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1. Introduction. The purpose of this paper is to generalize and clarify the

extensions of Jentzsch's Theorem made in [2]. It is shown that the natural

lattice-theoretic generalization of the main results of [2] is provided by the

concept of a uniformly semi-primitive multiplicative process on an Archi-

medean directed vector space. An Archimedean directed vector space is a vector

space £ in which a convex cone 6 of "positive elements" has been defined,

having certain properties specified in §2. A multiplicative process is a one-

parameter semigroup \Pr} of linear transformations of £ which transform

C onto itself. Such a process is uniformly primitive when P satisfies a condi-

tion (7), generalizing the concept of a primitive matrix introduced by

Frobenius (see §5).

Extensions of Jentzsch's Theorem to other classes of multiplicative proc-

esses have been made by Krein and Rutman [5] and Bonsall [6]. In these

extensions, £ is assumed to be a topological linear space, whereas this assump-

tion is avoided below. The relation of the results proved below to this earlier

work, and to related results of H. H. Schaeffer and A. C. Mewborn, will be

discussed in another paper(2).

2. Multiplicative processes. As in [l, Chapter XV], a partial order is

defined in any real vector space £ by any convex cone G of non-negative

elements with eH-e = 0. We define f^g in (£, C) if and only if (f—g)GQ.

The partly ordered vector space (£, 6) is a directed vector space if and only if

£=6—6. This is equivalent to the condition that, given/, g££, there exists

ÄG£ such that h^f, h^g.
By definition, £ is Archimedean if and only if na ^b for all »= 1, 2, 3, • • •

implies a^O. By [l, p. 229, Theorem 17], a directed vector space is Archi-

medean if and only if its completion by nonvoid cuts embeds (£, 6) in a (con-

ditionally) complete vector lattice. This result is essentially a specialization of

a theorem of A. H. Clifford.

From now on, let £=(£, 6) be an Archimedean directed vector space.

The discussion will apply in particular to Banach lattices, by the following

elementary result.

Theorem 1. Any Banach lattice is an Archimedean directed vector space.

Received by the editors July 26, 1961.

(') Work performed under National Science Foundation Grant G-14,508.

(2) The reader's attention is also drawn to H. Samelson, Michigan Math. J. 4 (1957),

57-59, where ideas similar to those of the author were applied to the finite-dimensional case.
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Proof. Any vector lattice £ is directed, since for any /E£, f=f+~f~,

where/+,/~£ G = £+. Hence any Banach lattice (B is a directed vector space.

Again, na^b in any vector lattice implies na+= (na)+^b+ [l, p. 221, top].

In a Banach lattice 03, it implies w||a+|| =||wa+|| á||&+|l> and so ||a+|| g||ô+||/w.

Hence, if na^b for n= 1, 2, 3, • • • , then ||a+|| =0 and a+ = 0, whence a = a+

+a~ = a~=:0, which shows that 03 is Archimedean.

We next show that C is always closed in the algebraic topology(8) of

any Archimedean directed vector space £. It is a corollary that 6 intersects

the projective line of all linear combinations af+ßg of any two elements

f, g£C in a closed segment, as claimed (but not proved) in [2, §3].

Lemma 1. In an Archimedean directed vector space £, if anf^g (/>0, g>0)

for all n = 1, 2, 3, • • • , and if an—*ot as w—> °°, then ctfSzg.

Proof. For all n, (a„ — a)f=anf—af^g — af. Since (an — a)—»0, we can

find n (p) for any positive integer p such that an (¡,) — a ^ 1 /p. Hence/ ^ p (g—af)

forp=l,2,3, • • •. Since £ is Archimedean, this implies g — af^0, as claimed.

Lemma 2. Any isotone linear operator P on an Archimedean directed vector

space is continuous with respect to relative uniform convergence.

Proof. Suppose/„—>/ uniformly, relatively to the gauge u, so that — enu

á/n— /á«n«, where e„—»0. Then, since P is isotone (i.e., order-preserving),

— CnV^fnP— fPútnV, where €„—»0; hence gn-^>g uniformly, relative to the

gauge v = uP.

Definition. A multiplicative process is a one-parameter semigroup of

isotone linear operators {Pr} on an Archimedean directed vector space

£=(£, C).

Explanation. For a linear operator P to be isotone, the condition QP^Q

is necessary and sufficient. Such linear operators are also said to be non-

negative. Lemma 2 asserts that the \Pr} are continuous operators; the semi-

group property is fP'P" =fP'+'. A one-parameter semigroup {Pr} may be

continuous (with r running through all positive real numbers), or it may be

discrete (with r = l, 2, 3, • • • )• Except in §11, we will treat only discrete

one-parameter semigroups.

3. Dominant distributions. As has been pointed out in [3, Part IV],

multiplicative processes arise naturally in neutron chain reactions. In such

reactions, regardless of the initial neutron population /, the expected dis-

tribution fPr of rth generation descendants of the initial population satisfies,

for large r, the asymptotic relation

(1) fPr~Mk'<bi,       k > 0,       <bi> 0,       M = M(f).

Note that only M depends on the initial population distribution /; the

"multiplication factor" k and "dominant distribution" <f>i are determined

by P.

(3) This is defined by making aa-*a mean that o>(oa)-*oi(a) for every linear functional on £.
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We will use below the customary terminology of reactor theory, where

convenient, believing with Norbert Wiener(4) that there is "no compelling

reason to avoid a physical terminology in pure mathematics when a mathe-

matical concept corresponds closely to a concept already familiar in physics."

In this terminology, the main object of this paper is to find general and

easily tested sufficient conditions for a given multiplicative process to admit

a dominant distribution—that is, sufficient conditions for the validity of

formula (1).

Such conditions are well known for Markoff processes (where k = 1 neces-

sarily; see §5). In this application, as in the application to neutron chain

reactions, the directed vector space £ of interest happens to be an abstract

(L)-space [l, Chapter XV], which is a very particular type of Banach lattice.

However, as will be shown below, the restriction to Banach lattices (made in

[2]) is not natural mathematically; the domain of generality which is natural

mathematically is that of Archimedean directed vector spaces £=(£, 6).

In any Archimedean directed vector space £ with positive cone 6, we

can define relative uniform star-convergence by applying the definition of [l,

Chapter XV, §5] to the lattice completion of £, mentioned in §2.

Definition. Let {Pr} be any multiplicative process on £. A nonzero

vector 0G£ will be called dominant, with multiplication factor k>0, if and

only if for every /££ we have for relative uniform star-convergence in £:

(2) k~rfP* -* M(f)<b,    where    M(f) ¿é 0.

The vector <p will be called strictly dominant^) if and only if, for some multi-

plication factor k>0 and every /££, we can find M(f) ^0 such that

(3) (M - er)k'<b g /P' Û(M+ er)k'4>,       M = M(f),

where Lim,...,,, er = 0.

4. Dominance and criticality. The following results hold almost trivially.

Lemma 3. Any strictly dominant distribution is dominant.

Proof. The double inequality (3) implies (2), with <p as the gauge of rela-

tive uniformity.

Lemma 4. // <p is dominant for the multiplicative process {PT} with multi-

plication factor k, then 4> is an eigenvector with (positive) eigenvalue k, and <¡> or

—<p is in 6.

Proof. Choose/G£ with M(f)t¿0, and set g=f/M(f). Then ife-rgPr-*p;
hence k-m-lgPm+1-^¡> (setting r = m + T); but krr-'igPr+l = k-l(k-TgPr)P

—>k~l(bP. Therefore k~l<pP = d> and <j>P = k<j>. Finally, we prove that <p£6 or

-<p£6 by contradiction. If <p^<3 and -0££6, then since k~rfPrEQ for all

(4) N. Wiener, The Fourier integral, Cambridge Univ. Press, 1933.

(6) Condition (3) was introduced in [4, p. 360], where ¡t> was called "dominant." For the

case treated in [4], conditions (2) and (3) are equivalent, as will be shown below in §5.
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/£C and r, and 6 is closed in the algebraic topology, M (/)<££ e by (2) and so

M(f)=0 for all/EC Hence, since £=e-C, M(/)=0, contrary to hypoth-

esis.

Corollary. ^4// dominant distributions of any multiplicative process \P'}

are proportional to each other. The multiplication factor k is a simple eigenvalue

of P, which exceeds the magnitude of every other eigenvalue.

For, let 4> and \p be two linearly independent dominant distributions, with

multiplication factors k and k'. If k = k', then k~r\pPr= (k'/k)r\p->M(\l/)<j> is

only possible if k' = k; in this case, \p = M(\p)<¡>, contradicting linear inde-

pendence; the case k' ^k can be treated similarly.

Again, let <f> be a dominant eigenvector, and let X be an eigenvalue of P;

the extension of £ to a complex vector space £* will then contain an eigen-

vector Tp=4'i+i4"¡ (^i>^2G£) such that i/P = Xi^. Unless |X| <k or \ = k, it is

impossible for both k~r\¡/iPr to satisfy (2). For, this would imply

k-yp'= i\/k)y-+Mif)4,,

which is impossible in an Archimedean directed vector space unless \\/k\ <1

and M(f) = 0, or X = k and \p = M(f)<p is a scalar multiple of <p.

Definition. A multiplicative process {Pr} on £ is critical ii and only if,

for all/G£,

(4) Lim/Pr = /„ exists,    where   f„ ^ 0.
r—» «

It is subcritical if and only if, for all /££,

(5) Lim/Pr = 0.
T—»oo

It is supercritical if and only if, for some/>0 and #>0,

(6) fPr ^ M(r)4>,    where     Lim M(r) = +  ».
r—» oo

If \Pr\ is critical, then (4) implies trivially

fxP = ( Lim/P') P = Lim/P-+i = /M,
\ r—♦« / r—♦ oo

since P is continuous in the relative uniform topology (Lemma 2). That is,

any nonzero/M is an eigenvector with eigenvalue 1. Likewise, one easily proves

Lemma 5. If \Pr} admits a dominant distribution with multiplication factor

k, then \Pr} is subcritical, critical, or supercritical according as k<l, k=l or

k>\.
It is however not true that a critical distribution has to have a dominant

distribution.

5. Finite-dimensional case. In this section, we assume £ to be finite-

dimensional. In this case, the cone C can be very simply characterized.
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Lemma 6. A finite-dimensional vector space £ with positive cone 6 is an

A rchimedean directed vector space if and only if the following four conditions

are fulfilled: (i) 6 is convex, (ii) 6H —6 = 0, (iii) 6 is closed, and (iv) 6 has a

nonvoid interior.

Proof. Conditions (i)-(ii) are necessary and sufficient for (£, 6) to be a

partly ordered vector space. By Lemma 1, (iii) holds if (£, 6) is Archimedean

and directed. Assuming (i)-(iii), either (iv) holds, or 6 is contained in a

proper (n— 1)-dimensional affine subspace—which would make 6 +( — 6) <£,

contradicting the assumption that 6 is directed. Conversely, one proves easily

that conditions (i)-(iv) imply that (£, 6) is an Archimedean directed vector

space.

Lemma 7. Any finite-dimensional Archimedean directed space has a strong

unit; moreover its relative uniform topology is the algebraic topology.

For, let pi, • • • , pv. be any n linearly independent positive vectors. Then

u=pi+ ■ • ■ +p„ is a strong unit. If one takes the p¿ as a basis of unit co-

ordinate vectors, so that u=(l, • • • , 1), the rest of the lemma is easily

proved.

Theorem 2. If £ is finite-dimensional, then a multiplicative process {Pr}

on £ has a dominant distribution if and only if P has an eigenvector <p whose

eigenvalue k is simple and exceeds every other eigenvalue of P in magnitude. In

this event, <p is a dominant distribution of {Pr\, and k is the multiplication

factor.

Proof. If P has such an eigenvector <b, then £ contains an invariant

complementary subspace 8 spanned (6) by the eigenvectors of P with eigen-

values XjT^Xi, 3 = 2, ■ ■ ■ , n. On g, the spectral radius of P is sup,>i |X,-| <k;

hence the Euclidean norm ||^Pr|| of any ^£9 is °(kr) as r—>o°. For any

/££, writing f=Mcb+4l where ^£9 and M=M(f), and writing \x = k, we

have:

k-'fpr = M<t>+ k~r Pr = M<b + o(l) -> M<b.

That is, <p is dominant. The converse follows from the Corollary of Lemma 5,

completing the proof.

Lattice hypothesis. The case that £ is a finite-dimensional Archimedean

vector lattice is especially interesting. In this case [l, p. 240, Cor.], £ is iso-

morphic with the concrete (L)-space Pn of all real w-vectors /= (fx, ■••,/„),

where /£6 means that all/l = 0. The isotone linear operators on £ therefore

correspond to the matrices P = ||py|| having all non-negative entries. This

class of non-negative matrices was studied by Perron and Frobenius, who

proved the following result.

(*) In the complexification of £; we use here the real analog of the Jordan canonical

form of a matrix.
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Theorem of Frobenius. Let P = ||p,7|| be any primitive, irreducible, non-

negative nXn matrix. Then P has a unique strictly positive eigenvector

<j> = (<¡>i, • • ■ , 4>n), with all 4>i > 0. The eigenvalue Xi = k of 0 is positive and sim-

ple, and exceeds all other eigenvalues in magnitude.

Explanation. A non-negative square matrix P is irreducible and primitive

if and only if some power Pr of P is strictly positive (i.e., has all positive en-

tries); one can also define primitivity in other ways (see [4]).

The Theorem of Frobenius can be extended, as in [4, §7], to primitive

semi-irreducible matrices of the form

(A    PAVo    Pj'

where the square submatrix A is strictly triangular and Pj is primitive. But

in this case, <p>0 need not be strictly positive.

Theorem 2 yields the following reinterpretation of the Theorem of

Frobenius and its extension in [4].

Corollary 1. The discrete multiplicative process generated by any primi-

tive semi-irreducible, non-negative nXn matrix admits a strictly dominant eigen-

vector.

Proof. By Lemma 3, it suffices to show that every dominant vector (alias

distribution) is strictly dominant. This is not necessarily true without the

hypothesis of semi-irreducibility : thus (1, 0) is a dominant eigenvector of

without being strictly dominant. However, if

p-(A '')■
\0      Pj

where A is strictly triangular and Pi is irreducible, then

pr - C    ^       Hr=n,
\0   Pj

which shows that P and P2 have the same nonzero eigenvalues. Hence if P

has a dominant distribution, P2 must have a positive simple eigenvalue which

exceeds all others in magnitude. By [4, Lemma 6], this implies that P2 is

primitive, and hence(7) that if s>n2 + n + l, every nonzero component of any

IP* is a nonzero component of <f>. From this result, (3) follows almost im-

mediately.

(7) R. S. Varga and J. C. Halliday.
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6. Uniform primitivity. The present paper can be regarded as an intrinsic

(i.e., coordinate-free) generalization of the Theorem of Frobenius to Archi-

medean directed vector spaces of arbitrary dimension, using the method of

[2]. In [2], only the case of Banach lattices (which is the most interesting

case for applications) was treated. For the present generalization, the key

definition is the following [2, §l].

Definition. A non-negative linear operator P on an Archimedean di-

rected vector space £ is called uniformly positive when, for some fixed e>0

in £ and real number a,

(7) Xe^fP ^ a\e       for all/ > 0 and some X = X(/) ^ 0.

It is called uniformly semi-primitive when some positive power PT of P is

uniformly positive.

We have two possibilities in (7): X(e)=0 and X(e)>0. In the first case,

0 ̂ /P2 = aX(/)eP áa2X(/)X(e)e = 0 for all/£6. In this case, AP2 = (/-g)P2 = 0
for all/, g£6 and hence for all &££= 6— 6; therefore P2 = 0. In the second

case, eP'è [X(e)]«e>0 for all 5=1, 2, 3, • • • by induction. Moreover X(/) = 0

in (7) implies 0^/PgaX(/)e = 0 and so/P = 0; hence/P>0 implies fP'+1

^a(f)eP'^.a(f)\\(e)]"e>0 for all s. That is, if P is uniformly positive and

PVO, then/P' = 0 implies/P = 0.
More generally, if P is any uniformly semi-primitive linear operator, then

Pr must be uniformly positive for some r. Hence either P2r = 0 and P is nil-

potent, or P satisfies

(7') Xre ^ ePT g a\re    where   Xr = \r(e) > 0.

Further, in the second case,/Pr>0 (/£6) implies/P*>0 for all s>r. Hence

the set of all /z££ such that —u^h^u for some u with mP" = 0 for some s, is

the null-ideal^) of Pr unless P2r = 0. We will exclude below the trivial case

that P is nilpotent.

The concepts of uniform positivity and uniform semi-primitivity are

closely related to a number of other new general notions, which we define here

for the sake of comparison—even though they will not be used in the present

paper.

Definition. A linear operator P on a partly ordered vector space is

strictly positive if />0 implies/P>0. It is strongly primitive if in addition

/>0 and g>0 imply that

(7")   fP' è agPr Ú ctßjPr,    where    r = r(f, g), a = a(f, g), ß = ß(f, g).

It is strongly positive if (7") holds with r = l. It is uniformly primitive if it is

uniformly semi-primitive and strongly primitive.

If £ is a finite-dimensional vector lattice Rn, any matrix with all positive

entries   is   "uniformly   positive":  one  can  set  e = (1,   1, • • • ,   1)   and

(8) That is, the set of A such that — u^h^u, for some m £ 6 satisfying «Pr=0.
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a = (max pa)/(min pif). Likewise, any primitive semi-irreducible square

matrix is uniformly primitive, and conversely (assuming (7')); any primitive

irreducible square matrix is strongly primitive. Hence the main result of [4]

can be rephrased as the assertion that any non-nilpotent uniformly semi-

primitive square matrix P generates a (discrete) multiplicative process with a

strictly dominant eigenvector (distribution) on Rn.

Before generalizing this result, we will describe five examples of linear

operators P generating multiplicative processes not having dominant distribu-

tions. Of these, the first three correspond to cyclic semigroups of transition

operators on (L)-spaces [l, p. 259]—hence to Markoff processes. In all cases,

£ = Li[0, l], and Q is the cone of (essentially) non-negative functions.

Example 1. Let P:fP = ghe defined by

(8.1) g(x) =

(8.2)

/.  1/2 2fiy)dy       if 0 = x g 1/2,
o

f     2fiy)dy       if 1/2 ̂  x ^ 1.
tl 1/2

Example 2. Let P be defined by

/. 1/2 2fiy)dy       if 1/2 = x = 1,
o

|      2/(y)dy       if 0 = x ^ 1/2.
•I 1/2

g(x)

Obviously, the linear integral operators defined by (8.1) and (8.2) are

continuum analogs of the two matrices displayed in Figures la-lb.

110   0)

110    0

0    0    11

10    0    1    1

Figure la

0    0    111

0    0    11

110    0

110    0

Figure lb

Example 3. Let P be defined by

(8.3) gix) = fix + it), where x is taken mod 1.

Example 4. Let P be defined by

(8.4) gix) = il + x)fix).

Example 5. Let P be defined by



19621       UNIFORMLY SEMI-PRIMITIVE MULTIPLICATIVE PROCESSES 45

(8.5) gix) =
I
I

i
fiy)dy+3fi2x),       Oá^l/2,

i
fiy)dy, 1/2 g * g 1.

Markoff's Hypothesis [l, p. 263] is satisfied in Example 5, but the multi-

plicative process defined by the semigroup jPr} does not even admit a non-

negative eigenvector with positive eigenvalue—let alone a dominant dis-

tribution !

7. Hilbert's projective metric. Again, let £ = (£, G) be any Archimedean

directed vector space with positive cone G. Then the rays of G (with 0

deleted) form a convex subset of the real projective space defined by £ as a

vector space. Following Hubert, we define a projective quasi-metric on G as

follows(9).

Definition. In G, define dif, g) = + «s if ctfièg for no positive scalar a,

or if ßg ^/ for no positive scalar ß. Otherwise, let a0 and ß0 be the least such

scalars; they exist by Lemma 1, and are positive since £ is Archimedean.

Define

(9) dif, g) = ln(ao)So) = In a0 + In ß0.

In (9), a0|8o = Po is the least number R such that g^\f=Rg for some

X>0 (clearly, g^a0f^aoß0g); it is also the least R such that f^pg^Rf for

some p. (clearly, f^ßogußootof). In fact, R0 is also the cross-ratio of (a,/, g, b)

on the projective line L through / and g, where a and b are the ends of the

closed segment If\e.

Hence dif, g)=0 if and only if g^X/rgg for some X>0—that is, if and

only if / and g = X/ (X > 0) are on the same ray of G. The identity dif, g) = dig, f)

is obvious. The triangle inequality

(10) eij, g) + Big, h) ^ eif, h), f,g,k> o,

follows since if/ = /3g^|8a/and gè^h^yèh, thenf^ßiSh) ^ißa)iyb)h (a more

awkward proof was given in [2]). This proves

Lemma 8. The nonzero vectors of G form a quasi-metric space relative to

"(/> g)- In this space, the equivalence classes of vectors a zero distance apart are

the rays iprojective points) of G.

The relation 0(f, g) < + °° is a second equivalence relation on any quasi-

metric space, dividing it up into a number of connected components, each of

which is a metric space. In the present case, any two "points" / and g of the

(9) Essentially the same definition was given in [2, §3] for vector lattices. The present

treatment is more general and more rigorous: the statement that "every (projective) line inter-

sects G in a closed segment" is true if £ is Archimedean (by Lemma 1) but not generally.
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same connected component can be joined by a straight line segment, of all X/

+ (1—X)g [O^X^l], which is isometric with a segment of the real line.

Thus, if £ = Pn and 6 is the first hyperoctant, the connected components

of 6 correspond one-one to the nonvoid subsets of positive components of the

vectors t—(fi, •••,/„) of 6, and 6(f, g)=maxj | In (/»/g,-)|. The connected

components of 6 can be identified with the cells of the projective simplex

defined by the rays of 6 (using barycentric coordinates). In each component,

there may be many isometric "straight line" segments joining two given

points: hence 6(f, g) does not define a hyperbolic geometry metrically—-

though projectively the rays of any connected component of 6 do constitute

an abstract hyperbolic geometry.

If £ is finite-dimensional and 6 is a circular cone, then the interior of 6

is isometric with hyperbolic (n — l)-space under d(f, g); it has a transitive

n(n — l)/2-parameter group of rigid motions. The other connected components

of 6 consist of isolated rays on the boundary.

In general, if £ contains a strong unit e [l, p. 223], then the set of all strong

units of £ is a connected component of 6, which can be regarded as defining

its interior. In the finite-dimensional case, this corresponds with the interior

of 6 in the algebraic (Mackey) topology—and also with the interior of Pn

relative to any Banach lattice metric. But in infinite-dimensional Banach

lattices, there is no obvious simple relation between the topology defined by

8(f, g) and the topology defined by the Banach space metric ||/— g||.

Lemma 9. Let P be any non-negative linear operator on the Archimedean

directed vector space £. Iff>0 and g>0, then either /P = 0, or gP = 0, or

(ii) e(fP,gP)^e(f,g).

That is, P defines a projective contraction of 6.

Proof. Since P is non-negative, /^Xg^P/ implies fPú^gP^RfP for

any positive number R. The inequality (11) follows from this observation and

the remarks after the definition of 6(f, g).

Finally, comparing formula (3) with the formula g^X/gPg defining

6(f, g)=ln R, we obtain

Lemma 10. The vector <p£ 6 is strictly dominant for the multiplicative process

{Pr} if and only if 6(<b, <bP) = 0 and every /£6 satisfies either fPr^€r4>PT,

where lim,..«, €r = 0, or limr,w 0(fPr, <p) = 0.

Proof. Strict dominance implies 0(<p, <pP) = 0, by Lemmas 3-4. Since

In [(M+er)/(M— er)] —»0 if M>0 and €r—>0, the first or second alternative of

Lemma 10 also follows according as M(f)=0 or ilf(/)>0. The converses

follow similarly.

8. Projective convergence. We are now ready to take a major step to-

wards proving that uniform semi-primitivity implies the existence of a

strictly dominant eigenvector.
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Lemma 11. A non-negative linear operator P on an Archimedean directed

vector space £ = (£, G) is uniformly positive if and only if GP — 0 has finite

projective diameter.

Proof. For X>0, the inequality (7) states that CP —0 is contained in the

ball (sphere) with center e and radius In a, whence its projective diameter

is at most 2 In a. Conversely, if GP — 0 has diameter A, and e is any element of

CP, then (7) holds with a = eA.

Caution. An annoying complication arises because/>0 is compatible with

/Pr = 0 for r>0. For such elements, (3) holds trivially with Mif)=0, and

(7) holds with X(/)=0; see (7'). This (trivial?) complication was ignored

in [2].

We now prove a purely geometric result about hyperbolic geometry(10),

implicit in [2] as formula (9a).

Theorem 3. Let Q be any projective transformation of a real hyperbolic space

3C onto a subset of finite diameter A or less in a real hyperbolic space X'. Then Q

contracts all projective distances uniformly, by factors of tanh (A/4) or less.

Proof. For any/, g£X, we can restrict attention to the projective lines

spanned by/and g in X and by fQ and gQ in X'; we will in fact work with the

associated real affine planes II and IT'. By a change of basis in II', associated

with a matrix of the form

(' °) - C  ')\0    a'J V     0/

with positive a, a', we can suppose that Q maps (1, 0) into iß, 1) and (0, 1)

into (1, ß), where ß^l. This leaves projective distances unchanged; hence

the projective diameter of 1Ï+Q is In ß2 = 2 In j8 = A or less. On the other hand,

the transformation Q is given by the matrix

a
relative to the new basis in n'. Hence it transforms the differential d{lniy/x)}

= ixdy — ydx)/xy of oriented projective length in II by

d{ln[(* + ßy)/ißx + y)]} = iß2 - í)ixdy - ydx)/ißx + y)ix + ßy).

The ratio of the differentials is iß2— I)/[ß + iy/x)][ix/y) +ß], which assumes

its maximum iß2 — l)/(j3+l)2 when y = x. Since ß2 = eii, ßll2 = eA/i, and so

the contraction ratio is at most

iß2 - \)/iß +1)2 = iß- r1)/^1'2 + r1/2)2

_ = sinh (A/2)/2 cosh2 (A/4) = tanh (A/4), q.e.d.

(10) For hyperbolic geometry and projective metrics, see H. Busemann and P. J. Kelley,

Projective geometry and projective metrics, Academic Press, 1953.
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Actually, strict inequality holds.

Corollary. Let a non-negative linear operator Q transform an Archimedean

directed vector space £= (£, 6) so that CQ — 0 has projective diameter A or less.

Then Q contracts all projective distances by factors of tanh (A/4) or less.

We now apply this result to prove

Theorem 4. // P is any uniformly semi-primitive non-negative linear oper-

ator on an Archimedean directed vector space, and />0, then either fP' = 0 for

all r>R(f), or the fPT form a Cauchy sequence under 6(f, g).

Proof. Let P' = Q he uniformly positive, and let diam(6P* —0) be A.

Then by the preceding corollary, we have

[6(fP>, gP>)/6(f, g)\ Ú tanh (A/4) < 1,

provided /P8^0 and gP'^O. By induction, it follows that if r>Ns + s, then

(12) diam(6Pr - 0) g A tanh* Í — )-> 0       asr->co.

Theorem 3 now follows immediately from (12).

Corollary. // the connected component of 6 which contains e is complete

in the quasi-metric 6(f, g), then either /Pr = 0 for all r>R(f), or the {fPr}

converge projectively to a unique strictly dominant distribution.

This result follows immediately from Theorem 4, in view of Lemma 10. It

asserts that P is either nilpotent, with 0 as its only eigenvalue, or it admits a

strictly dominant eigenvector.

Closure properties. Before considering the crucial question of complete-

ness, we digress to establish some interesting closure properties of the class

of all uniformly semi-primitive linear operators.

Definition. Two non-negative linear operators P and Px are comparable

on (£, 6) if and only if, for some M>0,

1
(13) —fP ^ /Pi Ú MfP       for all / £ 6.

M

When the preceding holds, we will write P~PX.

Lemma 12. If P is uniformly positive (resp. primitive), and P~Pi, then

Pi is uniformly positive (resp. primitive).

Proof. For all/>0, the hypothesis of the lemma implies

Xe ̂  fP g MfPi Ú M2fP ^ aM2Xe, X ̂  0

(resp. the same chain of inequalities for Pr and P\), where aM2 is a positive

constant independent of/.
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Lemma 13. If P is uniformly positive, and if P0, P2 are non-negative, then

P0PP2 is uniformly positive.

Proof. Either/P0PP2 = 0, in which case (12) holds for P0PP2 with X = 0

for any e>0, or by Lemma 9

difPoPPz, gPoPPt) ^ eifP0P, gP0P) = A

for some finite A. By Lemma 11, this implies that PoPP2 is uniformly positive.

9. Projective completeness. We now return to the question of the projec-

tive completeness of the connected components of G. By Theorem 3 and its

Corollary, this projective completeness implies our main result: that if P is

uniformly semi-primitive, then either P is nilpotent or the multiplicative

process \Pr\ admits a strictly dominant distribution <b.

If £ is finite-dimensional, then one can show that any ("bounded") sub-

set of 6 which has a finite projective diameter A has a compact closure in

the projective topology; hence the connected components of G are always

projectively complete. The Theorem of Frobenius follows, generalized from

finite-dimensional vector lattices to any directed vector space (£, G) whose

positive cone has the properties listed in Lemma 6.

We next consider the case that 03=(£, G) is a Banach lattice, already

treated in [2]. So as to obtain a purely lattice-theoretic version of the main

result of [2], we first reformulate the desired completeness property, as fol-

lows.

Definition. An Archimedean directed vector space (£, G) is complete

for relative uniform convergence if and only if every Cauchy sequence has a

limit in the following sense. The hypothesis is —enu¿hn — hm^enu for some

w£|3 and all m>n, where en—>0 as n—><*>. The conclusion is that a limit

element h exists such that —e„u = hn — h = enu, for the same u and sequence

of scalars e».

Lemma 14. Any Banach lattice 03 is complete for relative uniform convergence.

To prove the lemma, it suffices to observe that ||A„ —Am|[ :gen||w[|, whence

{hn\ is a Cauchy sequence in the metric topology (cf. [l, p. 247, Theorem

9]). By the continuity of order in the metric topology [l, p. 247, Lemma 2,

Corollary], the conclusion follows.

Theorem 5. Let £ be any Archimedean directed vector space which is com-

plete for relative uniform convergence. Then, in the projective metric (9), each

connected component of G is a complete metric spacei11).

Proof. Let {/„} CC be a Cauchy sequence in the projective metric (9);

that is, let lim,,..,,, 0(/m,/„) =0. Then from {/„} one can extract a subsequence

{gi} — {/»(»)} sucn that digi, gi+i) <5-i. Hence one can choose A» = X¿g¿ (Xi>0)

(n) This result generalizes [2, p. 227, Lemma 4].
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by induction, such that (l — 5~i)hi^hi+x^hi. It follows that Äi â ft,-=: 3Äi/4

for all i, with 0^A¿ —Aj^51_iA,74 ii j>i. Since (£, 6) is complete in the rela-

tive uniform topology, the existence of h follows, with 0^hi — h^5l~ihi/i.

But this implies 6(hit A)—>0 as i—**>. Since 0(/„, h)^6(fn, /„«))+ d(hit h) for

all i by the triangle inequality (note that 0(/n(>), h) = 0), we infer 6(f„, h)—*0

as n—> =o, completing the proof.

Corollary 1. In any Banach lattice (& = (£, 6), each connected component

of 6 in the projective metric (9) is a complete metric space.

Theorem 5 and the Corollary to Theorem 4 yield the following additional

corollary.

Corollary 2. Let P be any uniformly semi-primitive non-negative linear

operator on any Archimedean directed vector space which is complete in its rela-

tive uniform topology. Then either P is nilpotent, or \PT] has a strictly dominant

(positive) eigenvector.

By Lemma 14, this result applies to Banach lattices. Analogous to Lemma

14, we also have

Lemma 15. Any complete vector lattice £ is complete in its relative uniform

topology.

Proof. In a vector lattice, the hypothesis of the definition of relative uni-

form completeness is tantamount to | hn — hm | ^ «nM for all m > n. Extracting a

rapidly convergent subsequence A»«) = gi such that | g¿ — g j+i | < 5~'u, we can con-

struct Vi = gi+ 2/1 ! |gi+i —g,-| and Wi = gi— ^¡Lx \gi+i~g,\, whose existence

follows from the completeness of £ and the boundedness of /.?_, S_iu. Since

Vil g, Wi\ g, and Vi^gi^Wi, we know that gi~^>g both in the order-topology

and in the relative uniform topology relative to the gauge u. The proof that

hn—*h in the relative uniform topology, relative to the gauge u, is now im-

mediate.

Since, as stated in §2, the completion by cuts of any Archimedean di-

rected vector space is a complete vector lattice, we conclude

Theorem 6. Let P be any uniformly semi-primitive non-negative linear oper-

ator on any Archimedean directed vector space £= (£, 6). Then either P is nil-

potent, or there exists a strictly dominant distribution <p in the completion of £ by

cuts, such that for allfCzP, either somefPr = 0 or 0(fPr, #)—>0 as r—»°°.

10. Continuous multiplicative processes. It is easy to extend the preced-

ing results to continuous multiplicative processes on Archimedean directed

vector spaces—proceeding as in [2, §5]. One need only assume that, for

some r>0, Pr is uniformly positive. Then either P2r = 0 as in §6, or for all

s>r,/Pr>0 implies that, by (7), X(/)>0 and hence/P'^X(/)>0 and hence

/P'eX(/)eP«-r>0. Furthermore, letting ^=6 —3d be the set of all/>0 with
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/Pr>0, the $P*is>r) form a nested family of convex sets (i.e., SP'CSP5 if

s>q>r), whose diameters 5(s) tend to zero as s—><». If e is complete in the

projective metric, the existence of a strictly dominant eigenvector follows.

If P is strictly positive and uniformly primitive, so that />0 implies

/Pr>0 for all r, then the eigenvector in question is even uniformly dominant:

M if) ?*0 in (3) and so limr<00 difP', <l>)=0 uniformly.
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