SUMMABILITY C OF SERIES OF SURFACE
SPHERICAL HARMONICS(Y)

BY
AARON SIEGEL

I. Introduction. 1.1, SURFACE SPHERICAL HARMONICS. Let @ denote the
surface of the unit sphere in Euclidean 3-space, whose center is the origin O
of a system of Cartesian coordinates x, y, 2. Let Q denote a point on €. The
function Y,(Q) is said to be a surface spherical harmonic of degree » if
H,(x, v, 2) is a homogeneous harmonic polynomial of degree » and H,(x, y, 2)
=7"Y,.(Q) where (x, ¥, 2) lies on the line through O and Q at a distance r
from O. A

1.2. LapLACE SERIES. If f(Q) is a Lebesgue integrable function on Q, the
Laplace series of f(Q) is a series of surface spherical harmonics D ..o Y.(Q)
where Y,(Q) is defined by Y,(Q)=[(@2n+1)/47][[of(M)P.([M, Q])dus.
Here [M, Q] denotes the inner product of the unit vectors OM and OQ and
P.([M, Q]) denotes the Legendre polynomial of order 7.

In this paper necessary and sufficient conditions for the Cesaro summabil-
ity of series of surface spherical harmonics are obtained. The analogous results
for trigonometric series were given by Plessner [11, p. 256]. In the field of
Laplace series sufficient conditions for Cesaro summability was obtained
by Gronwall [4, p. 213] and by Fejer [3, p. 267] and a necessary and sufficient
condition for the convergence of a particular class of Laplace series were ob-
tained by V. L. Shapiro [9, p. 514]. The latter also obtained sufficient condi-
tions fin' the Cesaro summability of series of surface spherical harmonics [8,
p. 212|.

II. Generalized Laplacians. 2.1. DEFINITION. For a point P on Q let
C(P, #') denote the circle of intersection of @ and the sphere of radius
2 sin (B'/2), 0<k’' <w, whose center is at P. Let f(Q) be a function defined in
the neighborhood D(P, k') = {QEQl [0, P]=cos h’} of P, and integrable
on the circumference of every circle C(P, k) contained in this neighborhood.
If [1/27 sin k] [cp,n F(Q)dsq has an expansion of the form:

(1 — cos k) a2 (1 — cosh)?
. f(Q)dsq = a0+ + +
27 sin k C(P,h) 2 (2!)2 22
(2.1.1)
a, (1 —cosh)"
-+ + o(1 — cos k)", r=0,1,..-,

(r!)? 2r
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we say that f(Q) has an rth generalized Laplacian at the point P and denote it
by A.f(P). This generalized Laplacian is defined from the expansion (2.1.1)
bysetting Aof(P) =ao, A(A+1:2) - - - [A+(E—DE]f(P) =ar,k=1,2, - - -,7,
where A-A- +++ - A (ktimes)=A; and Ax-Aj=Apyjforj, k=0 and j+E=7.
Thus if [1/27 sin k] [c@emf(Q)dsq has the expansion (2.1.1) then:

1
21!' sin hfc(p,h)f(Q)dsQ
= aof(P) + ay(p) LD alat f'f)f St o LA
(2.1.2) 2 (21 2
AA+1-2) - [Aa+ (r = Dr]f(P) (1 — cosh)r
._|..
(r))? 2r
+ o(1 — cos k)7, r=201,-.-.

It is clear that if A,f(P) exists then Af(P), 0=Ss=r, exists. A®f(P) shall
denote the kth Laplace-Beltrami operator on f(Q) at the point P, k=0, 1, - - -
(see [8, p. 212]), and A®f its value when P is the north pole of a system of
coordinates with origin at the center of Q. It is well known that if ¥,(Q) isa
surface spherical harmonic then A®Y,(Q) = [—n(n+1) ] ¥.(Q).

2.2. THEOREM. If V,.(Q), n=0, 1, - -, are arbitrary surface spherical
harmonics and P is an arbitrary point on S then, for any non-negative integer r,
ALY (P) exists and A Y. (P)=APY,(P).

Proof. Since A, and A are linear operators, it is sufficient to show that
ALY, (P) exists and A, Y, (P)=AMY,(P) where Y,(Q) has been normalized
so that ¥,(P)=1. Then A®Y,(P)=AMP,([P, Q]) ] @=p (since both are equal
to [—n(n+1)]"), and by [7, p. 298]:

(2.2.1)

[ 7u@se = Putcosi) = [ puip,obasa
C(P,k) C(P,h)

27 sin h 27 sin &

or A, Y.(P) = AP.([P, Q])IQ-p. We therefore need only show that
APA([P, QD) |g-p=[—n(n+1)]". But by [6, p. 21, (18)]:

P,(cos k)
=14 i [—n(n+1)][—nn+1)+1-2] - - - [—n(n+1)+(k—1)F] (1—cos h)*

k=1 (k12 2k

and the theorem follows easily from (2.1.1) by induction. If Y,(P)=0,
obviously AMY,(P)=0=A,Y.(P).

III. Statement of main results. 3.1. DEFINITIONS AND NOTATION. For an
arbitrary series D mo Ua(Q), U®(Q) for a# —1, —2, - - -, shall denote
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the sum Y 7 v, U;(Q) where v/®=(a+1) - - - (@+j)/j! are the ordinary
Cesaro coefficients of order a. A®F, shall denote the kth difference
k=0, 1, - - -, of the sequence {F,.} where AMF, = F,— Fo.1. S[f(Q)] shall
denote the Laplace series of the function f(Q) defined on @ and A®S[f(P)]
the value at the point P of the series obtained by applying the Laplace-Bel-
trami operator term by term 7 times, r=0, 1, - - -, to S[f(Q) ],i.e., if S[f(Q)]
= 2o Ya(Q) then AOS[f(P)]= 220 [—n(n+1) ] Ya(P).

DeriniTION. If V,(Q), n=0, 1, - - -, are surface spherical harmonics the
anti-Laplace-Beltrami operator of order r, r=0, 1, - - -, on Y,(Q), denoted

AN Y,(Q), is defined as:

P,[(P, Q)] } ’

ACNY(Q) = {Yo(Q) T=r¢ + DI

Y.(Q) ,
[—n(x + 1)]
Obviously AP{AY,(Q)} =A"{APY,(Q)}=Y.(Q) for # and r non-

negative integers. Given f(Q)EL on Q, A" S[f(Q)] shall denote the series
obtained by applying the anti-Laplace-Beltrami operator term-by-term to

S[HQ)], ie., if S[FQ]= 2= ¥Ya(Q):

ACDYL(Q) = n=1,2 .

AOS[O)] = 3 ¥.(0),

n=0

_ N P[P, 0D
ACSIFQ] = (—1) {Yo(Q)[[r(r-l- 1)]']

& Y.(Q)
+,§1_——[n(n+l)]’}’ r=12---.

3.2. MAIN THEOREMS. The major results of this paper are embodied in
four theorems. The second gives the sufficient conditions for Cesaro summa-
bility and follows as a direct consequence of the first. The third yields the
necessary conditions and the last combines these results to give the necessary
and sufficient conditions.

THEOREM. Let f(Q) be a bounded Borel measurable function on Q. If A.f(P)
exists for some nonm-negative integer r then ADS[f(P)] is (C—a) summable,
a>2r+1, to Af(P).

SUFFICIENCY THEOREM. Let Y .o Y.(Q) be a series of surface spherical
harmonics on Q. Let r be a non-negative imteger great emough so that
A I Va(Q)} converges uniformly to F.(Q) on Q. If A.F.(P) exists then

v 0 Ya(Q) is (C—a) summable at the point P, a>2r+1, to A F,(P).

(3.1.1)
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NECESSITY THEOREM. Let Y o V.(Q) be a series of surface spherical
harmontics on Q. Let r be a non-negative integer great emough so that
A“"){ 0 Y,,(Q)} converges uniformly to F.(Q) on Q. If Do, Y.(Q) is
(C—a) summable, o a non-negative integer, to s at the point P on Q then for r
an integer greater than (a+2)/2, A.F.(P) exists and equals s.

NECESSITY AND SUSFICIENCY THEOREM. Let Y oo Yo(Q) be a series of
surface spherical harmonics with Y,(Q)=0(n*) uniformly on Q for some k. A
necessary and sufficient condition that » o Y.(Q) be summable C to s at an
arbitrary point P on Q is that there exist a non-negative integer r> (k+1)/2 such
that A.F.(P) exists and equals s where F.(Q) EA“"{ =0 Y.(Q) } .

IV. The sufficiency theorem. In order to facilitate the proof of this theo-
rem we prove the following sublemmas and lemmas:

4.1. LEMMA 1. Let f(Q) be a bounded Borel measurable function and r a
non-negative integer. If A f(P)=0,k=0, - - -, 7, implies AOS[f(P)]is (C—a)
summable to zero then A,f(P)=s implies AMS[f(P)] is (C—a) summable to s.

Proof. Suppose A.f(P)=s. We observe first that there exists a finite sum of
surface spherical harmonics T(Q)= D 7., a;P;([P, Q]) such that A.T(P)
=Awef(P), k=0, - - -, r. For, by the theorem of §2.2 and the linearity of
the operators Ax and A®, AT(Q) = D 5o ;AP P;([P, Q) = A®T(Q), and
it is possible to choose the a; so that:

io a; = Aof(P),
> [=iG + D]ka;

j=1

It

2if(P), k=1,2,---,r

This can clearly be done since the determinant of the above system of (r+1)
linear equations is a nonvanishing Vandermonde determinant. Let F(Q)
=f(Q)—T(Q). Then AF(P)=0, k=0, 1, - - -, r. Therefore, by hypothesis,
ANS[f(P)] is (C—a) summable to zero. But since the Laplace series of a
surface spherical harmonic is the surface spherical harmonic itself, A" S[F(P) |
=ADS[f(P)] = AOT(P)=ADS[f(P)]—s. The lemma follows immediately.

For the following lemmas and sublemmas we shall assume, unless other-
wise stated, that « is non-negative.

4.2. SUBLEMMA 1.
(a)

=0 7@
4.2.1) , n 7(41). (2+1)
=Y L ——— cos(j + 1/2)t.

oSl ,y:a) d2k+1)




288 AARON SIEGEL [August

Proof. The above identity is a simple application of the following two
facts:

(2k+1)
(4.2.2) (—1)++ d

cos(j + 1/2)t = (§ + 1/2)*+ sin(j + 1/2)¢,

dp(@k+1)

k=0,---,7r.

(4.2.3) [—7(j+ 1)]7(2j + 1) isan odd polynomial of degree (2r + 1) in (5 + 1/2).
Statement (4.2.2) is obvious. Statement (4.2.3) follows easily since

[=iG+ D] = [(=D)7/4][2 + D = 1] = (=1)"[G+ 1/2)* — 1/4]".

4.3. SUBLEMMA 2. For 0<t<2m, k=0, - - -, r; r=0, and s>a+2r4+1:
(a) (2k+1)
2 Yn—j

cos(j + 1/2)¢

= v kD

_ 1 g{ i (a—i) d(2+1) [ 1 :I
@ ZT g | (2 sin@/2)(1 — e

d(2k+1) [~ gi(n+l)t
dr@+0 | (2 sin(t/2))(1 — e“‘)“]

(4.3.1)

Vi
j=n+1

dt@+D | (2sin(2/2))(1 — e—i)e
Proof. Since Y .o cos(j+1/2)t= [sin(j+1)¢]/2 sin(t/2) for 0 <t <2,

n_ J(2k+1)

=0 dt(2k+l)

0
(a—s—1) —i(j—n—1)t
d (2k+1) Z €

(@) , (a)
[‘Yn—i/ Yn

1[cos(j + 1/2)¢]

= 2 d™ s ™ [y v [sinG + 1)i]/2sin(t/2)}  for 0 < ¢ < 2.

Also,
> 5 ) sinG + 1)d/2 sin(e/2)

G0

= [1/27,(.°) sin(¢/2)] °9{ i 'y,(,:l) expli(j + l)t]}

=0

= [1/27,(:') sin(t/2)] -9 {exp[i(n + 1)¢] i: 7;«-1) exp(—ijt)} ,

=0
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and applying Abel’s partial summation formula s times to the expression on
the right we obtain (see [11, p. 258]):

(a—1)

Vn-j sin(j+ 1)
=0 ‘Yn‘“) 2 sin(#/2)

1)t o~ (a—s—1) —ijt
1 N € Vi
n j=0
J|-2 +

N @ sin(t/2). =1 (1 — )i (1 —et)e

But since a—s< —1 implies Zf-o l’y}“‘l‘l)l < o, by Abel’s limit theorem
we have 1/(1—exp(—if))e—e= > =0 v * exp(—ijt). Thus:

(a)
2 Lo cos(j + 1/2)¢
=0
N (a-a-1) —iG-n—1)t
1 . ,y(‘""f) ei(n+1)t Z v; g
n j=n+1
= __________._g — + _
27(:) Sin(t/Z) JZ=:I (1 — e—“)i (1 — e_“)a (1 — e_“).
Consequently, for 0 <t <2, k=0, - - -, r; r=0, and s>a+2r+1:
(a) (2k+1)
n—j

cos(j + 1/2)¢

e diekry

1 S iy dEHD 1
| |

e P dt@+ | (2 sin(t/2)) (1 — e0)i

o (a—s—1) —i(j—n—1)¢
) Z Vi €
d(2k+1) es(n+l)t ] d(2k+l) jentl
dt e+ [(2 sin(¢/2))(1 — e~it) dt@+0 | (2sin(t/2))(1 — e~it)®
where the last expression on the right exists since for s >a-+2r4-1 the absolute
value of D 2, @D /dp@+D {yfe==D exp[—j(j—n—1)t]} is bounded by

a constant multiple of the convergent series D ju,,; j@+2+D=06+D and con-
sequently converges uniformly for 0 <¢<2m.

4.4, SUBLEMMA 3. For 0<t<2m, h=0, and n=1 there exist positive con-
stants K1, K», K; such that:

(4 4 1) l z‘: ’Y(a—i) dh [ 1 ]‘ <K 82 P Car)) ’
R - L. — 1 -
=1 di* L(2sin(#/2))(1 — e~it)i = 1D
d(h) ei(n-f-l)t h nH
(4.4.2) l - <Ky > ———»
dt™ (2sin(¢/2))(1 — e ump BlatiFh=m)
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o (a—s—1) —i(j—n—1)¢
> e

am ;=" b ple—etn)
(4.4.3) i <K —————
dt®  (2sin(t/2))(1 — eit)° Q1G]

for s>a-+h.

Proof. We observe that the hth derivative of a product of two functions
A(t) and B(¢) is given by:
h

dr h
(4.4.4) - A(t)-B(t) = E,)( . ) AW BEm(Y).

Since |d®/dt® [1/sin(t/2)] < Co/t*+ and |d®/dt® [1/(1—eit)7]| < Coftr
where C;, C:>0, there exists a positive constant C such that:

dm 1 C

dt® (2sin (¢/2))(1 — e~i*)8|  pHht1 .

(4.4.5)

Thus from (4.4.4) and (4.4.5) we obtain (4.4.1) and (4.4.2) noticing that for
the former inequality ¥ = O(n*). With

AW =— Toy" " exp[—i(j— n — 1)i]
j=n+1 P
and B(t)=1/[2 sin(¢/2) ][1 —exp(—1it) ] we again employ (4.4.4) and (4.4.5)
to obtain (4.4.3), noticing that:
dw

L L

(a—s—1) —i(j—n—1)t Aa—s—-1), | »
= 2 v e <K 2Xji  (G-n-—1)
dt® ;o jemnt1

<K Z jlats—e—) & Kplatu—e)
J=n+1
for u=0, - - -, hand s>a+h where K>0.

4.5. SUBLEMMA 4. For $>1 and 0<0 <w/2 there exists a positive constant
K such that:

4 dt K
(4.5.1) f <=.
o #¥(cos 6 — cos H)12 68

Proof. Using the identitycos @ —cos t =2 sin [(¢+8) /2] sin [(t—8) /2] we see
that:

f” dt _ _l_f' dt )
o ¥(cosf — cos t)”z— 212y t8[sin((z + 6)/2) sin((t — 6)/2))]'/2



@
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But for 0<0=t=m, sin[(t+6)/2] = sin(t/2)cos(8/2)+cos(t/2)sin(8/2)
=sin(0/2)cos(0/2) +cos(t/2)sin(6/2) =sin(6/2)cos(f/2) =sin 8/2 and hence:

_1_ T dt < 1 f* dt
212 5 [sin((¢ + 6)/2) sin((t — 6)/2)]'/2 = (sing)12J, #8[sin((t— 0)/2)]*/2
for0< 6 <.

Also, for 0<f=t=m, sin[(t—0)/2]=[2/7][(t—6)/2] since (t—0)/2<m/2.
Thus:

1 f" dt < w2 f" dt for 0 < 0 <
sin6)2J, P[sin(( — 0/ smoy2d, pE—gir ™
Obviously [51/8(t—0)'/2dt < [71/#8(t—6)*/2dt and dividing the integral on the

right into two parts,

o 20 o
f 1/ — 02t = | 1/8(t — 6)Vi%ds + f 1/8(t — 6)1/2ds.
0 20

(]

Noticing that

20 20
1/88(t — 0)1/2dt < [1/66] f 1/(t — 6)\2dt = 2/9®6-1/»
0 0

and

0

1/t — 6)V2dt < [1/6?] wl/tﬁdt = [1/26-D(y — 1)][1/66-1/]
20

forg > 1,
we see that there exists a constant C>0 such that:
f ) a < ¢ forg>1,0<0<
or s .
o 1P(cos — cost)l/?  GB-1/2(sing)1/2

But for 0 <8 <w/2, sin = (2/7)8 and consequently (4.5.1) follows.

4.6. SUBLEMMA 5. For 0<60<w/2 there exist positive constants K1, K,, K;3
such that:

208 o G(m, 8, @) tond
4.6.1 —_ —— X dt < K —
( ) 7 Jy (cosf — cosf)l/? ' E gl+mt1)

where
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1 8 n(a—f)

G(”’ t, a) = 7'(“') P JGHATD b) h = 1, 3’ ceey, 2r + 1’
242 * H(nm, ¢ )
(4.6.2) 2o _Hmbe) 2
m Jo (cos@ — cosit)l/? glat1)
where
1 nh .
H(”,t;a)=;’(?;-t(a+l)} h = ,3,"°,2f+1’
202, L(n, i, @) pl—eth)
(4-6'3) _— —_—_ . dt < Ka
m Jg (cos@ — cost)l/? ge+1
where
1 pla—sth)
L(n,t, a) = 7—(—) e h=1,3,---,2r4+1.

Proof. These results follow immediately from 4.5 Sublemma 4 and the
fact that Y@ ~n2/T'(a+1) for a= —1, =2, - - - .

4.7, SUBLEMMA 6. For s>a+h, h=1,3, -, 2r+1, a>2r+1,and n a
positive integer, there exists a positive constant K such that:

T 8 n—j
(4.7.1) > ———sin@+gdg < K,
1/n joy OUFRFD
r n(h—a)
4.7.2) f proeey sin®?+1gdg < K,
1/n
L n("t"”l) .
(4.7.3) f proee sin®+gdf < K.
1/n
Proof. For k=1, 3, - - -, 2r+1:
T 8 n—i
f > — sin@D gdf < Z sm"""l) 6do,
1n jo1 OUFD in o1 OGHED)

and since sin /0 <1 for 0<0=:

T 8 n—i
f > — sin@rtgdy < Z
1

In =1 g G+2r+2) Un jmi

0(1+l)
Integrating the expression on the right we obtain:

Do i‘,i.[l— l.]<K

Yn j=1 9(’"'1) j=1 ] (wn)i
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where K is a positive constant, and (4.7.1) follows. Similarly we find that
for h=1,3, -+, 2r+1and a>2r+1:

] n(h—a) x sin(2r+l) 1 do
sin@®rtgdy < 5 Griti-a df < per-a
1n 0D in BltD 1/n 0020

- el )
Ca—(2r+1) (rm)=—r+v) |’

Thus for a>2r+1 we see that with K=1/[a—(2r+1)]>0 (4.7.2) holds.
Finally, for =1, 3, - - -, 2r41:

r n(—c+h) x do
sin@riDgdy < pl—etertD)
in OG+D yn § — 2r

IIA

and therefore, for s>a+k, we have (4.7.3) with K=1/[s— (2r+1)]>0.
The following notation will be used in the remaining lemmas and theorems
of this section: We let K*"”(cos 6) denote the nth (C—a) partial sum of

iPﬁU+DR%+DE@wL

=0

ie.,

(a,r) N (@), (@ o .
En" (cos 6) = 3 [rni/va” 1[4 + DI'(2] + 1) Py(cos 6).
J=0
4.8. LEMMA 2. Let 1/n<n=7/2 where n is a positive integer. For aa>2r+1
there exists a positive constant K independent of n such that:

(2r+1)

’ a,r .
(4.8.1) f | 2" (cos 6) | sin 6™ Vdo < K.
1/n

Proof. From Mehler’s integral representation of the Legendre polynomials
[6, p. 27, 27N ]:

212 ;7 osin(f 4 1/2)¢
(4.8.2) P,~(cos«9)=——f —(J—/—)—dt for0<6<m;7=0,1,---,
wJgs (cosf — cosit)l/?

we see that for 0 <0 <:
(a)
% Vg J . . .
i pe 2 o L9+ D2+ 1) sinG + 1/2)¢
=0 Yy

K,(.“")(cos 0) = —
T Jy (cos § — cos f)1/?

dat
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and thus by 4.2 Sublemma 1, for 0<8<7:

. n 'y(a) (2k+1)
n—j
a — cos(7+ 1/2)¢
(4.8.3) K<a'r)(COS ) = 1z o7 IE ki=20 yi@) dp@R+n g /2 i
" T J (cos 8 — cos t)1/? '

Utilizing the fact that |9{f(z)}| =|f(z)| we have, by 4.3 Sublemma 2 and
4.4 Sublemma 3, for 0<¢<m, k=0, - - -, r, and =0, the existence of a con-
stant K >0 such that:

(a) (2k+1)
Yn—j

im0 vl drerD

n

cos(j + 1/2)t|

K s plad 2k+1 " %U+1 gy (a—atn)
) { J_El § G+ 2k+2) + g { (et 2k+2—p) + g £ (e 2k+1-)
n =

where s is fixed so that s>a+2r+1. For 1/n =¢, noticing that there exists a
constant K > 0 such that

2k+1

3 ket st & Kpthtl/ ek

0
and

2k+1
Z pleetn) [pat2ti—w) < Knla—st2k+1) iz
=0

for k=0, - - -, r, we see that with 1/# <t <7 there exists a K >0 such that:

(a) (2k+1)

n .
Yn—j

cos(j+ 1/2)¢

im0 Y@ diekD

K 8 (=) p2kt+1 gy (a—as+2k+1)
{ k=0, ,r

'ygx) =1 1 (+2k+2) fatl {s+1

Thus by 4.6 Sublemma 5, for 0<1/# <60 <w/2 there exists a constant K >0
such that:

y(a) (2k+1)

n—j .

212 pr | 20 y@ dt(2k+l)cos<] + 1/2)tl

— s dt
T Jo (cos 6 — cos £)1/2

L] n—i) g @ktl—a) g (—at2k+1)
<K{Z : + } E=0,---,r
=1 gGi+2k+2)  glatl) glstD)
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Therefore from (4.8.3) and (4.8.4) we see that, for 0<1/2<0=<7/2, there
exists a constant K >0 such that:

| K,(.“'r)(cos 0| < K{ > i

k=0 =1 0(7+2k+2) i glatD

nN r pQk+l-a) r n(—c+2k+l)}

+ X

=0 g (s+1)

Employing 4.7 Sublemma 6 and noticing that the integrands in (4.7.1),
(4.7.2), and (4.7.3) are positive for the domain of integration [1/#, 7], <2,
the result follows.

4.9, LEmMMA 3. Let f(0, ¢) be a bounded measurable function on Q, r a non-
negative integer, and 1 any positive number less than w. If a>2r+1 then:

(a,r)

(4.9.1) [1/4x] f fn_m JODKS(P, M0 =0 a5 o,

Proof. From Lemma 5 of [8, p. 217] we have: If 0 <k <he<m and Fy(x)
is a bounded measurable function on © which is equal to zero in D(x,, ks)
then for x in D(xo, b)) AMS[Fi(x)] is uniformly summable (C— «) to zero,
a>2r+1,

Define Fi(Q) by:

Fi(Q =0 in D(P,7)
=f(Q) in Q- D, 7).

Then by the above mentioned lemma we have A®S[Fy(P)] summable (C—a)
to zero a>2r+1. But AMWS[F(P)]=[1/4x][[oa Fu(M)KS" ([P, M])dQy and
by (4.9.2),

(4.9.2)

(f) (a,r)

SIPA(P)] = 1/ f S JODE (P, )i

4.10. LEMMA 4. For r a non-negative integer and n a positive integer, there
exists a constant K >0 such that:

(4.10.1) f | K5 (cos 0) | sin™™*” 6do < K.
0

Proof. Since IPj(COS 0)[ <1,j=0,1,.--,

| K (cos 0) |2 3 )

J=0

113G+ DI [25 + 1].

Consequently there exists a constant K >0 such that
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(a,r) 2+l (@, (@) 241 (atl) , (a)
IK,, (cos 0)| < Kn Z'y,._,-/'yn < Kn ['y,. /'y,,a

=0
But since lim,., [Y¥/ne]=1/T'(a+1) for a#—1,—2, - - -, lK,(,“")(cos B)I
< Kn2¢+1) and (4.10.1) follows.

4.11. THEOREM. Let f(Q) be a bounded Borel measurable function on Q. If
A-f(P) exists for some non-negative integer r then AW S[f(P)] is (C—a) sum-
mable, a>2r+1, to A.f(P).

Proof. Without loss of generality it may be assumed that P is the north
pole of a system of spherical coordinates whose origin is at the center of Q.
Furthermore by 4.1 Lemma 1it may be assumed that Axf(P)=0,k=0, - - -, 7,
and it remains to show that A S[f(P)] is (C—a) summable, &> 2r+1, to zero.
We have S[f(P)] = [1/4r]3 20 (2j + 1)[[of(M)P;([M,P])dQ and
AOS[f(P)] = [1/4x] 250 [Sal =iG+D) 1725+ 1)f (M) Py([M,P])dQu. De-

noting the (C—a) partial sums of this latter series by C&”(P), clearly

ey = /el [ [ sa0K ([, Phigu.

Since Axf(P)=0,k=0, - - -, 7, given an arbitrary ¢>0 there exists a 8(¢/2K)
>0 such that:

(1/2x sin k) f(Q)dsq

c(P,0) <
sin? 0 2K

whenever 0 < 6(e/2K) where K is chosen such that K =max(K;, K,) and K;,
K, are the constants of 4.8 Lemma 2 and 4.10 Lemma 4 respectively. Let
D(P, 3) be the spherical cap of radius n about P with 5 chosen such that
n=min(8(¢/2K), m/2) and let n be a positive integer chosen so that 1/n# =1.
Then since:

(4.11.1)

| C”(P)| = [1/4x]

2%
f ' f 1, ¢)K,fa'r) (cos 6) sin 0d¢do
0 0
+f[ jonksae uhin
Q—D(P,n)
n
| ") | < [e/2K] f | K27 (cos 6) | sin™™*" 0dp
. 0

+ [1/4x]

f f ﬂ_D(P,")f(M)Kf.""')([P, M])JQMI

by (4.11.1). Dividing the first integral on the right into two parts it follows
that:
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(a,r) (2r+1)

| C. " (P)| < [¢/2K] f | 2" (cos 0) | sin®™*" odo

(2r+1)

+ [e/ZK]f |K(“)(cos 8)| sin 640

+ [1/4x]

Jf . so0x(p, shasu].
9-D(P,7)
Thus by 4.8 Lemma 2 and 4.10 Lemma 4, for a>2r+1:

| ()| < &+ [1/41]

I} R L ul)ay|

and therefore by 4.9 Lemma 3, lim sup,.., C*”(P) <e. Since ¢>0 was chosen
arbitrarily, the theorem follows.

4.12. SUFFICIENCY THEOREM. Let Y o YV..(Q) be a series of surface spheri-
cal harmonics on Q. Let r be a mon-negative inieger great emough so that
INGUEID DR Y,,(Q)} converges uniformly to F.(Q) on Q. If A.F.(P) exists
then D pmo Yu(Q) s (C—a) summable at the point P, a>2r+1, to A F,(P).

Proof. The theorem follows immediately from the preceding one after
noticing that A"”{ e Y,.(Q)} converges uniformly on € to a continuous
function F,(Q), and that AOS[F,(P)]= 2 mo YVa(P).

V. The necessary conditions for C summability. The following three
lemmas facilitate the proof of the main theorem of this section:

5.1. LEMMA. Let Y,.(Q), n=1, 2,- - -, be surface spherical harmonics such
that > o, V,.(P) is (C—a) summable, a a non-negative integer, for P an arbi-
trary point on Q. Then for r>(a+1)/2:

« o P, h r (1-— h)*

GLD) (=13 rO@)a e {ﬂ} 3 o LT L cosh)

ne=1 [n(n + 1)]’ k=0
where
.12 = the (C — a) sum of the series (—1)* 'E Y.(P) m ’

7 = the (C — ) sum of the series
ad Ao(Bo+1-2) - - - [Ao+ (B —1)E] P,
—1)r Y.(P ,
(=17 % 7(P) [ + DI

k=1,2,---,r and L(cos k) is a convergent series.

Proof. From [1, p. 21,(8)] we know that if {f.} and {g.} are two se-
quences then:
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P

(5.1.3) AD[foga] = Z(']Z)A(")f,.-A(f"‘)g,..,.k.
k=0

Letting f,=Pa(cos k), g.=1/ [n(n+1)]", and noting that

A®[1/n] = O(1/n*+F) for k = 0, I P,(cos h)l =1,
and Y (P)=0(n%), we see that for r> (a+1)/2:
o P,(cos h
A(+l){ (cos )} <K
nin + 1)7

Now from [1, p. 19], if { fa} is an arbitrary sequence then:

0

)Y

n=1 n

.19 S| rem)|

n=1

2r—a)

5.1.5 @fp = 3 (=0 % ) foss
(5.1.5) s = 35 (5 ) o
Consequently:

-1 r o Y,Ea) P (a+1){ P,.(COS h)

( )»;1 ®a [”(n+1)]'}
(5.1.6)

I sy fa+1 P, i(cos k)
= (=)' 3 7P —1) +
2 ( {2( )( j )[(n+j)<n+j+1)]'}’

and therefore by (2.2.1):

1) = Y,(.a)P (@+1) [ Pa(cos k)
(5.1.7)( -t {[n<n+1>]f}

. ()

L) T YO p
( )25 (){E[(n+j)(n+j+1)]'

(1 — cos h)*
n+j,k _2’5——

where C,; is defined by:

Cayio =1,
Ao(Lo+1-2) - - - [Ao+ (B — 1)E]Puy;
(5.1.8) Capjir = ——— (k[');' WPus o E<n+j,
Cryie =0, forkzn+j+1.
Thus with a,; defined by:
(—ﬂf(‘”.L 1)
fazs J (1 — cos h)¥

5.1.9) am= Vo (P
G-19) on EP 2% Ty

n+j.k

2k

we have:
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(aum(-in?m&m%

n=1

S-S

n=1 k=0

P,(cos k) }
[n(n + D]

It will now be shown that:

(5.1.11) iiank=iianh+i i Qnk

nm=l k=0 k=0 n=1 n=l k=r+1

where L7(cos h) = Y my D ser418qk is a convergent series. To do this it need
only be shown that Zi-o Z:_l @, is absolutely convergent for, from the

convergence of D w1 D 5o @nk and Yy D i o @ (see (5.1.4)), the result is
immediate. From (5.1.5) and (5.1.9),

3 law] =3 [ 2@ | | 6“2 (Co/[nln + DIV A = cos /2],

n=1 n=1

and thus from (5.1.8) we have:

0
2 | an]

~ | rp l @y JR0Lo+ 1-2) - - - [Ao+ (& = DRIP |
(5.1.12) "z‘:‘l "] { [n(n + 1)]" }
illankl

12 (@ Ao(Lo+1-2) -+ - [A0+ (B — 1)E]P,
= V. (P (a+1)
(k1)? g RER )IIA { [n(n + 1] }

(1 — cos k)*
The highest degree of the polynomial A¢(A¢+1:-2) - - - [Ac+(E—1)E]P,
=[-nm+1)][-n@rm+1)+1-2] - - - [-n(r+1)+(E—1)k]fork=1, - - - 7,
is obviously 27. Thus since A+ (—1)7=0 for a =0,
Ao(Ao + 12) . [Ao + (k - l)k]F.,l < KA("““){ 1 }
[n(n + )] [n(n + 1]

, k=1, 7

A(a+l)

n@ts) fork=1,--,r
Also, A(‘"““){l/[n(n+1) ]'} =0(1/n2@tD) for r>(a+1)/2. Thus since
Y@ (P)=0(n?), from (5.1.12) we see that D ., am, k=0, - - -, 7, converges
absolutely. Therefore from (5.1.7), (5.1.8), (5.1.9), and (5.1.10) we see that:
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, [ (a) (a+1) M)_ _ r _ '
(5.1.13) (—1) Z Y. (P)A {[n(n n 1)]'} = Eak(l cos k)t 4 Lr(cos k)

nm=1

where

T @ (a+1) 1
ao—( 1) E Y. (P)A {[n(n+1)]'}’

. = -1 r Y,fa)P (a+1) 0 0 . 0 — .
o Evm e { [n(n + D] } ’

k=1,---,r,
But from [5, p. 128, Theorem 1] we know that if (i) Y b, is summable or
bounded (C—k), k an integer, (ii) F,—0, and (iii) Z(n-l—l)"l A®F, | < o,
then Y b.F, is summable (C—k) to Y BPA®+DF, the last series being
absolutely convergent. It is to be noted that the theorem is valid if (ii) is
replaced by (ii") F,=K+o(1), where K is a positive constant. With F,
=1/[n(n+1)] for k=0, Fa=A¢(A0+1:2) - - - [Ac+(E—1E]P,/[n(n+1)]
for k=1, - - -, r, and b,=Y,(P) it is obvious that the hypotheses (i), (ii’),
and (iii) of the above theorem are satisfied. Consequently we have:

ao = the (C — a) sum of the series (—1)* g Y.(P) m )
(5.1.15) .
a; = the (C — ) sum of the series
= Ao(Ao+1-2) - - - [A0+ (B — 1)E]P,
-1 V.(P
(072 ¥ e + T

and the proof of the lemma is complete.

5.2. LEMMA 2. Let R(cos k) be defined by:

, = ,”’,f,

Ri(cos k) = P,(cos k)

(1 —cosh) Are+1-2)P, (1 — cosk)?
- {1+ AoPy 2 e " + .-
Ao(Lo+1:2) -+ - [ao+ (r— Dr]P, (1 — cos h)'}
+
(r))? 2r

where 0 <h <w and r is a positive integer. If j is an integer such that (j+1)/2 <r
and n< [(1/(1—cos k))V2], then there exists a positive constant K (independent
of r, n, and h) such that:

@ R.(cos k)

———————| < Kn?tD=i(1 — cos k).
(1 — cos k)" ( )

(5.2.1)
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Proof. We may assume that n=r+1 for if n<r, A¢(A¢+1-2) - - -
[Ao+ (B —1)E]P, =0 for mn<k=<r Thus Ri(cosh) =0 and
AD{R"(cos b)/(1—cos h)'} =0. Employing the expansion for P,(cos k) we
see that:

R,(cos k) ~ () n—r) - - nn+1)-- - (n4+r+ 1). 1 L.
(1 — cos b)r*1 [(r + D12 o+l
RO Ll G 1) DR R R e )
[+ 7+ 1))
(5.2.2)
(1 — cos k)
T gkr(D T
1:2- - n(n+1) - 2n (1 — cos h)»(r+D
—1)» .
+ (=1 (n!)? 2n
But since (see [1, p. 6,3)]) AVx™ =m(m—1) - - - (m—j+1)x™) where

x™ =x(x —1)---(x —m-+ 1) we see, letting x =n + £k +r + 1and
m=2(k+r+1), that:
A(’,){[n— E+n]- nn+1)--[n+E&+n+1] (1 _Cosh)k}
[+ 7+ 1] Qb1

Zi[k+r+1][k+r+%] .. .I:k+,+1_<f_“__1)]

2
[(&+ 7+ 1)1

. (1 — cosk)*
Rt ) et One e = G ) ]

fork=0,1,.---,n— (r+1).

Since (n+k4r+41) - - - (n+1)is, fork=0,1, - - - ,n—(r+1), clearly major-
ized by (2n)**+'and n - - - [n—(k+r)+j] by nt++1=i for n2(1 —cos h) <1
we have the expression on the right of (5.2.3) majorized by
{20/[1-2+ -+ ((B+1)=(G+1)/2) |2} n2e+=i, But for r>(j+1)/2, this ex-
pression is in turn majorized by [27/(k!)2]n2¢+D—i Hence from (5.2.2) and
(5.2.3) there exists a positive constant K such that:

) R,:(cos h)
IA( ){(1 — cos h)'“}
n—(r+1) ) k[n—(k+r)]~-~n(n+1)---[n+(k+r)+l]
2 A”{('l) [+ 7+ D1

k=0
(1 —"cos h)*
) 2k+r+1

(5.2.3) =

< Kn2tb—i
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The lemma then follows immediately.

5.3. LEMMA 3. Let P,(cos k) be the Legendre polynomials of order n, n

=1,2,---.If n>[1/(1—cos k) |\/2 where 0 <h < then for any non-negative
integer r:

(5.3.1) A(')PH(COS h) = O[n(l — COS h)(r+1)/2].

Proof. The proof is by induction. The case r =0 is trivial since IP,.(cos h)|
<1 and n(1 —cos k)'/2> 1. Assuming that

(5.3.2) AMP,(cos k) = O[n(1 — cos H)™+DI2]  form = 0,1, - - -, k,

it will be shown that A®+VP,(cos h)=0[n(l—cos h)*+»/2], From the
Christoffel-Darboux formula [2, p. 159] we know that:

APn(cosh) K z": (j + 1/2) Pj(cos k)

(5.3.3) (1—cosh) n+1i5

where K is a positive constant. Thus it is easily seen from (5.3.2) that:

1 3 ] = —_ m—1) /2
(534) Alm ){n 1 E (] + 1/2)Pj(COS h)} = O[n,(]_ cos h)( )/ ]

form=1,---,k
Also, utilizing (5.3.3),

3/2
=K [A(k—l) {—nn—:- { P,.1(cos h)}

+ A(k—l){ 1 .L'il(j-l- 1/2) P;(cos h)}]
n+2n+1 =0

Consequently, from (5.1.3), the induction hypothesis (5.3.2), and (5.3.4), we
have:

A GHD {_____P”(COS " }

(1 = cosk) =17k — 1\ (1= cosh) @Dz (1 — cosh)il?
= Ol:n{ Z( . ) + }]

o) j nh—1-i wh—i

Therefore, since 1/n< (1 —cos k)'/?,

A G+ {(—1{1_(“:——2_:)7)} = O[n(l — cos k)t

and the proof is complete.
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We now proceed to state and prove the necessary conditions for C sum-
mability.

5.4. THEOREM. Let Y .o Y.(Q) be a series of surface spherical harmonics
on Q. Let r be a non-negative integer great emough so that A"{ > ., Y,.(Q)}
converges uniformly to F.(Q) on Q. If D wo Ya(Q) is (C—a) summable, o a
non-negative integer, to s at the point P on Q then for r an integer greater than
(x42)/2, AF,(P) exists and equals s.

Proof. Without loss of generality we may assume that V,=0 and
w1 ¥,(Q) is (C—a) summable to 0 at P. Since A" { Y =, ¥.(Q)} con-
verges uniformly to F,(Q), by [7, p. 298] it is to be seen that:

f . Y.(P)P,(cos k)
C(P,h)

F,-(Q)dSQ = (_l)r Zl [n(n_'_ 1)]'

Applying Abel's partial summation formula (a+1) times to the right side
of this equation we obtain:

27 sin k

1\ @ (@) (a+1) Pn—(cos—_h_)_
fcw,mFr(Q)dso =D n§=:1 ¥s (P)a {[n(n+ 1)]7},

Note that the hypothesis for the application of this formula is satisfied since
Y®(P)=o0(n) for k=0, - - -, a, and as shown in §(5.1.4), for r>(a+1)/2,
A®DLIP, (cos h)/[n(n + 1)]} = O(1/n*)  for =0,:-:+, a. Thus

2 YO@P)A®D{P,(cos k)/[n(n + 1)]"} converges absolutely and
Y,(,‘)(P)A("""){P,.(cos h)/[n(n+1)]'} =o0(1) fork=0, - - - ,a. Applying (5.1.1)
to the right member of (5.4.1) and comparing the result with (2.12) and the
definition (2.1.1), it is seen that if L.(cos k) =0(1 —cos k)" then:

5.4.1
( ) 2w sin h

(1 — cos k)
— [ R@isa= AP+ AP
2w sin kb C(P,h)
AA 4+ 1-2)F.(P) (1 — cos h)?
5.4.2 e
(542) + 2y ” +
AA+1-2)--- | — )r|F.(P) (1 — cosh)r
L Aa+1D) At = DR ( 0SB 1 — coshyr
(r))? 2r
where AyF.(P), k=0, - - -, r are defined uniquely by the following set of

(r+1) equations:

AoF,(P) = The (C — ) sum of the series (—1)* z Y.(P) m’

(5.4.3) A(A+1-2) - - - [A+(E—1)E]F,(P)=The (C—ca) sum of the series
- Ao(to+1:2) - - - [Ao+ (B — 1)E]P,
-1 Y.(P
(-1 El (P) o+ D

’ =1,-'-,f.
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Thus A,F,(P) will be equal to the (C—a) sum of

(=1)7 3 Za(P) AL Palcos b/ [nn + D] = 3 Vu(P).

na=]l n=1

We therefore need only show that

L(cos k) = [1/2x sin h]f

C(P,h)

F.(Q)dsq — {AoF,(P) + i: [A(A+1-2)---

k=0

la + (& = VEIF.(P)/ ()2 (1 — cos h)k/zk}

= o(1 — cos k)"
where A F.(P), k=0, - - -, r, are given by (5.4.3). From (5.4.1), (5.1.14),
and (5.1.15) we have:

L(cos k)
(5.4.4) 2 @ (at1) { Ra(cos k) }

= (—1)"(1 — cos k)" Y. (P)A
(=1( ) ,.Z=:1 (P) [n(n + 1)](1 — cos )"

where

Ri(cos k) = P,(cos k)
ay. (1 —cosh) Ao(Ae+ 1:2)P, (1 — cosk)?
4. - P, e
(5.4.5) [1 + Ao > a2y 7 +
Ao(Lo+1-2) -+ - [Ag+ (r — 1)r]P, (1 — cos h)r:l
+ .
(r))? 2r

It thus only remains to show that

> 7. (P) A [ Ri(cos B)/[n(n + 1)]'(1 — cos #)")

n=1

is o(1). Let

— ., (@) (a+1) Rn(cos k)
E Y. (P)A {[n(n + 1)]r(1 — oS h)'}

@ (a+1) R(cos k)
- :él T (P)a {[n(n + 1]"(1 — cos h)'}

(5.4.6)

~ (@ (a+1) R;(cos h) }
Y. (P
+ ”3%1 (P)A {[n(n T = by where

v-[==3) ]
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Applying (5.1.3) to Ri(cos k)/[n(n+1)]7(1—cos k)" with

fa = Ri(cos k)/(1 — cos k) and g, = 1/[n(n+1)]

we see from (5.2.1) Lemma 2 that for # <N there exists a K >0 such that
| AD{ Ri(cos h)/[n(n+1)]r(1 —cos k)r} | <Kn@-=(1—cos k). Consequently,

LA (a41) Rn(cos k)
(5.4.7) g Yo (P)a {[n(n + 1]*(1 — cos h)'}

= o[N%(1 — cos k)] = o(1).
Again applying (5.1.3) to P.(cos h)/[n(n + 1)]'(1 — cos k)* with

fa=Pa(cos k)/(1—cos k)" and g,=1/[n(n+1)]" we see from (5.3.1) Lemma 3
that for n> N,

AP, (cos k)/[n(n + 1)]7(1 — cos k)7}

= 0[1/n<2'—1) (1 = cos h)r-((a+z)/z):|.

Consequently,
3 (@ @+1) | Pn(cos k) }
Y, (P)A {____
(5.4.8) ”"%1 ®) [n(n + 1)]
4. 1
- 0[1\”(1 — cos h)f—((a+z)/z):| = o(1) forr> (a4 2)/2.

Now for k=1, .- -, 7,
Ao(to+1:2) - - - [Ao+ (B — 1)E]P, (1 — cos h)*

A (k1?2 2k
[n(n + 1)]7(1 = cos k)"

1
= O[nz(r—k)+¢+l (1 — cos h)f—k]
since for j=1, - - -, k; k=1, - - -, r, and j#r,

Ao(”P,. (1 = cos h)k

@) (B)? 2 _ [ 1 ]

[n(n + 1)]7(Q — cos k)" n2(—k+atl(1 — cos h)r*

and for j=k=r,
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AP, (1 — cos k)
(@t+1) (r))? 2 _ At { (—1)'} _ 0

[#(n + 1D]7(1 — cos k)" 27(rl)?
Thus,
(a) (a+1)
Y. (P A
E; (P
( a. (1 —cosh) A(ro+1-2)P, (1 — cosh)?
1 P, e
+ 2 2 (2))2 n
3 Ao(Ao+1:2) -+ - [Ao+ (r — 1)r]P, (1 — cos k)" }
+
(r))? 27
{ [n(n 4+ 1)]7(1 — cos k)" )

1
= 0[(1 — cos k)™ *(N + 1)2(r—k)] = o(1),

and from (5.4.6), (5.4.7), (5.4.8), and (5.4.9) it follows that for r> (ax+2)/2,
21 YO(P) AtV { Ry(cos b)/ [n(n+1)](1—cos k)" } =o(1).

As a consequence of this theorem we can prove the following result:

5.5. TaeorEM. If f(Q)EC*, r=1, 2, - - -, in a neighborhood of any point
P on Q then A.f(P) exists and Arf(P)=A®f(P), k=1, .-, 1.

Proof. By hypothesis there exists a spherical cap I(P, k)= {QI [0, P]
>cos b, 0<h <7} on which f(Q) EC?. Let ¢ be a localizing function of class
C”® on Q for the spherical caps I(P, ki), I(P, hs) where 0 <hy<h <hs. Then
Yf(Q)EC? on Q. Let S[¢f(Q)] be the Laplace series of ¥/f(Q) where without
loss of generality we may assume that the constant term is zero. S[A®Yf(Q) ]
=A®S[Yf(Q)], k=1, - - -, r, for by [8, p. 213] if Fi(Q) and F»(Q)EC? on
Q then Green’s second identity holds, i.e.,

S| P@ar@ane - [ ar@r@us.

Thus since ¥f(Q) and P,([M, Q])EC? on Q, this identity may be applied »
times to [[aff(M)P.([M, Q])dQu, n=1, 2, - - -, to yield the above result.
Since A®YF(Q) is continuous on @, S[A®YF(Q)|=A®S[Yf(Q)] is (C—1)
summable to A®Yf(Q) on Q (see [4]). Each term of S[A®Yf(Q)] is o(n) by
the (C—1) summability. Thus applying the theorem of the preceding section
to A®S[YF(Q)] for k=2, -+, r; r22, we form AR {A®S[YF(Q)]}
=S[¥f(0)] and conclude that AS[Yf(Q)] exists and equals A®Yf(Q). Since
¥A(Q)EC, S[Yf(Q)] converges to ¥f(Q). Thus Awf(Q) = A®Yf(Q) and since
¥v=1in I(P, hi), Auf(P)=A®f(P) for k=2, - - -, r; r22. If Af(P) exists
then by the theorem of §4.11, A®S[Yf(Q)] is (C—a) summable at P,
a>3, to Af(P). Thus ALf(P)AVF(P). If r=2, the existence of Aif(P)
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follows immediately from that of Awf(P) for k=2, .- -, r. If r=1, that
fEC%in I(P, k) implies the existence of A1f(P) is shown as follows: By defini-
tion, f(Q)EC? in I(P, h)yeg(x, y)EC? on {(x, y)lac2+y2<sin2 h} where
glx, y)=f(x, y, (1 —x*—»*)'"?) and f(x, y, 2) =f(Q) for all points Q in I(P, k).
Then by Taylor's Theorem, for 0 <t < h, (1/27 sin ¢)[cw,of(Q)dsq
= (1/2m) [§"g(sin ¢ cos 6, sin ¢ sin 8)df =g (0, 0) +(1/4) [g.2(0, 0) +g,,(0, 0) ]sin? ¢
+o0(sin?¢). Thus:

(1/2m sin 7) f(Q)dse — f(P)

C(P,t)

lim

t=0 . (1 = cos¥) = (1/2)[£:2(0, 0) + £,(0, 0)],

and consequently A;f(P) exists and in fact equals [g.z(0, 0) +g,(0, 0)].
VI. The necessary and sufficient conditions for C summability.

THEOREM. Let Y v o V.(Q) be a series of surface spherical harmonics with
Y.(Q) = O(n*) uniformly on Q for some k. A necessary and sufficient condition
that Y s Yn(Q) be summable C to s at an arbitrary point P on Q is that there
exist a non-negative integer r> (k+1)/2 such that A.F,(P) exists and equals s
where F,(Q)=A"{ 2n., V. (0)}.

Proof. The sufficiency follows immediately from the theorem of §4.12
with the order of summability a>27+1. Choosing r an integer greater than
max{(k+1)/2, (Ja]+3)/ 2} where a is the order (not necessarily integral) of
summability of D . ¥,(Q) at P, the necessity follows immediately from the
theorem of §5.4.
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