ideal, the ring must then be a domain.

By affine ring we shall mean a homomorphic image of a polynomial ring

over a field. A classical theorem of F. K. Schmidt asserts that the integral

closure of an affine domain R is a finite P-module. A standard argument

(Lemma 4) instantly extends Schmidt's theorem to apply to affine rings with-

out nilpotent elements. In view of Proposition 2, further extension of this

result will require at least the additional hypothesis "locally nilpotentfree."

It is a theorem that this condition is sufficient. We separate out from the

proof that portion which does not deal specifically with the affine case.

Lemma 5. A locally nilpotentfree ring contains every nilpotent element of its

total quotient ring.

Proof. Let N and N be respectively the ideals of nilpotent elements of R

and its total quotient ring. If the maximal ideal M of R is a Z-ideal, then every

element of Nm has a representative of the form x/y, with x in N and y in

R — M; thus, in this case, Nm=Nm- If the maximal ideal M contains a non-

zero-divisor, then Nm = Nm=Í0). Therefore, by Lemma 1, N = N.

Theorem 3. If R is an affine ring with integral closure R, then the following

statements are equivalent.

(1) P is locally nilpotentfree.

(2) R is a finite R-module.
(3) R is Noetherian.

Proof. It suffices to show that (1) implies (2). Let N be the ideal of nil-

potent elements of R (and also, by the preceding lemma, of R). R/N is an

(R/N) -submodule of the integral closure of R/N, an affine ring without

nilpotent elements. By Schmidt's theorem, R/N is a finite (P/AQ-module,
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and therefore a finite P-module. Since N is a finite P-module (even an ideal of

R), it follows that R is a finite P-module.

Mori and Nagata have proved [7] that the integral closure of a 2-dimen-

sional Noetherian domain is Noetherian. (Nagata [6] has found examples to

show that this theorem can not in general be extended to domains of dimen-

sion greater than 2.) A standard argument (Lemma 4) extends the result to

2-dimensional Noetherian rings without nilpotent elements. Hereafter we

shall refer to this version of the theorem as Mori-Nagata. It is easy to see that

Mori-Nagata and Proposition 2 yield:

Proposition 6. Let R be a 2-dimensional Noetherian ring in which (0) is

an unmixed ideal (i.e., each of the primes belonging to (0) is of rank 0). Then the

integral closure of R is Noetherian if, and only if, R is locally nilpotentfree.

We know (Theorem 3) that if R is an affine ring, then the conclusion of

Proposition 6 remains valid even without the restriction on the ranks of the

primes belonging to (0). It is natural to ask whether this restriction can be

relaxed in the general case. The remainder of this section is devoted to the

consideration of this question. Although we do not reach the ultimate goal of

determining whether the restriction can be removed entirely, we do, in

Corollary 4, achieve a certain improvement of Proposition 6.

Mori-Nagata equips us with a trivially new class of rings with Noetherian

integral closures: the class of those Noetherian rings which are direct sums

of Z-rings and 2-dimensional rings without nilpotent elements. A ring of this

class has the property that none of its A^Z-primes contains a nonminimal Z-

prime. It is a theorem that this property and "locally nilpotentfree" force

the integral closure of a 2-dimensional Noetherian ring to be Noetherian(6).

The proof of this fact will require the following technical lemmas.

Lemma 6 (Cohen [2]). A ring is Noetherian if its prime ideals are finitely

generated.

Lemma 7 (Nagata [7]). Let P be a rank 1 prime in the integral closure of

the Noetherian ring R. If x is a non-zero-divisor in PC\R, then Pf~\R belongs^)

to the ideal xR.

Lemma 8. If a ring has only finitely many minimal primes, and each of its

nonminimal primes is finitely generated, then there are only finitely many

primes minimal over any of its ideals.

Proof. It suffices to show that any radical ideal (an ideal which is the

intersection of prime ideals) I is the intersection of a finite number of prime

ideals. If I is contained in no minimal prime, then the ring modulo / is, by

(6) Examples show that a ring satisfying these two conditions need not belong to the

trivial class described above.

(') "Belongs" in the sense of the primary decomposition.



60 E. D. DAVIS [July

Lemma 6, Noetherian, and there is nothing to prove. Assume then that I is

contained in the minimal primes Pi, • • • , P„, but in no other. Then I is

the intersection of the P¿ and a radical ideal J, where J is the intersection of

the prime ideals {(?«}, none of which contains any Pf. If J is contained in

no minimal prime, we are finished. Otherwise, suppose that J is contained in

the minimal prime P. Clearly P is one of the P<. Now P contains the inter-

section of all minimal primes that are contained in some Qa. It follows that

P is contained in some Qa—a contradiction.

Theorem 4. Let R be a locally nilpotentfree Noetherian ring of restricted

dimension 2. If no NZ-prime of R contains a nonminimal Z-prime, then the

integral closure of R is Noetherian.

Proof. Let R be the integral closure of R. By Lemma 6, it suffices to show

that the prime ideals of R have finite bases. It follows from the condition that

no NZ-prime of R contain a nonminimal Z-prime that for every iVZ-prime

P of R, Rr-pcir is the integral closure of RppiR- Thus, by Mori-Nagata and

Theorem 2, each Rp is an integrally closed Noetherian domain. As in the

proof of Proposition 3, we intend to exploit this fact along with the fact that

only finitely many maximal ideals of R lie over any given maximal ideal of R

for the purpose of applying Lemma 1. Let P denote an arbitrary prime of R.

Case I. P is a maximal ideal or a nonminimal Z-prime. In this case, the

generators of PC\R are all contained in only finitely many maximal ideals

of R, and so in only finitely many maximal ideals of R. Thus, for all but a

finite number of maximal ideals M oí R, the finite set of generators of Pf~\R

is a basis for Pm = Rm. By Lemma 1, P has a finite basis.

Case IL P is a nonmaximal (and therefore rank 1) A^Z-prime. Since Rp

is a discrete valuation ring, there is an x in P such that Pp = xRpQ). Without

loss of generality, x may be taken to be a non-zero-divisor. Any prime mini-

mal over xR is of rank 1 ; it follows from Lemma 7 that there are only finitely

many of these. Let y belong to P, but to no other prime minimal over xR.

Any maximal ideal containing (x, y), but not P, is minimal over (x, y); by

Lemma 8, there are only finitely many of these. Of those maximal ideals

containing P, only finitely many can contain any other prime minimal over

xR (Lemma 2). If the maximal ideal M contains P, but no other prime mini-

mal over xR, then since the principal ideals of RM are unmixed, xRm is pri-

mary for Pjif ; since Pp = xRp, it then follows that Pm = xRm- Thus, for all but

a finite number of maximal ideals M of R, either Pm=(x, y)M=RM or

Pm = xRm. By Lemma 1, P has a finite basis.

Case III. P is a minimal prime. Let x belong to P, but to no other minimal

prime. By Lemma 8, there are only finitely many primes minimal over xR;

(7) It is quite generally true that if P is a rank 1 iVZ-prime in the integral closure of a

Noetherian ring, then Pp is principal. Lemma 3 shows that Pp has a finite basis; easy arguments,

familiar for domains, then show that Pp is invertible, and hence principal.
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let y belong to P, but to none of the others. Any maximal A^Z-prime which

contains (x, y), but not P, is minimal over (x, y) ; there are only finitely many

of these (again Lemma 8). Thus, all but a finite number of maximal ideals of

R either contain P or do not contain (x, y). For every NZ-prime M of R,

Pm= (0) or Rm according to whether or not M contains P. Thus, for all but a

finite number of maximal ideals M of R, either Pm =(x,y)M= Rm or PM = (0).

An application of Lemma 1 finishes the argument in this case and thereby

establishes Theorem 4.

Corollary to Theorem 4 is the promised improvement of Proposition 6:

Corollary 4. Let Rbe a 2-dimensional Noetherian ring having the property

that none of its primes belonging to (0) is of rank greater than 1. Then the integral

closure of R is Noetherian if, and only if, R is locally nilpotentfree.

Proof. We need only establish the sufficiency of "locally nilpotentfree."

In view of the preceding theorem, it suffices to show that no A^Z-prime of R

contains a nonminimal Z-prime. Suppose that the maximal AZ-ideal M con-

tains the nonminimal Z-prime P. Because of the restriction on the ranks of

primes belonging to (0), P belongs to (0). Thus (0) in the ring RM has an im-

bedded primary component, namely, that corresponding to Pm. Then, con-

trary to the hypothesis, Rm has nontrivial nilpotent elements.

Whether this result remains valid without the restriction on the primes

belonging to (0) is yet an open question. The major difficulty in treating the

general case seems to be that encountered in dealing with precisely those

primes ruled out by the hypothesis of Corollary 4: Z-primes which do not be-

long to (0). Such Z-primes can become NZ-primes on localization and in so

doing, slip completely out of the control of the methods we have employed.

It is possible that a study of specific examples of 2-dimensional affine rings

will give some clue to the general behavior of these recalcitrant primes.
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