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1. Introduction. The motivations for attempting to find a satisfactory

classification of recursive functions by ordinals are rather well known; cf., for

example [6, pp. 67-68]. Among other things, such a classification should give

insight into how the nonconstructively defined class of arbitrary recursive

functions can be successively approximated by classes of functions whose

members can be constructively recognized to be everywhere defined and com-

putable. It should also provide a framework for the (partial) characterization

of the strength of various formalized theories, through the classification of

the provably recursive functions of those theories. Finally, it might be hoped

that such a classification would provide a new tool for obtaining results of

purely mathematical interest about recursive functions.

It has been pointed out by Myhill [ll] and independently by Routledge

[13] that the most obvious attempt to define such a classification, namely in

terms of recursions over previously constructed recursive well-orderings of

the natural numbers, already gives all recursive functions by suitable choice

of primitive recursive well-orderings of order type w. This is quite naturally

considered a "breakdown," since none of the ends desired from such a classi-

fication are at all realized.

Another approach to the classification problem has been suggested by

Kleene in [6]. This harks back to the idea that from any constructively

generated class of recursive functions we are able to obtain new functions by

diagonalization or, more generally, by enumeration. Transfinite iteration of

this procedure leads to a hierarchy of recursive functions, most conveniently

described with respect to some class of notations for recursive well-orderings.

However, in order that such a classification not be trivialized at level to, the

set 0 of notations used should be restricted to those built up only by means of

primitive recursive fundamental sequences [6, pp. 72-73]. We shall follow

this restriction throughout this paper.

For functions </>, \f/ on natural numbers put (for the moment) </>«^ if <j> is

primitive recursive in \f/, but not conversely. Kleene's hierarchy of functions

Pd (denoted by hi in [6]) has the property

(1.1) c <od—> pc « pd.
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Another hierarchy of recursive functions p<¡ which has this property when

<b<Ziip is interpreted to mean that <f> is majorized by \[/, i.e., that

(Em)(n)(n>m-^<p(n)<^/(n)), has been suggested to the author by Hartley

Rogers, Jr. The possibility of obtaining such a hierarchy is easily seen from

the fact that from any effectively enumerated class of recursive functions we

can construct a recursive function which majorizes all elements of that class.

In this paper we consider a quite general class of hierarchies of recursive

functions associated with given relations <3C, of which the above-mentioned

are examples. Since, generally, uniqueness results fail for such hierarchies (cf.

Axt [l], Kreisel [9], and 3.8 of this paper), it is natural to put questions of

completeness in two ways. First, given k^ui, what can be said about the set

of functions pa for ¿£0, \d\ <k? Second, what can be said about the set of

functions p<¡ for ¿£P, where P is a path (set of notations well-ordered by <o,

and closed under predecessor) in 0, \P\ =k? (We understand by |¿| the

ordinal denoted by d, by \P\ the order type of P under <0, and by Wi the

least ordinal not denoted by any d£0.)

The answers we obtain here to these questions are (under suitable condi-

tions governing the "rate of growth" of the functions pà) the following:

(1.2) For any recursive function <b we can find dC.0 with \d\ =u>2 and

<l><£pd.
(1.3) We can find paths PQO such that \P\ =ws and such that for any re-

cursive <p there is a d£z.P with <p<£.p<i. Moreover, given any ordinal k5¡o>i we can

find such paths with \ P\ =/c+w3 if k<u>i, \P\ =ui otherwise.

(1.4) We can find incomplete paths P through 0, in the sense that \P\ = wi

and there exist recursive functions <b such that p<¡<K<¿> (hence <b not <^Pd) for all

¿£P.
The results (1.2), (1.3) answer Kleene's question P 236 [6, p. 77] for his

hierarchy. An immediate corollary to (1.2), is the nonuniqueness of that

classification for all \d\ ^w2, thus completing the answer given by Axt in

[l] to the question P 238. We also answer the question P 237 in part by

means of the following result, which complements a converse result by Axt

in [l]. (The present result has been obtained in collaboration with W. W.

Tait.)

(1.5) All the functions p¿ of the Kleene sub-recursive hierarchy for which

\d\ <w2 are ordinal recursive with respect to the "natural" well-ordering of the

natural numbers in type co" .

A related result which we obtain is the following.

(1.6) All the functions p¿ of the majorizing hierarchy for which \d\ <w2 are

primitive recursive.

These results (1.5), (1.6) reinforce an opinion, which might already be

taken on the basis of (1.2), that such hierarchies do not, when used with all

notations, provide a satisfactory classification of recursive functions. Again,

the reason for this breakdown can be localized in the liberality with which we

have provided ourselves notations for well-orderings.
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However, it turns out that these hierarchies can still be used to obtain

some new information about recursive functions, thus providing something in

one direction demanded from a suitable classification. This is the following

(hierarchy-free) result:

(1.7) There exists a set A of recursive functions densely ordered by <<C; hence

for any denumerable ordinal k there exists a sequence of recursive functions <plt

i<k, such that i<i/—*£,«<£,/.

But here hierarchies are used in an unexpected way, namely through cer-

tain "nonstandard" extensions of them.

Some of the results described above and the methods used to obtain them

are closely related to (and were suggested by) certain results concerning re-

cursive progressions of theories. In particular, (1.2) is related to a complete-

ness result for arithmetical sentences of the form (\tx)(3y)y(x, y)=0, y

primitive recursive, in suitable progressions of theories, obtained by us in

[2, Theorem 5.2]. (1.3) is related to [2, Theorem 5.14], but the proof here is

simpler since there are no problems of arithmetization involved. (1.4) is

closely related to the incompleteness result of our paper with Spector [3,

cf., Theorems 2.5, 4.4]. Finally, the methods used to obtain (1.7) exploit

certain ideas incipient in [3].

It is perhaps accidental that these metamathematical results preceded

the corresponding purely function-theoretic results. However, we believe

that further work on the classification problem should involve metamathe-

matical notions in an essential way. For this problem is intertwined with the

question as to how we can generate recursive well-orderings which we can,

in some sense, constructively verify on the basis of previously constructed

functions and orderings to be well-orderings. An important step along these

lines has already been taken in the work of Kreisel [lO] on the question of

classifying the class of finitistically acceptable recursive functions.

2. Hierarchies of functions. All lower case italics range as variables over

the set 0, 1, 2, • • • of natural numbers. All lower case Greek letters (with

minor exceptions) and certain italic capitals range as variables over the class

of total functions (and, on occasion, also partial functions) of one or more

arguments from the set of natural numbers into itself. We use the notation

a(l) instead of the more usual (a),-; thus 0(l) = 0, and for a^O and po, • • • , pn,

• ■ ■  the primes in increasing order, a — IX" 0 Pl{i)-

The primitive recursive predicate Inm(b) (m>0) is taken as defined in

[6, p. 70 ]. When it holds we say that b is an («-) index for defining a func-

tion <b of » = &(D arguments from any function 6 of m arguments by adjoining

instances of primitive recursive schemata to the true numerical equations

for 6. We shall only need this notion for the case m=\. The w-ary function

defined in this case from a given unary function 6 by b is denoted by [b]en.

If b is not an ra-index we take [b]6n(xu • • • , x„) =0. We set [b]n= [b]?m. We

shall write [b]e, or [b], when n— 1 and also, where there is no ambiguity, for

other values of n. Thus [&]([&]') for b = 0, 1, 2, • • •  provides an enumeration
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of all functions of one argument which are primitive recursive (in 0) [6, p. 71 ].

We write <pQhd if <f>= [b]e, <pQ6 if (Eb)<j>Qbd, and 0£0 if <bQ6 but 0ÇE4>. We
use the notation {e} for the partial recursive function with Gödel-number e,

{e}(x)~U(jj.yTi(e, x, y)).

The following adaptation of the recursion theorem to primitive recursive

functions, proved by Kleene in [6, p. 75], is of great usefulness. We add toit,

in the second part of the statement, a corollary needed for simultaneous re-

cursions.

2.1. Lemma, (i) Given any primitive recursive function 4>(z, Xi, ■ ■ ■ , x„) we

can find an e such that [e]=Xxi • • • xn^(e, Xi, • • • , x„).

(ii) Given any primitive recursive functions ^¿(z0, zi, xi, • • • , x„) (i = 0, 1)

we can find e0, ex with [e,]=Xxi • • • xnypi(eo, eu xi, • • • , x„).

To prove (ii) from (i), first find primitive recursive 0O, 0i such that for any

y, xi, ••-,*„, [0¿(y)](xi, • • • ,x„) = ([y](xi, • • • , x„))(i). We then determine

/ by (i) so that [/]=Xxi • • ■ *B2*<><*><».*</>.*!,•"•*»>•3*»W/).»iO->.*i.••-.«.), We

then take e, = 0i(/). (2.1 (ii) can obviously be generalized to obtain e„

i = 0, ■ ■ ■ , m.)

Throughout the remainder of this paper 0, <o, and allied notions will be

restricted to the case of primitive recursive fundamental sequences. (The

notations 0P or 0' are avoided for simplicity.) Much of the theory for these

notions can be adapted from [8] as described in [6]. Briefly, we obtain first

a transitive recursively enumerable relation ■< such that (when we take

x <y<->x ■< y \/x = y)

a < ô <-> ¿ = 2b«» & 6(o) 5¿ 0 & a < bm,

V b = 3-5»«> & (En)a < [bm](n).

Then 0 is the smallest set which contains 1 and which, whenever it contains

c, contains 2C and, whenever it contains [d](n) for all n, where

(«){ [d](n) < [d](n + l)}, contains 3-5d. We put a<ob if a, 6£0 and a<b.

We denote by C(b) the set of x <b and by C'(b) the set C(b)Kj{b}. We take

\b\ to be the order type of C(b) when bÇzO. Wi is the least ordinal not thus

represented. Kleene has shown in [6, p. 75] that this is the same as the ordinal

obtained when 0 is defined with respect to arbitrary recursive fundamental

sequences.

We put 0o=l, (n-\-\)o=2no a suitable definition of +o has been given

by Kleene in [6, p. 75]. We want, more generally, the following.

2.3. Lemma. Given primitive recursive functions \po, <Ai, ̂2 (of 1, 3, 3 argu-

ments) we can construct primitive recursive functions <b, y with (for all a, d)

(i) <t>(a, 1)=M0,
(ii) <p(a, 2d)=Ma, d, d>(a, d))   for öVO,

(iii) <p(a, 3-5d) =^2(a, d, y(a, d)) where [y(a,d)](n)=<p(a, [d](n)) for all n.
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The proof is similar to that for +o in [6]. Briefly, we can find primitive

recursive 6 with [d(z, a, d)](n) = [z](a, [d](n)) for all z, a, d, n. By course-of-

values recursion we obtain primitive recursive 4>*(z, a, d) satisfying <f>*(z, a, 1)

= Ma), (¡>*(z, a, 2d) = Ma, d, <p*(z, a, d)) for d ^ 0, <p*(z, a, 3-5")

= \pi(a, d, 6(z, a, d)), and <p*(z, a, b)=0 for all other b. We then choose e by

2.1(i) so that [e](a, d)=<p*(e, a, d), and take<£= [e] and y(a, d) = d(e, a, d).

We shall write a®b instead of a-\-o b. This is a primitive recursive func-

tion of a, b, satisfying affil=a, a®2d = 2^d (d^O), and a ©3-5d = 3-51'(o'd)

where y is primitive recursive and [7(0, d)](n) =0© [á](w). For any a, b, n,

(a@b)@no = a@(b®no), but © is in general not associative.

Hierarchies of recursive functions corresponding to certain generation

principles can be constructed as in [6, p. 74] by defining certain partial re-

cursive functions a(z, a) such that for each d(£0, pi = Xxa(d, x) is a recursive

function, and such that the pd's are related in the desired fashion for different

¿'s. Alternatively, it is possible to generate the Gödel-numbers Tí of these

functions. This is more convenient for us here, and the general possibility of

doing this follows directly from 2.3, if we omit the parameter "a" there.

2.4. Corollary. Suppose qi is the Gbdel number of a recursive function and

that \pi, \f/i are primitive recursive functions such that :

(i) iff is a Gödel-number of a recursive function, then so also is Mf) ',

(ii) if for each n, [e](n) is a Gödel-number of a recursive function then so

also is tyi(e).

Then we can find primitive recursive <¡>, y such that 0(1) =q\, <p(2d) =^\(4>(d))

for d9¿0,<p(3-5d)=\p2(y(d)) where for all n, [y(d)](n) =<p([d](n)). It follows from

these conditions that for each dEO, pd=Xx{(p(d)} (x) is a recursive function.

We apply this to the construction of two hierarchies. First we have a slight

variant of the hierarchy introduced by Kleene in [6, pp. 73-74].

2.5. Lemma. We can find primitive recursive \pi, \p2 so that:

(i) if f is a Gödel-number of a recursive function 6(a) then ^i(/) is a Gödel-

number of the function 6'(a)= [a(o)]9(a(i));

(ii) if for each n, [e](n) is a Gödel-number of a recursive function 0„(a) then

Me)    is    a    Gödel-number    of    the    recursive   function    8(a) = 0a(0)(am)

= {[c](O(0))}(ö(l)).

We shall refer to the resulting pd's associated by 2.4 with these M ^2 and

a Gödel-number qi of the constant function Xx(0) as constituting the Kleene

sub-recursive hierarchy. These have the property [6, p. 73] that if c<o d then

PcC-Pi\ this is generalized in 5.3 below. Further properties needed for the re-

sults of this paper will be established in the next section.

As a second example, we construct a class of majorizing hierarchies each

of which is associated with a given recursive function x(a, b). Suppose given

a Gödel number of x-
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2.6. Lemma. We can find primitive recursive functions ipi, yp2 so that:

(i) if f is a Gödel-number of a recursive function 6(a) then ^(f) is a Godel-

number of the function 6'(a) =x(a> 6(a))+ Í;

(ii) if for each n, [e](n) is a Gödel-number of a recursive function 0„(a)

then y\s2(e) is a Gödel-number of the recursive function

0(a) =  max 0,(a) + 1 =   max   {[e](i)}(a) + 1.
OS» go OStga

Put 0<f if (Em)(n)(n^m-J>d(n) <f(w)). Consider the functions p<¡ asso-

ciated with the t/'i, yp2 of 2.6 by 2.4, with qx the Gödel number of the function

Xx(0). These have the property that if c<o d then pc <pd (cf. 5.3 below). We

thus refer to these pd's as constituting the majorizing hierarchy associated

with x- Other results in this paper will depend on taking x to be a function

which satisfies b^x(a, b) for all a, b. Some choices of such x would be x(a, b)

= b, x(a, b) = (o+l) -b, x(a, b) = (a + 2)h, etc.; these lead to familiar number-

theoretic majorizing relationships.

These hierarchies can be modified by taking pi to be any given recursive

function. The results of this paper will still continue to hold for such modifi-

cations. We can further take pi to be an arbitrary function if the notion of

recursiveness is replaced by that of recursiveness relative to pi.

3. Completeness of primitive recursively expanding hierarchies.

3.1. Definition. By a hierarchy which is p.r. (primitive recursively) ex-

panding with respect to certain relations ^e (e = 0, 1, 2, • • ■) between unary

functions, we understand an assignment of unary functions p¿ to each d(E.O for

which there are primitive recursive functions Tr, C, S, L, M satisfying the follow-

ing conditions:

(i) for any <b, 0, f, if <t>£t 0, 0^/ f then <b^THej^;
(ii) for any ¿£0 and any k,

Xx(k)  ^C(k,d) Pd®(.k+l)ts

(iii) for any ¿£0, pdúsw pm;

(iv) for any d, e, and binary <b stich that 3-5<i£0 andXx<p(n, x) Úmm Pww

for all n, we have

3.5M(e,d)EO,     \3-5M^^\   =  \3-5d\,    [d](n) <03-SM(->-»

for all n, and Xx<j>(x, x) ^ z,(e,¡¡) ps.&«««.«.

We say that the hierarchy is strictly expanding if for all d£0 and all

e, p2J%cPd-

3.2. Theorem. The Kleene sub-recursive hierarchy is strictly p.r. expanding

with respect to the relations Çe.

Proof, (i) A suitable function Tr has been defined by Kleene in [6, pp.

70-71].
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(ii) Here we can take C to be a simple function C(k) of k only, satisfying

Xx(k)Qc(k) 0 for any function 0.

(iii) Here we can take S(d) to be a certain constant swhereoÇ,Xx[x(o)]s(x(i))

for any function 0.

(iv) In this case we can find M as a function M(d) of d only and L as a

function L(e) of e only. M is chosen to satisfy [M(d)\ (n) = 2{d] (n) ( = [d ] (n) © 10),

for all n, and a preliminary (primitive recursive) L\ is chosen to satisfy

[L1(e)](n,a) = 2«.3>w<",-'°

for all n, a. To see how L should be defined, suppose we had d, e, <p satisfying

the hypothesis of 3.1 (iv) with respect to the relations Ç/. Let <pn = Xx<p(n, x)

for all n. Then for each n, a,

<t>n(a) = [[e] («)]"[<*](»> (a) = pi[dHn)(2^M-3a)

= pimW]M(2mm-3") = Pi.6™(2n-vle]M-n

= P3.6M<«([£i(e)](w, a)).

Hence <p(a, a)=p3.6i/w([.Li(e)](a, a)) for all a. Choose primitive recursive

L(e) to satisfy [L(e) ]e(a) = 0( [Li(e)](a, a)) for all a, e, any 0. We see by the pre-

ceding argument that for such L, Xx<t>(x, x)ÇI(e) p^.^w. That the expansion

is strict is shown by Kleene in [6, p. 73].

3.3. Theorem. Let x(a, b) be recursive and b^x(a, b) for all a, b. Then the

majorizing hierarchy associated with x is strictly p.r. expanding with respect to

the relations ge, when these are all taken to be the same relation <, where

<p<9^(n)(d>(n)<e(n)).

Proof. The condition (i) is obviously fulfilled.

(ii) Using pic(a)=ip(a, pc(a)) + l ^pc(a) + l for any cGO, and any a, we

easily prove by induction on k that i^Pi<¡>i0(a) for any d(¡zO,a and *. The first

inequality also establishes (iii).

(iv) Here we can take M(e, d) =d. For suppose Xx<j>(n, x) <ph)m for all n.

Then for any a,

<t>(a, a) < p[d](o)(a) < max p[d]«)(a) + 1 = pt.i"(a).

That the expansion is strict is obvious by the inequality used to prove (ii).

We assume throughout the remainder of this section that we are dealing with

any one hierarchy of functions pd (not necessarily recursive) p.r. expanding (not

necessarily strictly) with respect to certain relations =e. We assume that Tr, C,

S, L, M are some fixed primitive recursive functions satisfying 3.1 (i)-(iv) with

these pd, £e.

The details of the proof of the completeness results which we shall give in
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this section would not be essentially simplified by restricting attention to the

sub-recursive hierarchy, and would be simplified little more in the case of

majorizing hierarchies. On the other hand, the theorems hold even for further

(slight) generalizations of 3.1. For example, we could weaken 3.1 (ii) so that

k-\-l is replaced by some primitive recursive D(k, d).

3.4. Lemma. There is a primitive recursive function N(d, e, i) such that for

any d£0 and any <p, if <j>èePd then ^>áiv(<¡,«,<) Pd<si0-

Proof. Take N(d, e, 0)=e, N(d, e, i + i) = Tr(N(d, e, i), S(d®i0)), for

any d, e, i.

Consider now any recursive function <b(a)= U(pyTi(q, a, y)), and let for

each ntbn be the constant functionXxcb(n). By 3.1 (ii), each <pnúsP* f°r certain

/, h, namely f=C(d>(n), 1) and h=KB(<b(n) + l)0 = (<¡>(n) + í)0. However, in

general these /, h are not chosen as primitive recursive functions of n. Our

main argument towards completeness, which now follows, shows that, never-

theless, certain other /, h can be chosen primitive recursively to satisfy

#» =/ Ph- This, when combined with the limit condition 3.1 (iv), will allow

us to obtain a similar result for (/> itself.

3.5. Theorem. There are primitive recursive functions f=F(q, b, «),

h = H(q, b, n) such that whenever (Ey)Tx(q, n, y), cb = XxU(pyTi(q, x, y)),

<pn = Xx<p(n) and ô£0, then

(i) fe£0, b<oh, | h\ = | b\ +wm for some m>0, and

(Ü)   4>néfPh.

Proof. We shall construct certain primitive recursive functions of q, b, n, k

and i. Considering q, b, n as parameters, we concentrate on the definition of

these as functions of k, i. Using the primitive recursive functions Sb„ of

[6, p. 75], we have [S6](z, y)](x)= [z](y, x) for any x, y, z. We shall write

zy for Sb\(z, y). (This notation will be used only in this proof.) We consider

three primitive recursive predicates of k (and, implicitly, also of q, n):

Sec<°>(¿) <r> (Ey)v<kTl(q, n, y),

(1) Sec'1^) <-* Ti(q, n, k) & (y)y<k - 2\(?, », y),

Sec^(k) ^(y)llsk-^T1(q,n,y).

(Adapting the terminology of [8], we might say of these three cases, succes-

sively, that k is past secured, k is just secured, and k is unsecured.) Using

2.1 (ii), we now find d, e, satisfying the following two conditions for all k, i:

0 if SecW(k),

(2) [d](k, i)=   b® (U(k) + l)o 8 to if Sec«1'^),

3-5M<e*+1''i*+1> 0 io if Sec^(k);
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(3) [«](*,*) =

0 */Secí°>(*),

N(b © (U(k) + i)o, C(U(k), b), i)     if Sec»»(É),

N(3.5u(.„i,a„i)3 L,ek+U 4+l); i)        if Sec<«(Ä).

Now suppose (Ey)Ti(q, n, y) and ¿>£0. Define (¡> and <pn as in the state-

ment of the theorem. Let k<¡ — pyT\(q, n, y). We shall prove by induction on

j that

(4) ifj^ko, k = k0—j, and i is arbitrary, then

(a)  [d](k,i)EO,    búo[d](k,i)<o[d](k,i+l),

\U(h) + 1 + i       ifj = 0,
\[d](k,i)\   =  \b\  +wj+ ^

iff * 0,

and (b) 0« á [eu*,o P[<*](*.«)

For j = 0, we have k = ko, so Sec(1)(&). 4(a) is clearly true in this case. By

3.1(ii), <pn = XxU(k0) ác(í/(*„),w Pb®u{k0)+i)o, hence <Ê„^[e](*„,<> Pm^.i) by (2), (3)

and 3.4.

Suppose (4) true for j; we shall now show it true forj' + l. Suppose j + 1 =&o

and let k = k0— (j+1)- We shall thus use (4)(a), (b) applied to j, k + l. We

have from these 3 • 5¿*+i £ 0, b<o 3-5dh+i, | 3-5d*+i| = | b\ +co-(j + l), and

<i>núuk+iui) P[dk+Í](i) for all ¿. Let \p(i, x) = <¡>n(x) = <p(n) for all i, x. Hence also

Xx*p(i, x)á[ei+1](í) P[di+i](i) for all i. But then by 3.1(iv),

3 .$M (et+i,dt+i)  £1  £) I  3 .5-M(et+l,di+l) I     =    I  3 . 5<U+1 I

[át+i](t) <0 3-5M(et+1<i'=+l)        for all i,

and

XX^(X,  X)   aL(e4+1,dt+1)P3.6M(et+1'dt+l).

Since in this case k<ko, and hence Sec(2,(&), and since also cpn = Xx\p(x, x), we

see by (2), (3) and 3.4 that (4) is also true for the case j + l, k.

As we remarked at the beginning of the proof, q, b, and n were taken as

parameters in the definition of [d](k, i), [e](k, i). Hence /= [e](0, 0) and

h= [d](0, 0) determine / and h as primitive recursive functions of q, b, n.

When the hypotheses of our theorem concerning q, b, n, cj> are met, we have

T\(q, n, ko), hence ko is the Gödel number of a deduction from the system of

equations with number q, and thus fco^O. Taking^ = k0 in (4) thus gives us the

desired result.

3.6. Theorem. There are primitive recursive functions e = E(q, b) and

d = D(q, b) such that whenever (x)(Ey)Tx(q, x, y), <p = XxU(p.yTi(q, x, y)), and

¿>E0, then dÇ.0, b <o d, | d\ = | b\ + co2 and (p^e pd.

Proof. Let F, H be chosen to satisfy the conditions of 3.5. Define primitive

recursive Hi by H\(q, b, 0) =b, H\(q, b, n + 1) = H(q, Hi(q, b, n), n). Treating
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q, b as parameters, choose h with \h\=XxHx(q, b, x + 1). Also choose/ with

If] =XxF(q, H\(q, b, x), x). Thus A,/are primitive recursively chosen as func-

tions of q, b. Let d = 3 ■ 5M(f m, e = L(f, h). To see that these satisfy the required

conditions, suppose (x)(Ey)Ti(q, x, y) and that Z>£0. By 3.5,each [&](»)£0,

[h](n)<o [h](n + \), and | [ft](»-rT)| = | [A](«)| + 03-m„ for some mn>0;

furthermore, b<o [h](0) and [ [h](0) \ =\b\ +wm for some m. Thus 3-5Ä£0,

¿><o3-5Ä and | 3-5A| = \b\ + w2. Also by 3.5, <¿>„=Xx<£(») ^ [/](„> P[h)(n) for

each n. Put \¡/(n, x) =<b(n) for all », x. Then also Xx^(«, x) ^ [/](n) p [*](„>. Hence

by 3.1(iv),d£0, \d\ =|3.5"|,&<0 [h}(0) <0d, and <b=Xx4>(x, x)^epd.
By a path P within 0 we understand a subset of 0 simply (and hence

well-) ordered by <o, and containing with any d all predecessors of d. \p\

denotes the order type of this path.

3.7. Theorem. Suppose k is any ordinal with k^wi. Then there exist (fc$0)

paths PK within 0, \PK\ =K-\-ui3for k<wi, \PUl\ = wi, such that for any recursive

function <j> there exists a ¿£P« and an e with <p^epd- P« can be chosen to be

arithmetically definable (in fact, in a ^-quantifier form) for k<o>i, and recursive

in 0 for k=o)i.

Proof. Let q0, • • • , qn, • • • be an enumeration of all q such that

(x)(Ey)Ti(q, x, y); specifically each qn is the least q>qn-i (g>0, for w = 0)

such that (x)(£y)ri(g, x, y). The predicate Q(n, a) which holds if and only

if a = qn is arithmetically definable in the four alternating quantifier forms be-

ginning with the existential quantifier.

To prove the theorem, consider first the case k<wi. Choose ¿>£0, \b\ =k.

Let D, E be the primitive recursive functions of 3.6. Define d0 = b, dn+i

= D(qn, dn), and define en = E(qn, d„). Thus dn<odn+i and |d„+i| = \dn\ +w2

= | b\ + co2-(« + l) for each n, and \qn) ^en Pdn+1 for each n. Then the path PK

can be chosen in this case to be the set of x such that (£»)(x <dn). Using the

evaluation of the predicate Q(n, a) it is seen that PK can also be defined in the

same form. There is no generality lost by taking k^w. By choosing Rob's with

\b\ =k, we obtain K0 distinct P«'s.

The proof for the case k = wi is obtained by a slight modification. Let

bo, ■ ■ ■ , bn, ■ ■ ■ be an enumeration of 0; the predicate B(n, a) which holds

when a = bn, is recursive in 0. Define d0 = bo, dn+i = D(qn, dn@bn), and

en = E(qn,dn®bn). Thus dnúo dn®b„<0 dn+1 and \dn+i\ = \dn\ +\ b„\ + w2 for

each », and {qn} ^e„ p<¡n+i for each ». The path Pw, is again defined as the set

of x <d„ for some ». Since | bn\ Ú \dn+i\ for all », |PWl| =wi. Without loss of

generality we can take \b0\ = w; by altering the enumeration of 0 for different

choices of bo we obtain X0 distinct PUl's.

Uniqueness in hierarchies p<j with respect to relations ^, can be said to

hold at level k<ü>i if for all d, ¿'£0 with |¿| = \d'\ =k there exist e, f with

PdúePd', Pd'újpd. The following nonuniqueness result is obtained directly

from 3.6 (cf. also [l;9]).
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3.8. Corollary. Suppose the give hierarchy is strictly p.r. expanding and

that for any c, d£0, c^o d—*(Ee)pc^e pd. Then for any d£0, \d\ =co2, there

exists d'G O with \d'\ = \d\ and (e) {p,¡. $ «, pd}.

Proof. Let |d| =w2+/c, and let è£0, |ô| =k. By 3.6 we can find hÇzO,

\h\ =o)2, and/isuch thatp^^/i Ph- Let d' =h®b; thus/f=od' and |d'| = \d\.

By hypothesis there is/2 with phu/2Pd', hence by 3.1(i) there is/ with pm^/Pd'.

If for any e, pi>^e pi, we would have p&^eipd for certain e\, contradicting

the strictness of the expansion.

As we remarked in §2, the condition c^o d-+(Ee)pc^.e pd is met by the

Kleene sub-recursive hierarchy with respect to the relations Qe. Axt showed

in [l, pp. 87-91] that uniqueness holds in this hierarchy for \d\ <co2 and fails

at   d\ = <o2.

To apply 3.8 to the majorizing hierarchies, we consider the relation

<p^6<r+(Em)(n)(n'^m—>4r(n)S:9(n)) instead of the relation <p<8 of complete

majorizing used to prove 3.6. This still has the property of strictness, pm^pd

and, as pointed out in §2, it satisfies c^o d—*pc^pd.<p<0—*<p^6, so we can

use 3.6 for this relation too. The only other property needed in the proof of

3.8 was transitivity of ^, which certainly holds. Hence uniqueness with

respect to the relation g also fails in the majorizing hierarchies for \d\ = co2.

It can be seen by special arguments for the case of the function x(a, b)=b

that it also fails for |¿| =co.

4. Classification of certain hierarchies below o2. In the first part of this

section we give a classification, in terms of the notion of ordinal recursion,

of the functions pi in the Kleene sub-recursive hierarchy for |d| <w2. This

part of our work has been carried out in collaboration with W. W. Tait.

Consider a primitive recursive well-ordering Z of the natural numbers in

which 0 is the first element. Put

(x       if x Z a,
(4.1) xla= I

\0       otherwise.

A function <¡>(x) is said to be defined by nested ¿-recursion from f 1, • • • , f»

if it satisfies

(4.2, *(0) - *•
+(« + 1) - 7(«),

where 7(0) is built up by composition from the functions fi, • • • , f« and

the function <p, but where every application of <p has the form $(s ft (ö + l))-

This is said to be an ordinary, or unnested, recursion if 7(a) has the form

r(a,4>(o(a) A (a + 1))), where r,a are built up from fi, • • • ,fmalone. General-

ization of this notion to functions of several variables is fairly direct. (The

notion of nesting corresponds to Peter's "eingeschachtelte" recursions of

[l2, §10].) A function is said to be definable by ordinary Z-recursion (by

nested Z-recursion) if it is the end term of a sequence of functions each of
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which is obtained from preceding functions in the sequence either by one of

the usual schémas for primitive recursion or by the schema (4.2), in one or

more variables, for ordinary Z-recursion (for nested /-recursion).

We deal here only with "standard" or "natural" well-orderings Z, which

notion is well understood at the very least for ordinals ^e0. We might specifi-

cally take for these the orderings defined in [4, p. 361 ], or consider orderings

satisfying certain minimal conditions, as in [15, 1.2]. The classification of

(part of) the class of recursive functions by such orderings does not collapse

at low ordinals, in contrast to [11; 13]. If a is the order type of Z, we shall

speak of (ordinary or nested) a-recursion. The o^-recursions thus correspond

to the "fc-fache" recursions of [12, §§11-12]; the nested «^-recursions cor-

respond to what Axt calls ¿-recursive functions in [l, p. 93]. The main fact

that we shall use for such standard a-recursions is the following proved by

Tait in [15, Theorem 2], for a^w: if a function <p is definable by nested

a-recursion then it is also definable by ordinary «"-recursion. (He has also

shown in [15] that, when o)-ct = a, the converse is also true.)

4.3. Theorem. The functions pd of the Kleene sub-recursive hierarchy are

all nested os*-recursive, hence all ordinary (¿"'-recursive for d£0, |d| < co2.

Proof. It is more convenient here to return to Kleene's definition of his

hierarchy in [6] as consisting of functions h¿(b, a) satisfying

h(b, a) = 0,

(1) h*(b, a) = [&]*í(a)        for ¿7*0,

hs.id(b, a) = hw(i,(D)(6(0), a).

By the uniqueness result of Axt [l ], it is sufficient to classify the functions hi

corresponding to the "natural" notations \d\ < w2, all others at these levels

being primitive recursive in these particular functions. Thus to each m, k we

associated™,¿with \dm,k\ =o)-m+k, dm¡k<0dmi¡kl if and onlyif |dm,t| <\dmi,kl\.

We shall now define a sequence of functions Hm(k, b, a) such that hdmk(b, a)

= Hm(k, b, a) for all m, k.

(i) Ho(0, b, a) = 0,

(ii) H0(k + 1, b, a) = [*]^»*ffo(*.».«)(a)>

(i) Hm+i(0, b, a) = Hm(bw,bm, a),

(ii) Hm+1(k + 1, b, a) = [J]x»*ff.+i(*.»..)(a).

We next analyze the form of (2)(ii), (3) (ii). In general, the definition of <b(b,a)

= [ô]"(a) from given binary 0 can be put in the form

4>(0, a) = 0(a(O), am),

<¡>(b + 1, a) = X(b, a, 4>{ro(b), ri(a,b, JJ pV""', 4>(b + 1, [a/2])S\\
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where To(b) <o-fT, and ti is a function of b only when a = 0. This can be ob-

tained from [6, p. 74]. Here x, r0, ti are certain primitive recursive functions.

Assigning the ordinal ca-b-\-a to (b, a) shows that this is a definition of

[&]e(o) by nested co2-recursion from 6. Assigning the ordinal co2-&+co-0-f-a to

(k, b,a) in (2), and replacing the equation (2)(ii) by two equations obtained

from (4) by substitutingXyxH0(k, y, x) for 6andXyxHQ(k-{-l, y, x) foreshows

that Ho is nested co3-recursive. Similarly, Hm+i is nested co3-recursive in Hm.

Hence induction and Tait's result shows that each Hm is ordinary co™ -recur-

sive. It follows that the same is true of each function ddmk = XyxHm(k, y, x).

Axt has shown in [l, p. 99] that the converse to 4.3 is true, i.e., that every

nested ^'-recursive function is primitive recursive in one of the p<¡ for \d\ < co2,

and in fact more generally for nested co^+'-recursions and |d| < co*. It is clear

how 4.3 can be extended to the classification of p<¡ for "natural" d with

|d| < w*. These various results constitute a partial answer to Kleene's prob-

lem P 237 in [6, p. 77].

4.4. Theorem. The functions p¿ of the majorizing hierarchy associated with

a function x(a, b) are all primitive recursive in xfor ¿GO, \d\ < co2.

Proof. For any ¿GO, \d\ < co2, there are only finitely many limit notations

3-5° 5=o ¿. It suffices then to consider any sequence 3-5cl, • • • , 3-SCn, ■ ■ ■

(not necessarily primitive recursive) with |3-5C"| =co-n and 3-5c»<o 3-5c"+1

and to show that for any d <o 3 • 5e" for some n, we have pi primitive recursive

in x- We regard this sequence as fixed throughout the following.

Define the following primitive recursive functions M, E (no relation to

functions used in §3) by course-of-values recursion.

M(2d) = M(d),    M (a) = a   otherwise;

(1) E(2d) = E(d) + 1,    E(a) = 0   otherwise.

Thus if dGO, |d| < co2, M(d) is the maximum limit notation 3-5c which is

^od, or 1 if there is no such. Further d = M(d)@(E(d))o, so E(d) measures

the excess of d over this notation. We shall also need an iteration of the

function x(ci, b)+l,

(2) x*(0, a, b) = b,       x*(n + 1, a, b) = x(«, x*(n, a, b)) + 1.

X* is primitive recursive in x-

Let L„= {d:d<o3-5Cn}. We shall prove by induction on n that

(3) There exists a function <pn, primitive recursive in x, such that for every dÇ_Ln

and every a,

Pd(a) = 4>ni a, d, Ü Pi'1     > - • ' , II Pi"1  ' )•
\ »SO iS a /

The defining conditions for the majorizing hierarchy are pi(a) =0,

p2d(a) = x(a,Pi(a)) + 1,       p3-5"(a) =   max P[dio-)(a) + 1.
Oáj'áo
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Using (1) and (2) we have for any d£0, |d| < co2,

(4) Pd(a) = x*(E(d), a, pMw(o)).

Thus for the case «= 1, we can take <pi(a, d) =x*(E(d), a, 0). Suppose now that

(3) is true for », and let us prove it for »4-L If d<E.Ln^ i, we have d(ELn<-+M(d)

^3-5c». We can define the desired function <bn+i by separating the cases

d£Ln, d£L„+i — L„. Set

(5) j/„(a, xu ■ ■ ■ , x„_i, y) =  max <pn(a, y0), xi, • • • , x„_i) + 1.

Then we define

<t>n+i(a, d, xi, • • ■ , x„)

(6) (4>n(a, d, xi, • • • , x„_i) if M(d) ^ 3-5e",

\x*(E(d), a, ij/n(a, xh ■ ■ ■ , x„_i, xn))        if M(d) = 3-5c".

Then by induction hypothesis <bn and hence \¡/n and <bn+i are primitive recur-

sive in x- To see that (3) continues to hold true for » + L we need only con-

sider the case M(d) =3-5Cn. By (4), it is sufficient to see that

/"7\ t \        i   I       TT  . t«ili*> TT  .t«»-ll«)     ri   >»1(«)\(7) PiMa) = IM ö, II pi       , ■ ■ ■ , 11 pi ,  H pi        ).

But the right side here is just

max <M a, [cn](j), ]J P?  '»•••, II Pi"       ) + i>

which, since each [c„]fj) <o 3-5Cn, i.e., [c„](/)£i,n, is by (3) for « the same as

max0sySa P[c„io')(a) + L

Thus (7) is proved and the induction is complete. Now for any particular

d£0, \d\ <w2, (3) gives the value of Pd(a) as a function, primitive recursive

in x. of a, d and the values of the primitive recursive functions [cj.], • • • ,

[c„_i] obtained from all limit notations which are ^o d. This proves the

theorem.

5. Nonstandard extensions of hierarchies. In this section we use the non-

standard extension 0* of 0, defined in [3] (restricted here to primitive recur-

sive fundamental sequences) to obtain an incompleteness result for hierarchies

and to give some information on the structure of the set of recursive functions

with respect to certain partial orderings.

We shall briefly describe some of the notions and results of [3] as adapted

to the present situation. We put a set A £11 if it can be defined in the form

n(E:A*-*(a)(Ex)R(n, ä(x)) with primitive recursive R, ^4£2<->J4£II, and

;4£H.A.<-»vl£im2 (H.A. = hyperarithmetical). We put d£M if C'(d) is
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simply ordered by ■<, \EC'(d), C'(d) contains with each x also each y <x,

and if for all xEC'(d), either x=l, x = 2I<°> where x^^O, or x = 3-5*<»> where

[x(i)](y) <[^(2)](y + l) for all y. We put dEO* if dEM and for all ¿GH.A.,
Ai\C'(d)^A implies AC\C'(d) has a least element under ■<. It is shown in

[3, §3], that 0Q0*, 0*E?. On the other hand, OGII-2. In fact for any
^GII we can find primitive recursive £ such that (x)[xEA<-^>j;(x)EO]; the

proof of this can be directly adapted from Kleene's proof of the corresponding

theorem for the usual definition of 0 in [8]. Hence we also have here the

result of [3, 3.6] that for any o£0 we can find dEO* — 0 such that a <d.

The argument of [3, 3.7] also served to show that for any such d,P — OC\C'(d)

is a path through 0 with PGIL The only thing to check in that proof for the

present 0 is that for each cEO, jx:xGO& |x| <|c| }GH.A. This is true

for the full 0 by Spector [14, p. 158]. However, the present 0 is in 1-1 cor-

respondence with the intersection of an arithmetically defined set (similar to

M above) with the full 0, and this correspondence is easily used to carry the

result over. Hence we obtain directly the existence, as in [3, 4.4] of N0 paths

P through 0 such that PGIL Moreover, it is useful to note, just as in [3,

3.8], that for any such P there is a dEO*-0 with P = Or\C'(d).

In any strictly expanding hierarchy (3.1) we have a relation c6^^ defined

by (Ee)<p^e\p; this has the property pdup& and pn^pd for each dEO. We

need rather less of the conditions on a hierarchy of 3.1 for the developments

of this section, but a little more on the relation ^. Throughout the remainder

of this section, we assume q¡ is any fixed Gödel-number of a recursive function and

that M \}/i are any fixed primitive recursive functions satisfying the conditions

2.4(i), (ii). We take <p,y to be primitive recursive functions satisfying the conclu-

sion of 2.4 and pd =Xx {<p(d)} (x) for any d.

5.1. Definition. A relation « between functions is said to conform with

M ^2 if « is transitive and irreflexive and if

(i) whenever fis the Gödel-number of a recursive function then {/} <K {<Ai(/)},

(ii) whenever [e](n) is the Gödel-number of a recursive function for each n and

(»)({[«](»)}«{ [«](» + !)}) then { [«](»)} <<{h(e)}, and

(iii) the relation {e} <SC{/} is a hyperarithmetical relation between e,f.

We note, for applications, the following easily derived result.

5.2. Lemma, (i) The relation C conforms with any functions \pi, \[/i satisfy-

ing 2.5(i), (ii).

(ii) The relation < (of majorizing) conforms with any functions M \¡/i satis-

fying 2.6(i), (ii) with respect to any given recursive x-

We now assume throughout the following that « is any relation which

conforms with the general \pi, \j/i we are considering here.

Just as is shown in [3, 5.2] we see that 0* is the intersection of all

XGH.A. satisfying the following closure conditions:

(i)  1GX;
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(ii) if cEX then 2e£X;

(iii) if (»){ [d](n)EX& [d](n) < [d](» + l)} then 3-5dEX.

This characterization of 0* permits us to make inductive proofs, in the

usual style, that various hyperarithmetical properties hold for all d£0*. In

this way, we easily obtain the following from 2.4 and 5.1.

5.3. Lemma, (i) For any d£0*, pd is a recursive function.

(ii)  For any c, d(EO*, c<d—j>pc<^pd.

Here 5.3(h) generalizes the statements of §2 that, for the sub-recursive

hierarchy c<od->peCPd, and for the majorizing hierarchy c<o d^pc<p¿.

These results now lead us directly to the following incompleteness theorem

for certain paths in hierarchies (cf. [3, 2.5], for a corresponding incomplete-

ness theorem for progressions of theories).

5.4. Theorem. For any path P through 0, P£II, we can find a recursive

function 0 such that pc<K0, and hence 0 not <3Cpc, for all cÇzP.

Proof. As we noted earlier, P = OC\C(d) for a certain d£0* — 0. We take

d = Pd and apply 5.3 and the transitivity and irreflexivity of <3C

We shall now devote the remainder of the paper to a proof of an essentially

new result, namely that there is a subset of 0* densely ordered by ■<. This,

via 5.3(h), thus gives us some information regarding the structure of <5C on

the set of recursive functions. We first need an extension of ordinal notation

arithmetic to 0*. The reason for this will be seen in connection with 5.16-

5.18 below.

We wish to introduce operations corresponding to addition, multiplica-

tion, and exponentiation of ordinals. We already have a ® operation and,

for uniformity, repeat the definition of this in 5.5(i) next. In order to apply a

certain general result below (5.14) insuring the proper growth of these func-

tions, we modify slightly the usual definitions of the other operations at the

initial values.

5.5. Definition. ©, o,and °, and p%, v2, v% are chosen by 2.3 to be binary

primitive recursive functions satisfying the following conditions for all a, d:

(i) a®i=a, a®2d=2aSd(d^0), a®3-5d = 3-5^a'd) where

(n)\[vx(a, d)](n) = a® [d](n)};

(ii) a o 1 = a, a o 2d = (a o d) ® a (d ?* 0), a o 3-5a" = 3-5"(a'd) where

(»){ [v2(a, d)](n)=ao [d](n)};

(iii) a"1 = a, a°^ = (a°d) o a (d ^ 0), a036" = 3-5^"'',> where

(n){[v,(a,d)](n) = a°^^}.

More generally:

5.6. Definition. Let 6(a, b) be any primitive recursive function. Choose

primitive recursive a (a, d), v(a, d) by 2.3 satisfying:

(i) <x(a, l)=a;
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(ii) a(a, 2d) =0(ff(a, d), a) for d^O;

(iii) a(a, 3-5d) = 3-5«a'd) where (n){[v(a, d)\(n)=a(a, [d](n))}.

We shall refer to a as being the function determined by notation recursion

from 9 via v.

Thus we see that, for suitable vi, v2, vz, if we set cr0(a, b) = 2a, ffi(a, b)

= a@b, <Ti(a, b) =a o b, cr3(a, b) =a°b, then each cri+i is determined by notation

recursion from <r,- via vi+i.

It is seen that a o b, a°b correspond respectively to the operations a(\ -\-ß)

and a-(\-\-aY on ordinals; these are strictly increasing functions of ß for

a=l.

We wish to show that 0* is closed under the operations ©, o, ° (for a > 1),

and that these have various properties on 0*. We might expect an inductive

proof on 0* of these properties. However, closure of 0* under such operations

is not a hyperarithmetical property. It is necessary therefore to generally

prove something stronger.

5.7. Definition. Let X be any set, 8(a, b) any function. We write C\(X) if

the following conditions (i)-(v) hold:

(i)   IEX;
(ii) dEX^2dEX;

(iii)  (n){[d](n)EX & [d](n)<[d](n + l)}-+3-5dEX;

(iv) iEX&c<d->cEX;
(v) dEX->\<.d.

If, in addition, the following conditions (vi), (vii) or (vi), (viii) hold, we write

CY>(X) or C\\(X), respectively:

(vi) a, bEX & 1 <a-*9(a, b)EX;
(vii) a, cEX & 1 <a&b<c-*6(a, b) <9(a, c);

(viii) a, bEX &l<a&l <b-+a<9(a, b).

As we remarked earlier, it has been proved in [3] that 0* is the intersection

of all sets XEH.A. satisfying (i)-(iii). Since the set M is arithmetical, each

Xr\MEH.A., and it is easily seen that C\(X(~\M). Hence we have

(5.8) 0* = flZ[Cl(Z) &ZGH.A.].

The following is easily obtained from 5.7.

5.9. Lemma. Let Y be any collection of sets, 9(a, b) any function. If for each

XEY we have C\(X) then C\(?\X[XEY\). The same holds true for each of

"Cl*," "C1Î" instead of "Cl."

5.10. Definition. Let X be any set, u(a, b) any function. We put

X/v= {d:dEX&(a)(b)(c)[aEX&l < akc <d-*<r(a,c) E X

&(b < c->a(a,b) < a(a, c))]}.
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It is seen that if X£H.A. then X/<r£H.A. Actually, we need a little more.

A set -X"£H.A. if and only if there exist eB, e\ such that for all a

a £ X +^ (a)(Ey)7?(«o, a, y) <-» (Ea)(y)Ti(eu a, y).

For any number/, let Lt=\x: (a)(Ey)T^(f, x, y)). Put e£h.a. if L,m

= Lem. For each e, put Ke = Lem. Thus if e£h.a., ÍTe£H.A.; conversely, for

any X£H.A. there exists an e£h.a. with X = Ke.

5.11. Lemma. With each recursive function c(a, b) is associated a recursive

function ff*(e) such that whenever eÇJn.a. then <r*(e)£À.a. and K,'M = Ke/a.

The proof of this is by standard methods of analytic hierarchy theory;

cf., for example, Kleene's [5] or [7].

5.12. Lemma. Suppose 0 is primitive recursive and that a is determined by

notation recursion (5.9) from 6 via v. Then for any set X, C1?(X) implies

Cl(X/a).

Proof. We must check conditions 5.7(i)-(v) for X/a.

(i) l£X/<r since for any a£X, a(a, 1) =a£.X.

(ii) Suppose d(E.X/o. To show 2d£X/<r, consider any a£X, 1 <a and

any c^2d. If c<d then a(a, c)£X by hypothesis. Otherwise c = 2d. (We can

assume d*0.) But a(a, 2d)=6(cr(a, d), a)£Z, by 5.7(vi), since C\e(X) and

<r(fl,d)£Xand 1 <a = a(a, \)<_<r(a,d). Note also a (a, d) <<r(a, 2d) by 5.7(viii)

for X, 0. Thus if we have b<c^.2d, either b<c^.d, in which case a(a, b)

<o(a, c) from dÇzX/a, or b^.d, c=2d, in which case a(a, b)^.o-(a, d) <a(a, 2d),

hence a(a, b) <a(a, 2d).

(iii) Suppose that for each n, [d](»)£X/cr and [d](«) < [d](n + l). To

show 3-5d£X/<r, consider any <z£X, 1 <a and any c^_3-5d. If c<3-5d then

c^L[d](n) for some » and <r(a, c)£X & (b)(b <c-+a(a, b) <o(a, c)) by [d](w)

£X/o\ Hence we may assume c = 3-5d. We have o(a, 3-5d) =3-5v<-a,d), where

[p(a, d)](n)=<r(a, [d](n)) for every ». Since each [d](»), [d](» + l)£X/<r it

follows that [v(a, d)](»)£X, [v(a, d)](n) <[v(a, d)j(» + l) for all w. But

C1(X), so a(a, 3-5d) =3-5'<°'<l>£X. Moreover each a(a, [d](n)) <<r(a, 3-Sd).

Thus iib <3-5d, bJ^[d](n) for some », and hence by [á](»)£X/a and transi-

tivity of <,a(a, b) <a(a, 3-5d).

(iv) It is clear that if d£X/<r and d\ <d then di£X/<r, since C1(X).

(v) is obvious from X/<rÇX.

Since a is not in general associative (not even in the simplest case, ®),

we are not able to see that X/a is closed under a. However, we shall see in

5.14 below that by forming a suitable intersection, we can pass from any

X£H.A. such that C\\(X) to a subset F"£H.A. such that Cl'(y). First we

need the following effectiveness condition for such an intersection.

5.13. Lemma. There is a primitive recursive function i such that whenever
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{/} is a recursive function with {/} (n)Eh.a. for all n then i(f)Eh.a. and

K,<» = r\Kif]in) (n = 0, 1, 2,- ■ •)•

The proof of this is obtained by standard methods [5 ] for effectively con-

verting the two equivalent conditions for a to be in the intersection,

(x)(a)(Ey) 7J(({/} (x))(0), a, y) and (x)(£a)(y)7T((|/} (x))a), a, y) to the forms

aELe<), aELei for suitable e0, e\.

5.14. Lemma. Suppose 9 is primitive recursive and that a is defined by nota-

tion recursion from 9 via a. Suppose we have a recursive function r such that for

any e, if eEh.a. and C\(Ke) then r(e)Eh.a., Cl1(jr?r(e)) and ifr(«)ÇiCe. Then:

(i) we can find a recursive function ir such that for any eGh.a. if Cl(Ke)

then we have ir(e)Eh.a., C\'(KT(e)) and KwMQKe;

(ii) C1'(0*).

Proof. Define ip(e, 0)=e, \p(e, n + í)=a*(T(\¡/(e, n))), where <r* is the func-

tion of 5.11. Let {g} (e, n) =\¡/(e, n) all n. We define ir(e) —i(S\(g, e)). To prove

that this satisfies (i), consider any eGh.a. such that Cl(Ke). Let f=S\(g, e),

/„= {/} (n) for all n. Then we have

Kh = Ke,       Kfn+l = K,'lT(un = KrUn)/a for all n.

It is seen by induction that/„Gh.a. for all n; hence ir(e) =t(/) is h.a. by 5.13.

We prove by induction on n that Cl(K/n). Suppose this for n. Then C\\(KT^n)),

and hence Cl(KT^n)/a) by 5.12, thus proving it for » + 1.

By 5.13, KTM = Kt(/) = V\K/n (n = 0, 1, 2, • • • ), so that Cl(Klif)) by 5.8.
It remains only to check 5.6(vi), (vii) for Ktu), <r. Let a, b, cEKt<f), 1 <a.

Then for each n, we have a, bEK/n+l, hence <r(a, b)EKr<jn)QKfn; thus

a(a, o)G-Ki(/). Already from a, bEKfl we can conclude o <c—><r(a, b) <<r(a, d).

Thus Cl°(jfvT(e)) is proved.

To prove part (ii) of our theorem, we use part (i) and 5.9 to establish

the series of inclusions

0* = H K.[e E h.a. & C1(2Q] Q 0 Kt\fE h.a. & C\"(Kf)\

Q H Kr(e)[e E h.a. & Cl(^.)]

Ç D K.[e E h.a. & C\(Ke)] = 0*,

to conclude by 5.9 that C1"(0*).

5.15. Theorem. Let a\(a, b)=a@b, ai(a, b) = aob, cr3(a, b) =a°b. Then for

»-1, 2, 3, C1*<(0*).

Proof, cri is defined by notation recursion from 9(a, b) = 2° via vi. oi is

defined by notation recursion from <ri via j»2, and 03 is defined by notation re-

cursion from 0-2 via v3. Clearly for any X such that C1(Z) we have ClJ(Z).

Hence if we take r(e) = e, we can find by 5.14 recursive 7Ti such that whenever
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e£h.a. and Cl(Ke) then 7Ti(e)£h.a., Cln(KTlM) and KTl(e)QKe, and then also

C1"(0*). Noting that ClffI(iCTl(e)), we see that for a, b£K*lM, if 1 <a and

Kb then a = ffi(a, 1) <ai(a, b), hence C\ll(KTlM). Hence we can apply 5.14

to <Ti, tti> ^2 instead of 0, t, a, to obtain 7r2 satisfying 5.14(i) for a2 and thence

5.14(h). Repeating this argument gives us the desired result for <r3 as well.

For any d£0* — 0, C'(d)—0 has no least element; for any element of

C'(d) has one of the forms 1, 26 where &£ C'(d), or 3-5* where

(»){ [b](n)E:C'(d) & [b](n) < [b](n + l)\. Hence we can find an infinite se-

quence Co, Ci, • • • , c„, • • •   such that

,„   (/, (0   Co, Cl, •  •  • ,Cn, • • • £ 0*,
(5.16)

(ii) for each n, cn > cn+i ® lo-

In other words we have a subset of order type w* (under <) in 0. Our con-

struction of a densely ordered subset of 0* is based on finding a subset of 0*

whose ordering is of order type 2" , which is dense. We assume the sequence

of cn's is fixed throughout the following.

5.17. Definition. We denote by Sq the set of all infinite sequences £ such

that £fc = 0 or ¿j*= 1 for all k = 0, 1, 2, • • • , and such that %k=l for at least one

but only finitely many k. For £, r¡(E.Sq we put %¿.i\ if

(En)((k)(k < n -* fc = Vk) & {„ < 77„).

For any a and any ££Sg, if ko< • • • <&„ are a// £&e values k such that £* = 1

we £m/

X{ (a) = a0**" © (aocl1 ©(•••© (aoc*n-i © aoc*») • • • ))

(or simply a°ck« if m = 0). Leí X¿*(a) ^e ^e íe' o/a/Z values ^i(a) for ££So.

It is clear that Z is a dense ordering of Sq with no first or last element.

5.18. Lemma. For any a£0*, 1 <a,wehave ^*(a)Ç^O*. Moreover, for any

£, rç£Sg, £Zt7 <->£{(<*) -< £,(a).

Proof. The first part of the statement is immediate from 5.15. Consider

any £, rç£Sg with %/.r\. Let » be the least number with Cn^^n, hence £„ = 0,

J7„=l. Let&o< • • • <K-\ be all k<n where £* = 1, equivalently where r¡k = 1.

Let ¿o< • • • <h be all /§:» where 77; = 1, starting with ¿0 = ». Let m0< • • •

<mt-i be all m^n where £«=1; hence mo>n. We write /¿ = a0<!•'. We shall

write all sums of the form X^(a) without parentheses, with the understand-

ing that association is always to the right. Hence we have

E»(«) =/*.©••• ©/*r_i ©/1, © • • • ©/<.,

Zí (a) = /*,©••• ©/*,_, ©/«,©••■ ©/«„.

If r^0, 1 <a<a0<*o</*0© • • • ©/*,_„ since for Kb, Kd, we have 6<60<l

and 6 -<ô©d. Since also 1 -</¡0ffi • • • ®fi, by the same argument, we see by
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5.15 that 2i(a) "< £i(a) when / = 0. On the other hand, if t^O, it suffices by

this to prove

(2) /*,©••• © /»«_, </.,©•••© fu.

We first show

(3) /»,©••• ®Ui_1 < a0^»®1"'.

This is proved by induction on /, for / = 1. For t=\, this simply says a0'",

<a0(-c^lo\ which is clear. Suppose for /-1 = 1. Then fm,® • ■ • ©/„,_,

<a°(Vfil°><aoc».„, since cmi © 10 < C»,, by 5.16(ii). Hence fm<)® • • • 9/*,.,

</mo©a0X = a0,:»offiaoc»'. = a°% o 10 «fl"»« o a = ao(c»oœl''). Thus (3) is proved.

Now since l0<m0, we have cmoffilo<c¡0 by 5.16(h), hence «"'S81"1 <aoc'<,

=/¡oJ5L/¡0ffi • • • ©/¡,- Thus (2) is proved, and we have now the proof that

£ Lr\—>23t(a) ■< ]Ci(a)- Since Z is a simple ordering and < is a partial order-

ing on 0*, the equivalence follows immediately.

5.19. Theorem. There exists a set A of recursive functions densely ordered

by «.

Proof. Pick any aEO*, 1 <a. By 5.18, Z^*(a) *s densely ordered without

first or last element. By 5.3(h), d\, diE 2*(a) & ¿i <di—^pd^Pd^. The theo-

rem follows immediately from this.

This result can be obtained for special cases of the majorizing relation

very simply. For example, for the function x(a, b)=b we can take the set of

functions 9r for r rational, 0<r<l, where 9r(n) = [r-n] (greatest integer func-

tion), so that 9r <9S whenever r<s; similarly for the function x(a, b) = (a-\-l)-b

we take the functions 9r(n) = [rn], so that n[rn] < [sn] for sufficiently large n.

However, we have seen no way of obtaining the result directly for the case of

arbitrary recursive x with the majorizing relationship. Neither have we seen

a way of obtaining 5.19 for the relation C without an excursion through

nonstandard extensions of hierarchies.

Actually, a somewhat stronger statement than 5.19 can be made, but it

is one which is formulated in terms of hierarchies. Let | a\ be the order type of

C(a) for aEO*. One can prove by induction on bEO* that (for any given

aEO*), (x)[x <a©6—>x <aV(Ey)(y <b &x = a®y)]. Thus it is seen that

|a©6| = |a| ®\b\. Now in 5.18, we do not have that ¿2t(a) ®a < ¿Zv(a)

for any £Z?/, because of the problem of association. However, it is seen that

(by first considering f with £Zf Z.r\), we have | z3f(a)| +|a| <| £n(a)|-

Thus any two elements d\, di of ¿^,*(a) with d\ <d2 have a distance greater

then |a| between them. In particular, if we choose aEO* — 0, we have

| a| > coi. Loosely stated, the functionsp<¡ associated with dEO*(a) are densely

ordered by a relation « which, when it holds between pdlt Pd2 implies that

there is a sequence of functions pc obtained from a path through 0 in the sub-

recursive hierarchy starting with the function 9 = pdv all of which are Cp<¡2.
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