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Introduction. In our thesis [2, Appendix, pp. 106-118] (cf. also [3]) we

proved the infinite differentiability of the solutions of quasilinear partial

differential equations of the form:

(1) J2 ajix, NiiD)f, ■■■, NviD)f)MJiD)f = gix, NiiD)f, • • • , Nr(D)f).
y-i

Our hypotheses were: (1) The differential operator

J2 aÂxo, NiiD)fixo), ■ ■ ■ , N,iD)fix0))MiiD)
j'-i

is, for every xo, hypoelliptic and stronger than each M¡iD). (2) Each TVt(7>)

is strictly weaker than all M¡iD) together (cf. [2, p. 116, d]). (3) The func-

tions ajix, h, • • ■ , tv) and g(x, h, ■ ■ ■ , /„) are infinitely differentiable. In

this paper we want to outline a different proof which is more elementary than

the original one, in the sense that it utilizes neither the Sobolev nor the

Gagliardo-Nirenberg estimates but only rather straightforward estimates ob-

tained from the Fourier transformation in L2. A severe disadvantage, on the

other hand, is the fact that it requires rather strong a priori differentiability

of the solutions.

1. The Schauder algebra. Let 5 be any real number. Put

11/11. = (/ (i + UI )2' I Aö n)i/2> / e c?

if il;) is the Fourier transform of/=/(x), Cc°° is the set of infinitely differenti-

able functions with compact supports) and let 77" be the completion of C" in

this norm.

Lemma 1. If s>n/2, then there exists a constant K such that

(2) ||/g||. è K\\f\\s\\g\\s, fEC?,gEC?.

Proof. Put h=fg. Now A(£)=//(£-ij)g(i7)¿i7. Hence
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(3) HAH.' = // (1 + I í I )*/(« - v)e(v)(k(&)*dSdv.

By Schwarz's inequality, we then obtain

|¿||.2á(J(i+ |*-í|)*|A€-í)N)

(4) x(J(i+ uh^iiwi2^)

The first two factors on the right hand side of (4) are ||/||, and ||g[|, respec-

tively. Now

v(i+ li-n )(1 +

_\u< /(l+ |f-i>|) + (l+ \y\)\u

v\))   ~\ (1+ |í-»|)(l + M) /
/        l l    \2!

\1 + |£-i»|     1+ |ij|/

/ ! 1 \

\(i+I * - * I )*   (î+UlW
It follows that the square of the third factor is

= 22-1 (Y f-r^-r— + f -^—.—\ (1 + UI )2' I k(Q |2d£
j \j a+\a-v\)2s   j (i+ MW

-7 ^      m ii2     2n ii2
A , = K   A ,

(i+ hi)2'

with 7i = 28(/(l + |r?

that 5 >re/2. Hence I

)_2*d7))1'2, which is finite in view of the assumption

A||2=s||f||s||g||s7:||A||s, and (2) follows.

Corollary (Schauder). If s>re/2, then 77s is a Banach algebra (the

Schauder algebra).

Remark. In the above reasoning one can as well replace 1 + |¿|  by an

arbitrary "weight function" E(%) such that

E(t)
(5)

E(k - r,)E(r,) \(i+ |*-il),+(i+ \v\y)

for some 5>0. In particular, (5) is fulfilled (Malgrange) if £(£) = 1 +1 P(Ç) |

where P(£) is a hypoelliptic polynomial. This can easily be seen by making

use of Leibniz's formula in its "tensorial" form [l, p. 292].
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Lemma 2. 7/ 5>m/24-1, then there exists a constant K' such that

(6) ||/g||. g sup | g\ U/H. + Jf1lgll.il/ll.-i, fEC?, g G CT.
Proof. Write (3) as

||A||Î = //(!+  I « I )*(* + I * - 11 W(f - v)êiv)ikiÙ)*dZdn

+ ff (1 +  I ? I )s((l 4-  | «I )' - (1 + | È - 1 !)')/(£ - v)giv)ihiï))*dÇdv

= I 4- IL

Since I = (g(14-|D|)«/, (14-|l>|)«Â), we obtain

| l|   á \\gil + | 0| )«/||o||(l 4- | D\ Yh\\o g sup | g\ 11/11.11*11.,

where |7>| stands for multiplication of the Fourier transform by |f|. It re-

mains to estimate II. We observe that

|(1+ |f|)-- (1+ |£-u | )«|  gi((l+ III)-1 4-(14- |f-i?|)-1)U|.

Hence we have to consider:

IL = *// (1+ I £ I )'(!+ If - " I )s_1(l+ \v I ) |/(£ - ij) I | gW | | Ä(Ö | d&r,

and

IL =íJJ(l+ |f|)'(l+ Ul)í-1(l+ |ií|)|/(£-i»)| I I(í) I |A(0|¿{¿1»

where

| II |   g | IL |  + | IL | .

As in the proof of Lemma 1, we obtain by Schwarz's inequality:

I n-| Ss(/(1+ | ï — •» I )"—"[/« — w) IW)

x(/d+ UD'-Iiwl'ii)

x(/(1+UV")'"X(/(1+ltl>"U(l)N)

and

1/2
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.1/2

I ii»I £s(f(l+ U-?|)2(-1)|/(£->?)N)

x(J(l+ \v\)2'\g(v)\2dv^

x (// ((1+u'-+,li)(!+u¡))"'"'(i+1¡ i>* i<(s |w')"'

^K/c+iti)--)"'11711-11'11-11"1-
Putting together the estimates obtained for I, II„, II&, clearly (6) follows with

K' = 5(2-' + 1) ( f-¡-Í-^    •\J (i+ Ul)«-"/
2. The linear case. We consider now (cf. [4]) differential operators of the

form:

(7) P = P(x, D) = £ a,-(x)J/y(Z?)
;-i

where we assume that (1) A7 = Af(T>) =P(0, 7?) is stronger than each My,

(2) ajEH' for some 5>«/2 + l and the quantity

f  =   2 SUP   | Oy(x)  - ay(0) |
y-i

is less than a positive constant ¡To to be determined, depending on M and My

only. We claim that the following inequality holds:

(8) \\Mfl g C(\\Pf\\. + \\Mf\\.-i), fECv,

where C¿? is the subset of C°° of functions/ in C°° such that the support of /is

contained in the unit sphere U. Put

Ôy(x)   = w(x)(dy(x)  — dy(O))

where w is in C" and equals 1 in a neighborhood of U. By the triangle in-

equality we then obtain

\\Mf\\. g ||p/||. + £ llMf/H.
and, by Lemma 2,

= ||P/||. + E sup | bi\ \\Mif\\, + K'\\bi\\,\\Mif\\,-i.

Now there exist (cf. [2, Proposition 2, p. 43]) constants y, y', y", of which y

does not depend on s, such that
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\\Mjfl^y\\Mfl + y'\\Mf\\._i,
\\Mjf%-iúy"\\Mf\\,-i, fECu.

Hence

||M/||. g \\Pf\\, 4- ¡;y\\Mf\\. 4- fy'||M/||._i 4- Zy"K'\\Mf\\..i,

with Z= 211M I» so tnat (8) follows if we choose f0= 1/7-
From (8) we now obtain, as usual, the following

Theorem 1. Suppose that (1) and (2) hold and that moreover a,G77s+1

with s > m/2 -f 1. Suppose that the support off is contained in U and that MfEH'

and PfEH°+\ Then M/G77s+1.

Proof. Apply (8) to ifk-f)/\h\ where /»=/*(*) =/(x-f-A). In view of
Lemma 1 the right hand side will remain bounded as h tends to 0 and hence

also the left hand side. A familiar weak compactness argument then gives

MfEH'+\
Assume now that M is hypoelliptic. Then there is a number d > 0 such that

I Ttffo) I   á Cil + I k |)-d(l + I M® I ), « * 0,

so that MfEH' implies MffEH"+d, a^O, provided / has compact support.

Theorem 1 can now be "localized":

Theorem 2. Suppose that the hypotheses of Theorem 1 and the foregoing

assumptions are fulfilled, with s>n/2 + 2-d.If Tl7/G77foc( U) and PfEHf+}(U),
then MfEH&iU).

(Here H{0C(U) is the set of functions / in U such that <j>fEH" for every

<pEQ.)
Proof. Cf. e.g. [4] for details.

Remark. Suppose next that P is of the form (7) and such that (1')

P(xo, D) is stronger than each M¡iD) for every fixed xo, (2') a¡EH!+l for

some s>n/2-\-2—d. Let 717 be some fixed P(xo, D). Then we may conclude

that 7v7/G77foc(0) and P/G77fo+c1(0) imply MfEH[*e\e), for every open set

0 in 7?". In fact it is apparently sufficient to establish this fact when 0 is

a small neighborhood of Xo = 0, and in this case everything follows from Theo-

rem 2, for P equals in the vicinity of 0 to some operator of the form (7)

satisfying (1), (2).

3. The quasilinear case. We turn now to the quasilinear equation (1). Our

hypotheses are the hypotheses (1), (2), (3) of the introduction. Let Mbe some

fixed operator equally strong as all Mj together. Then we have the following

Theorem 3. There is a number a0 such that iff satisfies (1) and if M/G77foc(0)

for some s>er0, 0 being an open set of Rn, thenfECKi6).

For the proof we need the following
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Lemma 3. There exists a number a with the following properties. Let

a(x, h, • ■ • , tv) be infinitely differentiable in Rn X C" and suppose that all deriva-

tives are bounded in every set of the form

\ti\   Ú W, ■ ■ ■ , \t,\   = W, x arbitrary.

Suppose further that a(x, 0, • • • , Q) EH" for some s>cr. Then 4>iEHs, ■ ■ ■ , c/>„

£77* imply a(x, c/>i, • • ■ , 4>V)EH\

Let us assume the lemma for a moment. Then Theorem 3 follows at once

from Theorem 2, in the form given to it in the Remark following it. In fact, if

MfEH¡0C(e), then, for some e>0, NkfEH¡+cc(6) and hence in virtue of

Lemma 3, if 5>cr-e, a¡(x, NJ, • • • , N,f) and g(x, NJ, • • • , A„/)G77î+e(0),

so that in view of Theorem 2, if further 5 + e-l>re/2+2-d, M/G77f+Ce(0).

Repeating this argument / times, one obtains MfE77^(0) and, letting I

tend to infinity, MfEC°°(&) and hence /(EC°°(0). This proves the theorem,

with

ero = sup(cr — €, re/2 -\- 3 — d — t).

It remains to prove Lemma 3.

Proof of Lemma 3. Introducing Re tk and Im tk as new variables, we may

as well assume that h, • • • , t, are real variables. Also it is no restriction to

assume that a(x, h, • • - , tv) is periodic in each tk with period, say, 27r. Ex-

pand a(x, h, ■ ■ ■ , ty) in trigonometric series,

a(x, h, •••,<,) = ¿Z ah...h(x)ew^+---+l't')

where h, • • • , I, are integers. We obtain

a(x, 0i, • • • , <&„) = a(x, 0, • • • , 0) + £««!•• •i,(*)(«<(,,*I+"'+,'*') - 1).

The first term is in 77s by hypothesis. Also the coefficients a^.-.i^x) and all

their derivatives tend to zero rapidly, i.e., faster than any expression of the

form Z/(l + |/i|+ • • ■ +|/„|)A. So everything will follow if we can show

that

^ _ gi(¡i*i+••■+(,♦,) _ i

is in 77s and moreover subject to a majorization of the form

(9) U\\.^C(l+ \h\ + •••+ \h\)B.

Clearly \pEHl for some t>re/2, provided 5>o, and o is chosen so that all de-

rivatives of order ¿t will be continuous and bounded, which is possible in

view of a (weak) form of Sobolev's lemma. Differentiating we get

DjP = i(t+ 1) Y,hDa<Pk, | «|   =1,

so that, by the Corollary of Lemma 1, T)ai/'£77in,(i',~1). This improves the
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regularity of \¡/ from / to inl(t-\-l, s) so finally ipEH'. The same argument (we

omit the details!) proves also the inequality (9).

Remark. Actually, as follows from [2, Proposition 1, p. 116], one can take

<j = n/2. For our purpose the present weaker but more elementary statement

is of course sufficient.
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