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Introduction. This paper is divided into five parts:

Part I.       Graduated fields.

Part II.      Fields of meromorphic functions.

Part III.     Examples for Part II.

Part IV.     Applications to algebraic differential equations.

Part V. Appendix.

Part I deals with an abstract algebraic structure called a graduated field,

which may be considered as a generalization of a field having a non-Archimedean

valuation which is trivial over the prime field. (Cf. Appendix, Note 1.) A graduated

field is an ordered quadruple (Jf0, -<, °U, Wq) in which Jf0 is a commutative

field of characteristic zero, -< is a partial order relation (cf. Appendix, Note 2)

in Jf0, #0 is a subfield ofJf0, ^ is a subgroup of the multiplicative group ¿f

(cf. the notational conventions in Appendix, Note 3), and various hypotheses

are made about the interrelations of -< with • and 4- in Jf0, in 1^0, and in <%

(§§1,2). In terms of -< an equivalence relation ~ is introduced into Jf by the

definition: f~ g means f - g <g. Two subgroups Ji and sé of Jf are defined

by setting JÏ equal to the product group "W and by setting s/= {/: 3meJ'

such that/~m}. Polynomials whose coefficients lie in a field ¡Fq satisfying

Jicz&qc: jrf0 are said to be asymptotically inscribed.

For asymptotically inscribed polynomials F the element p of Ji is called a

point of stability if q ~ p implies F(q) ~ F(p), a point of instability otherwise.

If p is a point of instability for F, its multiplicity is defined to be the minimum s

such that p is a point of stability for the sth derivative F(s). The principal result

in Part I is Theorem I, §8, which states, in effect, that every graduated field having

the following two properties (a) and (b):

(a) #0 is algebraically closed, and

(b) whenever an asymptotically inscribed polynomial F has a point of in-

stability p, of multiplicity 1, then F has a root y with y ~ p;

must also have the following property (c) as well:
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(c) every asymptotically inscribed polynomial of degree n has n roots in ¿rf0.

(Cf. Appendix, Note 4.)

The crux of the proof of Theorem I is Fundamental Lemma A, §38, which,

in the case where "^o is algebraically closed, implies that if p is a point of instability

for P, of multiplicity k = 2, and if, for some s in {1,2, ...,fe — 1}, q is a root of

P(s) such that q ~ p, then the polynomial F(q + z) either has the solution z = 0

or has a point of instability of multiplicity g fc — 1. Since P(s) is of lower degree

than P, this lemma makes it possible to obtain (§§39-50) the proof of Theorem I

by means of inductive arguments on the degree and the multiplicity.

In Part II, Theorem I is applied to prove a theorem (Theorem II, §62) on the

algebraic closure of certain fields of meromorphic functions. For this appli-

cation, Jf0 is the field (cf. Appendix, Note 5) of all functions meromorphic over

a system Ñ of regions in the complex plane, and (<£0 = C (cf. Appendix, Note 6).

-< and <% are obtained by means of constructions (§§56-58, and §§59-61, 63-64,

respectively) which permit a great deal of choice. For the graduated fields created

in this way, hypothesis (a) above is automatically satisfied, and an easy use of

the implicit function theorem suffices to verify hypothesis (b). The conclusion (c)

in this context (in which ~ is always some concept of asymptotic equivalence),

then gives, for polynomials whose coefficients have prescribed asymptotic be-

havior or expansions, very precise information on the asymptotic behavior or

expansions of the roots.

In Part III, various explicit choices of % and -< are made, to illustrate Theo-

rem II.

A typical choice of ffl (§70) causes the multiplicative group Jt to be the

set of all "logarithmic monomials" cxro(logx)r,(loglogx)r2...(log;,x)''p with

ceC — {0}, r} real, and p fixed (°U then being the set of all such functions with

c = l).

In §71, this choice of % is fixed, and it is indicated that the aspect of Theorem II

changes in a marked, even qualitative, manner, as the choice of -< is varied.

In Part IV a brief sketch is given of some applications of these theorems and

methods to obtain new results in the theory of algebraic differential equations.

Part I. Graduated Fields

1. Definition. Let Jf 0 be a commutative field of characteristic zero. Let

-< be a partial order of Jf0 such that

(1.1) If/-<0,then/#0.

(1.2) 0<1.
(1.3) If f <g and h ¥=0, then f h <gh.
(1.4) lf/-<0and A-<0 then/-A-<0.

(1.5) Iff<g and h<g then f<g + h.
We shall call the ordered pair (>f"o>"<) afield with asymptotic order.
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2. Definition. Let (Jf0< ~0 De a neld Wltn asymptotic order. Let ^.^o be

subsets of Jf 0 such that

(2.1) ^ is a subgroup of the multiplicative group JT.

(2.2) For every fe <W and every integer p ^ 1 there is a unique ge^l such that

(2.3) <% is completely ordered by -<.

(2.4) «'o is a subfield of Jf0.

(2.5) If {f,g\ cz jf0, and / < g, and c e V0, then c/ -< 0.

We shall call the ordered quadruple (Jf0, -<, f/, ^0) a graduated field.

3. Definition. Let X = (yf0> ~<> ̂> ^o) be a graduated field. Then /~ g

means/- g < g.

4. Definition.   Let X = (X~0, -<, <W, #0) be a graduated field. Then

(4.1) The product group W will be denoted by Ji(X) (or, briefly, by J().

(4.2) The set {/:/eJf; there exists geJ( such that/~g} will be denoted

by ¿t (x) (or, briefly by s¡/).

(4.3) Every field &0 such that Ji c ^"0 c j/0 will be called asymptotically

constrained over X. (Cf. Appendix, Note 7.)

(4.4) If F(y)= 2Z?=oaiy' is a polynomial in y, such that {a0, ...,a„} is in-

cluded in a field ^0 asymptotically constrained over X, then F is said to be

asymptotically inscribed over X.

5. Definition. Let F be asymptotically inscribed over X. Let peJ(. Then

F is called stable at p if F(q) ~ F(p) for all q e Jf0 such that q ~ p; the instability

multiplicity of p for F (briefly, inst(p,F)) is equal to min{s :F<S) is stable at p};

if inst(p,F) ^ 1, then p is called a poini o/ instability for F; if inst(p,F) = 1,

then p is called a simple point of instability for F; if inst(p.F) = 0, then p is

called a poini of stability for F.

6. Definition. The graduated field X is called loosely closed if both the

following conditions are satisfied:

(6.1) ^0 is algebraically closed.

(6.2) Whenever F is asymptotically inscribed over X, and p is a simple point

of instability for F, there exists a y0 ~ p such that F(y0) = 0.

7. Definition. The graduated field A' is called tightly closed if the follow-

ing condition holds :

For every field ¿F0 which is asymptotically constrained over X there exists

an asymptotically constrained field % which is algebraically closed and includes

8. Theorem I.   Let X be a graduated field. Then

(8.1) If X is loosely closed, X is tightly closed.

(8.2) // X is tightly closed, X is loosely closed.

Proof.   The proof is given in §50.
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9. Lemma.   Let (Jf0, -K) be afield with asymptotic order. Then

(9.1) Ifg^O,thenO<g.

(9.2) lff<g,theng¿0.

(9.3) If f< g, then -f<g.
(9.4) Iff<g,andh<g,thenf+h<g.
(9.5) Iff<g, and h<k, then fh <gk.
(9.6) lff<g,andf*0,theng-1<r1.

(9.7) Iff<g,thenf<f+g.

Proof. (9.1) follows from (1.2) and (1.3). (9.2) follows from (1.1) if/=0,

and follows from (9.1), the transitivity of -<, and (1.1) if/#0. (9.3) follows from

(9.2), (9.1), and (1.4). (9.4) follows from (1.4) and (9.3). (9.5) follows from (9.1),

(9.2), and (1.3). (9.6) follows from (1.3), with h=f~lg~K (9.7) follows from

(1.5) with A =/.

10. Lemma.   Let (Jf0, -<) be afield with asymptotic order. Then

(10.1) Iff~g,thenf^Oandg¥=0.
(10.2) lff*0,thenf~fi
(10.3) Iff~g,theng~f.
(10.4) If f ~ g,and g ~h,thenf ~h.
(10.5) Iff~g,andh~k,thenfh~gk.
(10.6) ///- 0, then r'-g-1.

Proof. (10.1) follows from (9.2), (9.3), and (1.1). (10.2) follows from (9.1).

(10.3) follows from (9.7) and (9.3). In (10.4), using (10.3), we have A ~ g; hence

f-g<g,andh-g<g; by (1.4),/- A <g; by (1.5),/- h<g + (h-g) = h.
In (10.5), f = g + e, with e -<g, and A = fc + m, with m -< k; therefore/A = gk + t,

with t = gm + ek + em, and t <gk by (10.1), (1.3), (9.5), and (9.4). (10.6) fol-

lows from (10.1), together with (1.3) applied tof—g^g multiplied by/-10-1,

together with (10.3).

11. Lemma.    Let (.5f"0> "O be afield with asymptotic order. Then

(11.1) Iff<g,andg~h,thenf<h.
(11.2) Ifh~f,andf<g,thenh<g.
(11.3) Iff-<g,andh~g,thenf+h~g.
(11.4) Iff-g, then fis not <g.

Proof. In (11.1) (using (10.3)), we have f<g and h — g^g; by (1.5),

f<g + (h - g). In (11.2) we have/-<0, A -/-</; by transitivity of <, A -f<g;

by (9.4), /+ (A -f)<g. (11.3) follows from (9.4). In (11.4), if we assume the

contrary we have/-<0, and, by (10.3), g ~f; then, by (11.1),/-</, in contra-

diction to (1.1).

12. General hypothesis. In §§13-50 the following notations will be fixed:
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X = (JT0,<, ty, #<>) wi" be a graduated field, and Jt(X), s/(X) will be denoted

by Ji, s/, respectively.

13. Lemma. (13.1) ^n<«? = {l}.

(13.2) If geJi, there is a unique ordered pair (c,u) such that ce^, ueW

and g = cu.

Proof of (13.1). Obviously \eaUc\(€. Suppose fe<Wn V - {1}. Since <% is

completely ordered by <, either 1 <f or f<l. If 1 <f, then, by (2.5) (since

fe%>), we have /-</, in contradiction to (1.1). Suppose f<\. Since /e^,

/_1 exists, and is in <^. Also/^e^. By (9.6), Kf~\ Hence we are led, by the

considerations above, to the contradiction/-1 -</_1.

Proof of (13.2). This is a corollary of (13.1).

14. Lemma.   (14.1) If {c,d} cz %0, and c<d, then c = 0.

(14.2) J/ {f,g} <=■&§, and f<.g, and {c,d} C^0, and d # 0, inen cf-<.dg.

(14.3) // {/,a} c ^T, and / ~ 0, fnen / = g.

(14.4) For eacn element f of si there is a unique element g of Ji such that

f~g.
Proof. In (14.1), if c # 0, then c~ Sexists and e^0; by (2.5) we have c_1dc -<d,

contradicting (1.1). In (14.2) we have cd~1f<g, by (2.5), and then cf^dg by

(1.3). In (14.3) we have /= eu, g = dt>, with {c,d} a<6, {u,v} cJi; since <% is

completely ordered by -<, either u -< v, or v -<u, or u = 1;; if u -<v, then, by

(14.2), cu <dv, which, by (11.4), contradicts / ~ g; similarly v -<w is impossible,

and therefore u = v; thus eu ~ du, which, by (10.2) and (10.5), implies c ~ d

or c - d-<d; by (14.1), c - d = 0. In (14.4), the definition of sé implies that

there exists a g eJi such that /~ g; if n is any element of Ji such that f ~ h,

then g ~ h by (10.3) and (10.4); by (14.3), 0 « h.
15. Definition. Let {/,g} < JT0- We write fx g if there exists an element

c of & such that /~ eg, and we write ñ < k if either h-<k or h x k.

16. Lemma.   (16.1) If f~ g, then fx g.
(16.2) Statements (10.1)-(10.6), (11.1)—(11.4) remain valid if ~ is replaced,

everywhere in them, by x. (Cf. the notational convention in Appendix, Note 8.)

(16.3) // {f,g} cz % and fxg, then f=g.

(16.4) IffeV,thenfxl.
(16.5) Iff< g, and h<g, then f+h<g.
(16.6) Iff<g, and g<h, then f<h.
(16.7) Iff< g, and n # 0, then fh < gh.

Proof. (16.1) and (16.2) are obvious. In (16.3), f ~ eg for some ce^7; by

(14.3), /= eg; hence fg'1 = c; thus fg~l 6?n«; by (13.1), /g"1 = 1. (16.4)

is obvious. In (16.5) we have /= eg + eg, h = dg + sg with {c,d} c^o» c -< 1,
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s «< 1 ;  hence / + A = (c + d)g + (s + e)g, with c + detfç, and s + e -< 1  (be-

cause of (9.4)); if c + d = 0, then f+h<g, while if c + d # 0, then f+h&g.

(16.6) is a corollary of (16.2)/[(10.4), (11.1), (11.2)] and the transitivity of <.

(16.7) follows at once from (1.3) and (16.2)/[(10.2),(10.5)].

17. Definition. (17.1) Let fe s4. Let g be the unique element of JÍ such

that/~ g (cf. (14.4)). Let (c,u) be the unique element of # x <% such that g = cu

(cf. (13.2)). Then u is called the gauge off and is denoted by ]/[. We extend this

definition by setting: gauge 0 = ]0[ = 0.

(17.2) Let /« 1. Then there exists an element c of ^ such that /~ c. By

(14.4), c is unique. We shall call c the projection off, and denote it by the symbol

proj(/). We extend this definition by writing proj(A) = 0 for all A -< 1. (Thus for

all fc-<l, proj(fe) is the uniquely determined element of #0 such that

k - proj(fe) -< 1.)

18. Notation. If fe $/, and p,q are integers with 0^0, the unique jet

such that gq =/p will be denoted by fplq. (Remark: It is easy to see that

fplq =fr,s if p/q = r/s.)

19. Lemma. // {f,g}cz$¿ and f-<g, then there exists he® such that

f<h<g.

Proof. Let h = (fg)1/2. Then h2=fg<g2. Hence A-<0. (For <Br is com-

pletely ordered by -<, and if A = g or g -< A the inequality h2<.g2 would be

impossible.) Similarly /-< A.

20. General hypothesis (for §§21-37). ¡Fa is a field which is asymptotically

constrained over X,F(y) = E?=0a,-y'is a polynomial with {a0,...,a„} <=^0> an<l

na„ # 0.

21. Lemma, assume §20. Lei p be a point of instability for F, with

inst(p,F) = s — 1. Then F' is asymptotically inscribed, and inst(p,P') = s — 1.

Proof.   Obvious.

22. Lemma. Assume §20. Let he&, we J(. Let G(z) = AF(wz). TAen G

is asymptotically inscribed, and inst(p,F) = inst(p/w,G) for all peJ(.

Proof. G is asymptotically inscribed, since its coefficients lie in &0; the

remaining statement is a corollary of the obvious relation GU)(z) = hwjFU)(wz).

23. Lemma. Assume §20. Let peJf. Let m = max{]a¡p'[ :i = 0}. (We

remark that because of (10.5), a¡p'e^0.) Then

(23.1) If q ~ p, and j is any non-negative integer, qJF^Xq)j<.m.

(23.2) Ifq~p, then inst(p,F) = min {7 : qJFU)(q) « m}.

Proof of (23.1). This follows at once from (10.5), (16.1), (16.6), and (16.5).

Proof of (23.2).   Let c¡ = a^'m'1. Then c¡< 1, and c¡e^"0.

Let <r ~< 1. Let 0 = p(l + <r). Then 0 ~ p. Also, for every non-negative integer 7

we have qJFu\q) = m(l + ff)J'. G0)(l 4- ff), where G(z) = S?=0 c^'.
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Let y i = proj(Cj), and let e¡ = c¡ - y¡. Then G = H + K, where H(z) = Z¡i07¡z'

and K(z)= ¿?,.0e,z' Let s = minjr :H(r\í) ¿ 0}. (Then 0 ^ s = s0, where s0

= max{i:]aIp'[=m}.) Evidently if j è s, then Hu\l + a) ~ [(s-;)!]-1

os'JH(s)(l). In particular, /7(s)(l + a) ~ f/(s)(l). Now £¡e¿r0 and e,<l. Let ¿5

= min{]e¡[:i^0}. Then b <1, and ¿e^0. If b = 0, then Ka)(l + a) = 0

for all o-. If ¿ # 0, then Ku\l + a) <b for all a <1. m either case, Ku\l + a)

-<1 for all <t«<1.

It follows that G(s)(l + a)~ H(s)(l) for all <r < 1, and therefore that qsF(s)(q)

~ mfl(s)(l) for all q ~ p. This establishes the stability of F(s) at p, and the relation

qsFl5)(q) x m. Also, if j = s - 1, then tf0)(l + ff) -< 1, so G0)(l + a) ■< 1, and

therefore qJFu\q) -< m. Thus s = min {j:qJFa)(q) x m).

If <5 = 0, then K = 0, so p^ijO = mHu\l) = 0 for j S s - I, and therefore

p is a point of instability for F(j), if j ^ s — 1. If 5 ^ 0, then 5 e ^, and therefore

we may (and do) take oe^i such that b1/n <o<l (cf. §19). Then, if ; g s - 1,

we have HU)(l + a) ~ A,-, where Ay = [(s - jy.ylos~JH(s)(i). But X0)(l + <x)

<on <os~j. Hence G0)(l + o) ~ A;, and therefore qJFU)(q) ~ mA,, If g0

= p(l + 2cr), then by the same argument (q0)JFiJ\q0) ~ mXj2s~J, which is not

~ qjFU)(q), although qQ~ p and q ~ p. Thus FW) is not stable at p, if ; _ s — 1.

Therefore s = inst(p,F), and from above we have s = min {j : qJFU)(q) x m).

This establishes (23.2).

24. Lemma. Assume §20. Let q ~ peJi. Let G(y) = (y - q)F(y) = Tgftrf.
Let G be asymptotically inscribed. Then

(24.1) inst(p,G) = 1 + inst(p,F).

(24.2) If reJi - {p}, then inst(r,G) = inst(r,F).

Proof of (24.1). We have bi = a¡_1-ga¡. Hence b¡pl = a¡-xpl — aßp1.

Let m = max {]a¡p'[ : i 5ï 0}, m* = max {]b¡pl[ : i ^ 0}.Letfc = min{i:]aip'[=m}.

Then ak-xpk -< mp, and akqpk x mp. Henee bkpk x mp. Also b¡p' <mp for all i.

Thus m* = m(]p[).

Let <pj = pJFu\p), yj = pJGa)(p). Then yj = (p-q)<t>j +JPÏj-i- Let í=inst(p,F).

Then <p7- -< m for j ii t — 1, <btx m, <f>t+x < m. Also p — q<p. Hence yy -< pm

x m* if j _ t, and yr+1 « pm x m*. Therefore, by §23, inst(p,G) = t + 1. This

proves (24.1).

Proof of (24.2). This is similar to the proof of (24.1).

25. Lemma. Assume §20. Let k be an integer ^ 1. Let G(y) = ykF(y)

Then for every peJi, we have inst (p,G) = inst(p,F).

Proof. It suffices to consider the case fc = 1. The argument for that special

case is similar to that for (24.1).

26. Lemma. Assume §20. Let peJi. Let yx ~ p, y2 ~ p, yx ^ y2. Then

(26.1)   7/F(y1) = 0,inst(p,F)^l.
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(26.2)   // F(yi) = F(y2) = 0, inst (p,F) = 2.

Proof of (26.1). Assume the contrary. Then p is a point of stability for P. Hence

P(yt) ~ F(p), and therefore, by (10.1), we have the contradiction F(y1) ^ 0.

Proof of (26.2). Assume the contrary. Then, using (26.1), we have inst(p,F) = 1.

Let G(z) = F(y! + z)= 5>,.z'. Let m = max{]a,p''[ : i ^ 0}. We have b0 = F(y!)

= 0. By §23, bi « mp_1, and bj<mp ~J for j ^ 2. Let zx= y2 — yx. Then

zx^0, and G(z1) = 0. Hence (*) -Ax= ¡E^Vi"1- But -61«mp"1, while

since Zj -<p we have bjzi"1 <mp~'pl~1 = mp_1 for i ^ 2. Thus we have the

contradiction that the two members of (*) cannot be equal.

27. Definition. Assume §20. Assume a0 # 0. Let ue°U. Let (r,s) be an

ordered pair of integers such that 0 = r < s ^ n. Then the ordered triple (r,s,u)

is called a Newton triple for F, over X (or, briefly, a Newton triple for F), if

(27.1) aft £ Off M ajf
for all i such that 0 ^ i ^ n, with the following strict inequality

(27.2) a-u* -< arMr

holding for all i ^ r — 1 and for all i ^ s + 1.

28. Lemma. Assume §20. Assume a0 # 0. TAen iAere exists a unique finite

sequence (t15t2, ...,t*) o/ Newton triples for F, with Xj = (rj,Sj,uf), such that

«i -<k2 -< ... <uk, and such that T,fml (sj — rf) = n. For every Newton triple o

there exists a unique j such that o = x¡. The sequence (xt,...,xk) can be con-

structed as follows: Let b¡ = ]a¡{_, (i = 0,1, ...,n). For bh^0, i ^ h, let

cht = (bi/bh)l/ih~i}. Let r-j = 0, ut = min{c0¡ : i = 1}, Si = max{i: c0i = uj. When

ixu...,xq) has been determined: if sq 5¡ n — 1 let rq+l = sq, let uq + 1 =

minie,,;: i> o = r4+1} and let s3+1 = max {i:cff¡ = uq+1}; of sq = n, let k = q.

Proof. The argument follows closely the classic discussion of Newton poly-

gons. We remark, for future application, that in the construction above (in which

Uj is asserted to increase withy), r} obviously increases with/

29. Notation. The sequence (t1;t2, ...,xk) described in §28 will be called

the Newton sequence for F, over X.

30. Lemma. Assume §20. Let a0 ^ 0. Let <pe^, wet Let G(z) = <j)F(wz)

= Z;=ofr¡z ■ TAen G is asymptotically inscribed, and ifix1, ...,xk) is the Newton

sequence for F, with x, = (rpS¡,uf), then the Newton sequence for G is (au ...,ok),

with Oj = (rj, Sj, w~1Uj).

Proof. Since the coefficients of G belong to &0, G is asymptotically inscribed.

Also b0b„ = a0a„w"tp2 =£ 0. Hence G has a Newton sequence. The remaining

conclusions follow from the definition of Newton triple.

31. Lemma. Assume §20. Let a0 ^ 0. Let (r,s,u) be a Newton triple for F.

Let Giz) = FiuzXa.uT1 = I"=0 c¡z\ TAen

(31.1)   1-CL.
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(31.2) c¡<crii = 0, l,...,n), with strict inequality if i ^ r-1 and ifi^.s + 1.

(31.3) crZcs.

Proof. Obviously, cr = 1. By §30, G has the Newton triple (r,s, 1). That is,

(31.2) and (31.3) are valid.

32. Notation. Under the hypotheses of §31, let y^projfo). Then the poly-

nomial H(z) = Eí^oy;2' is called the Newton polynomial for F associated with

(r, s, u), and the ordered quadruple (r, s, u, H) is called a Newton quadruple for F.

The remaining definitions in this section are given under the assumption that

fé'o is algebraically closed.

For each nonzero root £ of H (evidently £ e #), the element m = £u of J( is

called an approximate zero of F, and the multiplicity of £ as a root of i/ is called

the approximate-zero multiplicity of m for F, and is denoted by azm (m,P).

If azm (m,P) = 1, then m is called a simple approximate zero of P.

The assertion azm (m, P) = 0 is understood to mean that meJi and that m

is not an approximate zero of P.

33. Lemma. Assume §20. Assume a0 =¿ 0. Assume ^0 is algebraically closed.

Let {wt,w2,..., wa} be the set of all approximate zeros ofF. Let kj = azm(wJ,F).

Then Z"=i kj = n.

Proof. Let (r,s,u,H) be a Newton quadruple. Let {£i,...,£(,} be the set of all

nonzero roots of H. Let ht be the multiplicity of £¡ as a root of H. Then, by §31,

Y,h¡ = s — r. Let vi = Çiu. Then azm (t>¡, F) = A¡. Hence Zazm(t;„F) = s — r.

That is, £ {azm (wj, F) : ] w¡ [ = u] = s — r. Hence

s

Z azm(wy,P) = Z{s — r: all Newton triples (r,s,w)} = n
j = i

(by §28).

34. Notation. Assume §20. Assume a0 ¥= 0. Assume ^0 is algebraically closed.

Let S = (Pi,p2,---,Pn) be an ordered n-tuple of elements of Jt. We shall call S

a sequence of approximate solutions, multiplicities counted, for F, if for every

qeJt the number of integers i in the set {1,2, ...,n} such that p¡ = q is equal

to azm (q, F).

35. Lemma. Assume §20. Assume a0 ^ 0. Assume t>0 is algebraically closed.

Let (r, s, u, H) be a Newton quadruple for F. Let <¡> e& ;wecí¿. Let G(z) = (¡)F(wz).

Then (r,s,u/w,H) is a Newton quadruple for G, and for every £6^ we have

azm (£m/w, G) = azm (£u, F).

Proof. This follows immediately from §30 and the definitions of Newton

quadruple and azm.

36. Lemma. Assume §20. Assume a0 ■£ 0. Assume ^0 is algebraically closed.

Let peJi. Then inst (p, F) = azm (p, P).
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Proof. Let pe Ji. Let q¡ = ]a¡pl[. Let m = max{g¡: / ^ 0}. Let J = {i:q¡

= m}. Let r = min {i: ieJ}, s = max {i: ieJ}.

Case I: r = s. Then J has only one element, r. Also, arpr x m, while a¡p' -< m

for all ii=r. Hence F(p) x m, and therefore, by §23, inst(p,F) = 0. Suppose

azm(p,F) S: 1. Let u = ]p[. Then there exists a Newton triple (p,a,u) for F.

It follows that arur< apup x aau", and therefore that m< qr<qpx qax m,

which implies that {p, a} c J, although J has only one element. This contradic-

tion shows that azm (p, F) = 0. Thus, in Case I, inst (p, F) = azm (p, F).

Case II: r = s — 1. Let u = ]p[, Ç = p/u. Then apurÄ! asus, and a¡ul <ariir

for all i, with strict inequality if i _ r — 1 and if i ^ s + 1. Thus (r, s, u) is a

Newton triple for F. Let (r, s, u, H) be a Newton quadruple for F. Let G(z) =

F(uz)(arur)~1 = S^oCiZ1, let y¡ = proj(c¡), e¡ = c¡ - y¡, E(z) = ¡Ej^z,. Then

G = H + E. Let azm(p,F) = fc £ 0. Then HU)(Ç) = 0 if j ^ fc-1 and fl(i) (0

# 0. But £a) (0 ■< 1 for all j, since e, < 1. Hence GU)(0 ■< 1 if ; g fc - 1,

while Gw(0 « 1. But, by §31, 1 = max {] c¡C [: i ^ 0}. Hence, by §23, inst(Ç, G)

= fc. But then, by §22, inst (p, F) = fc. Therefore, in Case II, inst (p, F) = azm (p, F).

37. Lemma. Assume §20. Assume #0 is algebraically closed. Let {pi,...,ps}

be the set of all points of instability for F, and let k¡ = inst(pf,F). Let

b = min{j:Fa\0) * 0}. Then b+ I-=1 fc¡ = n.

Proof.   This is a corollary of §§25, 33, and 36.

38. Fundamental Lemma A. LetF(y)= "E"=oa¡y' be asymptotically in-

scribed, with a„#0. Let p be a point of instability for F, with instability multi-

plicity fc ̂  1. Let q be such that q~ p, and such that the polynomial G(z)

= F(q + z) is asymptotically inscribed. Then

(38.1) For every element v of Ji such that v -<p, the instability multiplicity

h of v for G satisfies n = fc, with h _ fc — 1 holding in the special case where for

some a in {0,1,..., fc — 1} we have Fia)(q) = 0.

(38.2) // if0 is algebraically closed, and wx,w2,...,wT are the points of in-

stability of G such that w¡ ■<. p, and ifX¡ = inst(w¡, G), and b = min{i: G(,)(0) # 0},

then b + Zr= i A¡ = fc.

Proof of (38.1) Let G(z) = Hbjzi Let m = maxQa,^: i ^ 0}. We have

bj = 0'!)_1Fo)(g). Hence, by §23, we have pJbj<m, with -< for ; ^ fc - 1, and

with x for ; = fc. Let m* = ma\{]bJvJ[:j ^ 0}. Let c,- = b¡vJ/m*. Then Cj< 1.

Let y¡ = proj(c;).

Now bkvk x m(v/p)k, so m(v/p)k<m*. If J £ k + 1, then bjir" <m(v/p)J

<m(vlpf < m*, so c,- ■< 1 if i £ fe + 1.
Let d, = l;= J(j - 1)...(;- i + l)c,. By (23.2), vhGw(v) x m*. That is,

Hnj=hj(j - 1)...0' - h + l)bjvjx m*, whence dhxl. Since c, -< 1 for ; ^ fc + 1,

it follows at once that n _ fc.
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Suppose A = fc. Then dkxl. Also, by (23.2), é&%>)-<m* if i^k-l.

Therefore d¡ -< 1, for i! £ fe — 1.

Let t = proj(dt). Let A,-= y/r. Then X¡ = 0 if j> =■ k + 1. Hence we have

£/=i7(7 — I)---(7 — i + T)Xj = <5¡jk (7 = 0,1, ...,fe). This is a linear system in

X0,...,Xk with nonvanishing determinant 0!1 !... fe!. Hence its solution is unique.

But obviously the following isasolution(**)A,- = (— l)k~J\_j\(k— 7')!]"1 (as we see

by defining </>(x) = (fe!)_1(x — 1)* and expanding the equations </>(,)(l) = S(k).

If now for some o in {0,1, ...,fc — 1} we have Fl"\q) = 0, then 0 = ba = ca

= ya = Xa. But the relation X„ = 0 contradicts (**). This contradiction shows that

in this special case we must have A ̂  fc — 1.

Proof of (38.2). Let G(z) = ziJ(z). Then J(0) # 0. Obviously ô ^ fe, since

bk # 0. If ô = n, then ô = k = n, and (38.2) is a trivial consequence of §25. Assume

<5^n-l. Let J(z)= EA¡z'. Then A¡ = bi+i. Let (r,s,u) be a Newton triple for J

such that r = k - ô < s. Then hk_suk~s<hrur x hsus, or bkuk~i^br+sur

xbs+ius. Now bk x mp~kand bs+i<mp~s~a. Hence mp~kuk~i<mp~"~sus, and

therefore (u/p) S^L Since fc—¿—s^ —1, this implies that p<,u. Now

b,+a <mp~r~d v/ith strict inequality if r + <5 ̂ fc—1. Hence mp~kuk~s< mp~r~sur

with strict inequality if r + ö = k - 1. Therefore (u/p)k~s~r< 1, with strict

inequality ifr + ¿^fc—1. But since p/u < 1, this means that r + ô = fe.

Thus there is a Newton triple (fc — ö,s,u) for J, and p<u.

Now if t is such that (i, fc — S, v) is a Newton triple for J, we have

A,t)' « hk-6vk~ô, or br+Äf' « bkvk~ô, and since At « wip_fc while Af+i -<mp~'~t we

have mp~kvk~ê <mp~'~iv', or (v/p)k~s~' -< 1, whence u-<p. Hence all Newton

triples for J of the form (a, /?, w) with ß-^k — ö have w -< p. It follows that if

(r1,r2,...,r„_i) is a sequence of approximate solutions, multiplicities counted,

for J, and rv < r2< ...<r„,s we have rk_d<p while p<rk.l+i. Hence (by

§§36 and 25) we have Ef=i X¡ = k-ô. This establishes (38.2).

39. Definition. Let P be asymptotically inscribed and of degree ^ 1. We

shall say that P is normal if every asymptotically constrained field !F0 containing

the coefficients of P has an asymptotically constrained extension containing at

least one root of F.

If P is asymptotically inscribed and of degree = 1, we shall say that F is ab-

normal if F is not normal.

40. Lemma. If F is asymptotically inscribed and F is of the first degree,

then F is normal.

Proof. Obvious.

4L Definition. Let Ibea graduated field. Let n be an integer ^ 1. We

shall say that n is regular for X if every polynomial asymptotically inscribed

over X whose degree is ^ 1 but ^ n — 1 is normal.

42.   Lemma.   Let n be regular for X. Let G be asymptotically inscribed,
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of degree n, and normal. Let ¿F0 be any asymptotically constrained field con-

taining the coefficients of G. Then there exists an extension @0 of ^0 such that

G(y) = c(y-yx)...(y- y„), with {yi,...,y„} <=^0-

Proof. Since G is normal, there exists an asymptotically constrained ex-

tension ^10 of ^0 such that G has a root yx in ^10. Therefore G(y) = (y — yx)H(y),

where H has coefficients in ^10. Since H is asymptotically inscribed, and (degree H)

= n — 1, H is normal, and the degree of H is regular for X, unless (degree H) = 0.

If (degree H) = 0, we have the required factorization with c = H(y). If (degree H)

S: 1, H may be treated in the same way as G. Repetition of this procedure pro-

duces the required factorization.

43. Lemma. Let n be regular for X. Let F be abnormal and of degree n.

Let se {1,2, ...,n — 1}. Let yx be an element of Jf0 such that F(s) (yx) = 0, and

let G(z) = F(yx + z). Then G is abnormal.

Proof. Assume the contrary. Let ¿F0 be any asymptotically constrained field

containing the coefficients of F. Then ^"0 contains the coefficients of F(s). Since

1 z% (degree F(s)) = n - 1, F(4) is normal. Of course, the degree of F(s) is regular.

Hence, by §42, there exists an asymptotically constrained extension ^0 of ^0 in

which F(s) has a factorization into linear factors. Then yx e@0. Hence &0 contains

the coefficients of G. Thus G is asymptotically inscribed. Therefore, since G is not

abnormal, G is normal. Since G is normal, there exists an asymptotically constrain-

ed extension Jf 0 of @0 in which G has a root zx. Then yx + zx is a root of F.

But yx + zx e Jf0. Thus Jt0 is an asymptotically constrained extension of ^0

containing a root of F. Therefore F is normal. This contradiction establishes

the lemma.

44. Definition. Let X be loosely closed. Let n be regular for X. Let F be an

abnormal polynomial of degree n. (Cf. Appendix, Note 9.) Let p be a point of

instability for F. Let fc = inst(p,F). Let n be the unique root of F(fc_1) such that

n~p. (We note that inst (p,F(*_1)) = 1, by §21. Hence, by (6.2), the loose

closure of X implies the existence of n. The uniqueness of n is implied by (26.2).)

Then

(44.1) the ordered quadruple (F, p, fc, n) will be called an instability quadruple.

(44.2) If (F,p,k,n) and (G,q,h,() are instability quadruples, then (G,q,h,Q

will be called a descendant of (F,p,k,rj) if G(z) = F(n + z), and q<p.

(44.3) If Q = (ôi,Ô2>-.->ôs) *s a nmte secluence of instability quadruples,

with Qj = (Fj,Pj,kj,yj), we shall say that Q is a reduction sequence for Qx if

QJ+X is a descendant of Qj(j = 1,2, ...,s - 1), and fcs = 1.

45. Lemma. Let (F,p,k,tf) be an instability quadruple. Let fc = l. Then

(F,p,k,rf) has no descendants.
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Proof. Since fc = 1, F(n) = 0. Hence if G(z) = F(n + z), then G(0) = 0. Hence

G is not abnormal. Hence P has no descendants.

46. Lemma. Let Q1 =iF1,p1,k1,r¡í) be an instability quadruple. Then the

number of distinct reduction sequences for ßx is equal to fcx.

Proof. If fcj = 1, then, by §45, ßt has no descendants. Hence the only reduc-

tion sequence for ßt is the one-term sequence (Q,). This establishes the result

for the case kl = \.

Suppose that r is an integer = 2 that the conclusion holds whenever fcj = r — 1.

Let Qi = (Fl,pi,kl,nL) he an instability quadruple with fct = r. Let F2(z) =

Flin1 + z). Then, by §43, F2 is abnormal. This implies that F2(0) # 0. Let {qu

Q.2' --,?»,} be the set of those points of instability for P2 which satisfy q^p.

Let h¡ = inst(0¡,P2). For each i let £¡ be the root of F2hi~l> such that Ç, ~ qh

and let Q2l = (P2,0¡,A.-.Q. Then S = {Q21,Q22,...,Q2m} is the set of all des-

cendants of QL. Hence (Qi,Q2, ...,QS) is a reduction sequence for Qt if and only

if Q2 e S and (Q2,..., ßs) is a reduction sequence for Q2. By (38.1), A¡ S[ r — 1,

and therefore it follows from the original assumption about r that there are A¡

distinct reduction sequences for Q2i. Since each reduction sequence for Q2i is

distinct from each reduction sequence for Q2j if i # j, it follows that the number

of distinct reduction sequences for Qx is Z/=i A,. By (38.2), this sum has the

value fct. This shows that the conclusion holds for fcj = r, and establishes the

lemma by induction with respect to fct.

47. Lemma. Let Qt =iFi,p1,k1,ri1) be an instability quadruple. For each

reduction sequence Q = iQi,.,Qs) for Qu with ß, = (F„p„k¡,n¡), let y(Q)

= rli+rl2 + ■■• + "s- Then

(47.1) y(Q) isa root of F\.

(47.2) y(Q)~Pi.
(47.3) If Q and Q* are reduction sequences for Qt, and Q # Q*, then y(Q)

# xe*)-
Proof of (47.1). F^j+iia + .-.+i) = F2(tj2 + ... + ns) = ... = Fs(nJ

= 0, since fcs = 1.

Proof of (47.2). nt ~ pl5 while w2~p2-<p1, and likewise «¡^Px for all

z ̂  2. Hence y(Q) ~ pt.

Proof of (47.3). Let Q* = (Qi*,-.,Qt*), with Q¡* = iFt*,p,\kt*,rit*)- We
may assume that s —^t. There must exist i = s such that Q¿ ¥= Q*. (For if ß,- = Q¡*

for all i ^ s, then fes* = fes = 1, so Q* has no descendants, and therefore t = s,

whence ß* = ß.) Let 7 = mm{i:Q¡ # ßf*}. Then 7^2. Now ßJ_i* = ßJ_1

= iFj-upJ-í,kj-1,tij-í), and therefore F/(z)-F^_i%.t + z)-F/(z). If

Pf* = pj, then by definition of instability quadruple we have k}* = kJ} r¡¡* = tjj,

and therefore Q¡ = Q¡*, which is a contradiction. Hence p¡* # p¡.

Let    o = r\i +r¡2 + ... + J7y-i-    Then    y(ß) - a = w; + ... 4- ws ~ p^,    while
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y(Q*) — o = r¡j* + ... +n,* ~ pj* which is not ~ pj (cf. (14.3)). Hence y(Q) — o

* y(Q*) - a, and therefore y(Q) # y(Q*).

48. Lemma. Let X be loosely closed. Let n be regular for X. Let F be abnor-

mal, of degree n. Then

(48.1) F(y) = c(y - yx)(y - y2)... (y - yn), with {yx, ...,y„} <= si.

Proof. According to §§47, 46, and 37, F has at least n (hence exactly n) distinct

roots y1,...,v„ in si. (We note that F's abnormality implies that F(0) / 0.)

Therefore we have a factorization (48.1) for some c in Jf0.

49. Lemma. Let X be loosely closed. Then every asymptotically inscribed

polynomial of degree ^ 1 is normal.

Proof.   Assume the contrary. Let

n = min {s: 3 abnormal polynomial of degree s).

By §40, n ^ 2. Obviously, n is regular. Let F be an abnormal polynomial

of degree n. Let 3FÜ be an asymptotically constrained field containing the

coefficients of F. Let yx be a root of F in si (cf. §48). Let ^0 = ár00'i)- Now

if n is any element of ^0, n is a root of a polynomial G, with coefficients in ^0,

such that the degree d of G satisfies 1 _ d _ n. Then G is asymptotically inscribed.

By §§42 and 48, we see that n e si0. Hence ^0 <= si0. Thus &0 is an asymptoti-

cally constrained extension of ^0 containing a root yx of F. Hence F is normal.

This contradiction proves the Lemma.

50. Proof of Theorem I, §8.

Proof of (8.1). Let X be loosely closed. Let ^0 be a field asymptotically

constrained over X. By Zorn's Lemma, there exists a maximal (in the sense of

inclusion) asymptotically constrained field f§ containing ^0. By §49, ,/„ is

algebraically closed.

Proof of (8.2). Let X be tightly closed. Let F(y) = Y^aj' be any polynomial

of degree ^ 1 with coefficients in #0. We may and do assume that F(0) # 0.

Let y0 be a root of F, with y0 in .s/0. Then y0 6 si. Let y0 ~ peJi. Then, by

§ 26, p is a point of instability for F. Hence, by § 36, p is an approximate zero

for F. Let u = ]p[, and let Ç = p/w. Let (r,s,u) be a Newton triple for F. Then

a,!/*1 asus, whence ur~s x 1, which by (16.3) and (2.2) implies u = 1. Hence

p = ï,ecê. Let y0 = p + e. Then e -< 1. We have 0 = F(y0) = F(p) + e, where

e=Xj=ieJFU)(p)(j\yl. Evidently £-<l. Hence F(p)<l. But F(p)eV0. Hence,

by (14.1), F(p) = 0. Thus F has a root p in ^. Hence #0 is algebraically closed.

This gives (6.1).

Now let F be asymptotically inscribed over X, and let w be a point of in-

stability for F. Let ^0 be an asymptotically constrained field containing the co-

efficients of F. Let c&q be an asymptotically constrained field which is algebraically
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closed and includes &0. Then F = c(y - yx)...(y - y„) with {c,yx,...,y„} <=^0.

If no y¡ is ~ w, it follows from repeated applications of §§24 and 25 that inst(w,F)

= 0. This contradiction gives the result that for every point of instability w there

is a root y0 of F such that y0 ~ w. In particular, it gives (6.2).

Part II. Fields of Meromorphic Functions

51. Definition. By a domain system will be meant a filter base Ñ each

element of which is a region in the finite complex plane. (Cf. Appendix, Note

10.)

52. Definition. Let A7 be a domain system. Then the function cb will be

called analytic over Ñ if the domain of <¡> includes at least one element of A7,

and 4> is analytic at every point of the domain of (p. (Cf. Appendix, Note 11.)

The concept meromorphic over Ñ is defined in a similar manner.

53. Notation. Let A7 be a domain system. Then K0(Ñ) ={</>: <b meromor-

phic over A7}.

54. Definition. If A7 is a domain system, and {<p,y} c= R0(A7), we shall say

that (b = y (over Ñ) if there exists an element W of Ñ such that <p(x) = y(x) for

all x in W.

55. Definition. Let Ñ be a domain system. Let o e C Let <p e K0(A7). Then

we write <b -> o (over Ñ) if for every e > 0 there exists W e Ñ such that

| (b(x) - a | < £ for all x e W. (Cf. Appendix, Note 12.)

56. Definition. Let A7 be a domain system. Let E0 be a subset of K0(Ñ).

Then E0 will be called a subconstant class over A7, and the ordered pair (Ñ,E0)

will be called a subconstant pair, if all the following conditions are satisfied:

(56.1) If 0 e E0, and y = (b (over A7), then y e E0.

(56.2) If <be E0, then <b -* 0 (over A7).

(56.3) If (beE0, and y eE0, then $y eis0, and <p - yeE0 and (1 + y)~l<b eE0.

(56.4) If <b e ^o, and <r e C, then cr$ e E0.

57. Definition. Let (Ñ,E0) be a subconstant pair. Then (Ñ,E0) is called

quasi-linearly closed if for every non-negative integer n and every ordered (n +1)-

tuple (e0, ...,£„) of elements of E0 there exists an element n of E0 such that

n = l;=0ey.

58. Definition. Let (A7,^) be a subconstant pair. Let {(¡>,y,Q <= K0(Ñ).

We write </> -<y (over (Ñ,E0)) if y # 0 and $y-1 eE0, and we write £ ~ y (over

(Ñ,E0))if í-y<y (over (Ñ,E0)).

59. Notation. Let V be a subset of the real numbers, such that V is a vector

space over the field of rational numbers. We shall call Va real // rational vector

space.

60. Definition. Let (Ñ,E0) he a subconstant pair. Let V be a real//rational

vector space. Let L be a nonempty set of functions analytic over A7. We shall

say that (Ñ,E0,V,L) is a logarithmic quadruple if
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(60.1) Whenever <j>eL and y et, then either <p = y,or exp</> -<expy, or exp y

-< exp 4>.

(60.2) Whenever i>eL and yeL, and exp </> «< exp y, then exp (o-$) -< exp (xy)

for all (strictly) positive o and x in F.

61. Definition.   Let Y = (Ñ,E0,V,L) be a logarithmic quadruple. Then

(61.1) Every function meromorphic over Ñ which has, in some element of Ñ,

a representation of the form exp (vxXx + v2X2 +... + vsAs) with v¡e Í7 and A¡ eL will

be called a unit Y-monomial. The set of all unit y-monomials will be denoted by

O(Y).
(61.2) Every function of the form cu, where ceC-{0} and ueÜ(Y) will

be called a Y-monomial. The set of all Y-monomials will be denoted by M(Y).

(61.3) Every function A for which there exists an element g of M(Y) such that

A ~ 0 will be called an asymptotic Y-monomial, and the set of all asymptotic

y-monomials will be denoted by ÄiY).

(61.4) Every field (cf. Appendix, Note 5) E0 such that M(Y) c F0 c ÄiY) U {0}

will be called a Y-field.

62. Theorem II. Leí Y = (Ñ,E0,V,L) be a logarithmic quadruple. Let

(Ñ,E0) be quasi-linearly closed. Then if F0 is any Y-field, there exists an

extension G0 of F0 such that G0 is a Y-field and is algebraically closed.

Proof.   The proof is given in §65.

63. Notation. If A7 is a domain system, and ¿>e K0(Ñ), the symbol i># will

represent the set {y:ye R0(Ñ); y = <f> (over A7)}. If He K0(Ñ), fí# will repre-

sent the set {£#:£e#}.

64. Fundamental Lemma B. Let Y = (Ñ,E0, 9,L) be a logarithmic quad-

ruple. Let Jf0 = iK0) #, and for {<j¡#,y#} c Jf0, let the following definitions

be made:

(t># + y# = (<t> + y)#,

<t>#y# = i(h)#,
<l>#<y# iff4><y.

Let <% = (£/(Y))#. Let %0 = C#. Then

(64.1) pf0, <,%^o) is a graduated field.

(64.2) // iÑ,E0) is quasi-linearly closed, then (Jf0, •<.,'%,'&o) IS loosely

closed.

Proof of (64.1).   This is verified in a completely straightforward fashion.

Proof of (64.2). It suffices to verify (6.2). We assert first that if ê0 = (E0) #,

then for every non-negative integer n and every ordered (n + l)-tuple (e0, ...,e„)

of elements of^0 there exists an element z of^0 such that z = Z"=oC¡z'. To es-

tablish this assertion we note that by definition of «f0 there exists an ordered

(n + l)-tuple  (e0, ...,e„)  of elements  of E0  such  that e, = e¡# (i = 0.n).

Then, since iÑ,EQ) is quasi-linearly closed, there   exists   £   in E0 such   that
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C= E"=oeiC Then if z = £#, we have z = Z?»0*<z'> and ze^o> which establishes

the assertion.

Now let J^o be an asymptotically constrained subfield of Jf"0. Let F(y)

= 2Z"= of¡yl> with fie ^o> and let us assume, as we may without essential loss of

generality, that f0f„ ^ 0. Let inst (w,F) = 1.

By §36, azm (w,F) = 1. Let m = ] w [. Let t = w/m. Let (r, s, m, D) be a Newton

quadruple for F. Let G(z) = (/rmr)_1F(mz) = Z"=o0iz'. Then g¡e J*",,, and g¡< 1,

and if d¡ = proj(g,), we have D(z) = E/U^z'. Now D(i) = 0 ^ D'(t), so G(/K1

and G'(0 « 1.

Let ß(«)» G(t + u) * Zjloii"'- Then ^6^. Also, since g¡ = (i!)_1G("(0,

we have q0 < 1, qx x 1, qj<l.

If g0 = 0, then 6(0) = 0, so G(t) = 0, and therefore F(w) = 0. In this case we

may take y0 = w.

If q0 ¥= 0, let b = ]g0[• Then 6eW and h -< 1. Let n = i>1/2. Then q0<h<l.

The equation £)(u) = 0 is transformed by the substitution u = hv, followed by

division by qxh, into an equation R(v) = 0, where J?(d) = v — T,i"=oeiv'> with

e0 = - gogj"1«-1^ 1, et = 0, e¡ = - g¡qi-1ni-1 -< 1 (i ^ 2). By the assertion in

the first paragraph of the proof of (64.2) there exists v0 -< 1 such that R(v0) = 0.

Then if y0 = w(t + hv0), we have y0 ~ w, and F(y0) = 0. This completes the

verification of (6.2).

65. Proof of Theorem II. This is a corollary of Fundamental Lemma B

(in §64) and Theorem I (in §8).

Part III. Examples for Part II

66. Preliminary notations.

(66.1) Let y satisfy 0 < y = n. Let r be a non-negative real number. Then by

S(r,y) will be meant the sector {x :xeC; |x| ^ r; |argx| < y}.

(66.2) The functions logx, log log x, ...,logpx,... are (for the purposes of this

paper) determined by the stipulations that domain (logpx) = S(ep-x(0), n) (where

e0(x) = x and eJ+x = exp^-)), and that logpx > 0 for all x such that x > ep(0).

(66.3) Let V be any real//rational vector space. The function / will be called

a (V,p)-logarithmic monomial (or briefly, a logarithmic monomial), if there

exists a nonzero complex number c and an ordered (p + 2)-tuple (r0, rx,..., rp+x)

in Ksuch that/(x) = c exp(r0-0+r1logx + r2loglogx+...-l- rp+1logp+1x) (which

is also written as cxri(logx)r2...(logpx)r,'+1.) The set of all (P^-logarithmic

monomials will be denoted by L • M( V,p).

67. Examples of domain systems. For each y such that 0<y ^ n, let Ñx(y)

= {S(r,y) : r^0}. For each r^0, let Ñ2(r) = {S(r,y) :0 < yi%n}. Then each Ä^y)

is a domain system, and each Ñ2(r) is a domain system.

68. Definition. Let A7 be any domain system which has the following two

properties :
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(68.1) No element of Ñ meets the nonpositive real axis.

(68.2) lim Ñ = oo, i.e., for every G > 0 there exists an element A of Ñ such

that | x | > G whenever xeA.

As in [A] §3, (cf. Appendix, Note 13), we shall call such an Ñ a complex neigh-

borhood system of + co, or, briefly, a CS. We note that in §67 each Jv*,(y) is a

CS, while no Ñ2(r) is a CS.

It is obvious that if Ñ is any CS, then all the functions logx, loglogx,... are

analytic over Ñ.

69. Examples of subconstant pairs.

(69.1) Let Ñ be any domain system. Let g be a non-negative integer. Let

^o(0.A7)={/:/analyticover/v-;/°')->O over Ñ (j = 0,l,...,q)}. Let E0(co,Ñ)

= {/:/analytic over N;fij)->0 over Ñ (all 7)}. Then iÑ,E0iq,Ñ)) is a subconstant

pair, and so is (Ñ,E0(oo, Ñ)). It follows readily from the implicit function theorem

that all these subconstant pairs are quasi-linearly closed.

(69.2) Let A7 be a CS. A subconstant class E0 * (A7) over Ñ can be defined in

the following way: feE0*iÑ) iff for every ordered pair of non-negative integers

(J,p)wehave (x logx loglogx...logpxd/dx)J/->0 over Ñ. With this definiton of

E0 the order relation -< becomes the one used in [A] and [P] for the study of

differential equations, where it possesses certain crucial properties in its behavior

under differentiation (e.g. if/-<0~A, where A is a nonconstant logarithmic

monomial, then f <g '). It is easy to see that (A7, E0 * (A7)) is quasi-linearly closed.

(Cf. [A], §36.)

(69.3) Let A7 be a CS. Let V be any real//rational vector space. Let p be an integer

^0. Let Ep0(Ñ,V) be the set of functions / defined as follows: feEp0(Ñ,V) if

there exists an integer s = 1 and a function G(xx,x2, ...,xs) of s complex variables,

analytic and vanishing at the origin, and an ordered s-tuple ielte2, ...,bs) of

elements of L • M( V,p) with s¡ -* 0 over A7, such that, in some element of A7, /

has a representation / = G(e1,e2, ...,es). It is easy to see, by the implicit function

theorem, that (A7, Ep0(Ñ, V)) is a quasi-linearly closed subconstant pair.

70. Examples of logarithmic quadruples. Let A7 be any CS. Let V be any

real// rational vector space. Let p be any integer such that p = 0. Let Sp

= {0,logx,loglogx, ...,logp+1x}. Thenifjri0is chosen as any one of the following

subconstant classes over A7: E0(q,Ñ),E0ioD,Ñ),E0*iÑ), Ep0(Ñ,V), the ordered

quadruple y = (Ñ,E0, F",Sp) will be a logarithmic quadruple.

We note that in all these cases the set l&iY) (in the notation of (61.2)), that is,

the set such that M(Y)# is the group J( of the corresponding graduated field

(cf. §§63, 64) is a set of logarithmic monomials. (Cf. Appendix, Note 14.)

71. Examples of the application of Theorem II.

(71.1)   If we apply Theorem II to the logarithmic quadruple (Ñ,E0(q,Ñ),R,Sp)

we get this result :

Let F0 be a field of functions which includes L • M(R,p) and which has the
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following property: For every nonzero element g of F0 there exists an element

n of L-M(R,p) such  that g ~ h in the sense that Di(g~ih — l)-»0 over A7

0-0,1,...,«).
Then every polynomial P of degree n ^ 1 with coefficients in F0 will have

n roots yi,...,y„ each of which is ~ (in the same sense) to an element of

L-M(R,p).

(71.2) If we replace, in (71.1), E0(q,Ñ) by E0*(Ñ), we get a corresponding

result in which the coefficients of the polynomial P, and the roots yx,...,y„, are

asymptotically equivalent to logarithmic monomials in a much more stringent

sense (cf. Appendix, Note 15). This result is very useful in the study of differential

equations. (Cf. Part IV below.)

(71.3) If we choose the logarithmic quadruple Y = (Ñ,Epo(V,Ñ),V,SP), with

A7 any CS, and V any real// rational vector space, we find that (in the terminol-

ogy of (61.3)), Ä(Y) U {0} is identical with the totality Bpo(V,Ñ) of all functions

having, in an element of A7, a representation raG(E„£2,...,8,), where G is analytic

at (0,0, ...,0) and m,ex, ...,es are elements of L-M(V,p) such that £,--»0 over A7.

(Cf. Appendix, Note 16.) From this it is easy to see that Ä0(Y) is a field. Then it

follows at once from Theorem II that Ä0(Y) is algebraically closed.

(71.4) If in the result of (71.3) we specialize p to 0 and 9 to Q we get the result

that the field of all functions / having, in an element of Ñ, a representation of

the form (*)/(x) = xp/?E£L ocix'lq (where p and q are integers, with q ^ -1) is

algebraically closed. This gives in particular the classic theorem on the expansion

of an algebraic function of one variable in the neighborhood of a branch point.

(The branch point here is taken at oo; if we take Ñ=Ñx(y) (for any y such that

0 < y = n) the sectorial region of validity of the expansions (*) can obviously,

in the case of algebraic functions, be extended by analytic continuation to a

neighborhood of oo on an appropriate Riemann surface.)

It might be remarked that the problems solved in (71.1) and (71.2) are funda-

mentally more dificult than those solved in (71.3) and (71.4), precisely because

in (71.1) and (71.2) Ä0(Y) is not a field: asymptotic equivalence (to logarithmic

monomials) as defined by means of E0(q,Ñ) or E0*(Ñ) is not so stringently

specified that it survives, in general, under the operation of addition.

Part IV. Applications to Algebraic Differential Equations

In the terminology of §67, let A7 = A^y) for some y such that 0 < y = n.

We consider first-order algebraic differential equations F(x, y, y')

= Í!¡,J=ofij(x)y'(y')J = 0, with/oo#0, and with the/, belonging to a set of func-

tions G0 which is a logarithmic differential field of logarithmic rank p over A7,

(briefly, an LDF^A7)). (This means that G0 is a 7-field, in the terminology of

(61.4), with Y = (Ñ,E0*(Ñ), R,S„), and has the additional property that if

/e(?0, then/'e(?0.) We seek a solution which is ~ to a logarithmic monomial.
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We define a principal monomial to be a logarithmic monomial m such that P

is not stable at m, but P is stable at every logarithmic monomial A such that

h -< m (where stable is defined as in §5). The principal monomials constitute a

finite set which can be determined by an algorithm which is an elaboration of

the Newton polygon algorithm described in §28 (cf. [A], §66). It simplifies the

discussion to suppose, as we shall, that we are treating the case of a principal

monomial equal to 1. (This case can always be realized by a transformation

y = mz.) Analogous to the instability multiplicity defined in §5 are two indices

(corresponding to the two arguments y',y in P). One index is the singularity

multiplicity s* = min {k:dkF/(ôy')k is stable at 1}. The other index is the al-

gebraic multiplicity a* = min {A : dhF/(dy)h is stable at 1}.

In the case a* = 1 and s* = 1, the equation P = 0 is reduced to a quasi-linear

form by the substitution y = 1 + z. Then if subsidiary conditions are fulfilled

(e.g., if G0 is Schwarzian-symmetric (by which is meant that for every / in ö0

the Schwarzian image g of /, defined by 0(x) = (f(x))~, is in G0)) a solution y0

can be found, with y0 ~ 1, over (A71(<5),¿í0*(A71(<5))), for some <5 satisfying

0<(5^y.

In the case s* = 1, and a* arbitrary, we can, using both Theorem II, §62, as

applied in (71.2), and the method of proof of Fundamental Lemma A, §38,

show that by means of substitutions of the form y = n + z, with n a solution of

an algebraic equation with coefficients in G0, a* can be reduced to 1, with s*

kept equal to 1, so that the result of the previous paragraph may be applied to

show the existence of a solution ~ 1.

In some cases where both s* and a* are arbitrary, similar methods suffice to

reduce s* to 1, after which the above results will apply. This is the case, for in-

stance, with the equation Fix,y,y') = Z¡n=oa¡(x)>''+ S/Lo^-WCy')'» with the set

{a0,...,a„,b0,...,bn} included in an LDFp.

These questions, and other problems in the theory of differential equations to

which the methods and results of the present paper apply, will be treated in forth-

coming papers by the author.

Part V. Appendix

Note 1. Let jf0hea commutative field having a non-Archimedean valuation </>

trivial over the prime field n, (cf. van der Waerden, Modern algebra, Vol. I,

pp. 235, 238, Ungar, New York, 1949). If f<g is defined to mean <t>if)«f>ig), and

#o is set equal to it, and M is set equal to {1}, then (j^, -<.,aU,cê0) will be a gra-

duated field. As a step in the opposite direction we note that if we define, for

elements of sí, \ji(f) = ]/[ (cf. §17), then f~<.g is equivalent, for {f,g} < s/, to

\¡/(f) < \¡i(g), and i¡/ has all the properties of a non-Archimedean valuation (with

values in the ordered Abelian group &), except that its domain is restricted to s/,

instead of being equal to the field Jf0.
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Note 2. We use the older term "partial order" in preference to the term

"order" since we wish to emphasize the fact that we are not dealing here with

an "ordered field" (e.g.,a -Kb, c^d does not imply a + c -<b + d).

Note 3. Subsets of Jt0 which contain 0 will always be denoted by a letter

with a zero subscript, such as é?0, and <?0 - {0} will be denoted by the correspond-

ing symbol S without the zero subscript. Conversely, subsets of ¿f 0 which do not

contain 0 will always be denoted by a letter without zero subscript, such as !F,

and the symbol J^ will be used for J^U {0}.

Note 4. Theorem I asserts the converse as well: (c) implies (a) and (b). This

converse statement is by far the easier part of the theorem.

Note 5. Since there is, in general, no common domain for the class K0(Ñ) of

functions meromorphic over Ñ, there is a technical difficulty in the interpretation

of an individual element / of K0(Ñ) as an element of a field. What more con-

veniently plays this role is the class of functions equivalent to / under an approp-

riate type of analytic continuation. This distinction is observed in the formula-

tion of Fundamental Lemma B, § 64, but, in the interests of notational brevity, is

otherwise ignored in this paper.

Note 6. We use the customary notations C, R, Q for the fields of complex

numbers, real numbers, and rational numbers, respectively. For each c in C the

function having the constant value c at all points of the finite complex plane

will also be denoted by c.

Note 7. For every graduated field there exist asymptotically constrained

fields. The smallest example of such is the field generated by M.

Note 8. In the sequel, the reference (x)/(y) means the statement obtained by

applying Statement (x) to Statement (y). Thus, e.g., (16.2)/(10.1) is the statement

"If/» g then/# 0 and g * 0."

Note 9. In §§44-49 our objective, which is achieved in §49, will be to show

that in the case where X is loosely closed there are no abnormal polynomials.

Thus, in fact, the lemmas of §§45-48 are all vacuous.

Note 10. That is, A7 is a nonempty set of nonempty connected open sets, such

that if Q and A are elements of A7, then there exists an element A of A7 such that

A c Q n A. (Cf. N. Bourbaki, Topologie générale, Chapter I, §5, no. 4.)

Note 11. We are not dealing here with the "complete analytic function"

in the sense of Weierstrass; it is possible, for example, for a function which is

analytic over A7 to have extensions and restrictions which are not analytic over Ñ.

Note 12. This, of course, is the standard definition of convergence over a

filter (N. Bourbaki, Topologie générale, Chapter I, §6, no. 4), as it would carry

over to the case of a filter base.

Note 13.   References [A] and [P] are to the following papers by the author:

[A] Contributions to the asymptotic theory of ordinary differential equations

in the complex domain, Mem. Amer. Math. Soc. No. 13 (1954), 81 pp.
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[P] Principal solutions of ordinary differential equations in the complex

domain, Mem. Amer. Math. Soc. No. 26 (1957), 107 pp.

Note 14. The emphasis in §§70-71 upon the very special choice of Sp for L

is dictated by the importance of logarithmic monomials in the theory of algebraic

differential equations with rational coefficients.

Note 15. In [P] §44 there is asserted obliquely (without proof) a stronger

result to the effect that if the coefficients of a polynomial F(y) = L,*m0a¡y belong

to a "logarithmic domain of logarithmic rank ^ p" (cf. [A], §49), and a0an is

"non-trivial," then the roots of P will be ~ elements of L- M(R,p) in the strong

■sense determined by E0*(Ñ). This stronger assertion is false. The underlying

considerations justified only the conclusion that the roots are ~ elements of

L ■ M(R, p) in the weak sense determined by Eoi0, A7). (Fortunately, the weaker

conclusion sufficed for the purpose then at hand, namely the selection of certain

logarithmic monomials.) I am indebted to E. W. Chamberlain for drawing my

attention to this error in [P].

Note 16. This is easy but not completely trivial. Let Ä0(Y) = ÄiY) u{0}.

Since Ä(Y), by definition, is equal to the set

{m(l + e): m e L • M(V,p);eeEp0 (Ñ, f)}

it is almost obvious that Ä0(Y) aBp0(V, A7). Suppose that f e Bp0(V, A7).

Then (**)/= mG(èu ...,ôs) with {m,ôu ...,ôs} cL-M(V,p), <57-->-0 over A7,

and G(xlt ...,xs) analytic and vanishing at xt = x2 = ... = xs = 0. By assembling

like terms in the representation (**) we can obtain either /= 0 or/= m0(l 4- e0)

with m0eL-M(V,p), and e0e£p0(N,V), whence feÄ0(Y). Thus Ä0(Y) c

Bp0(V,Ñ). Then since Ä0(Y) is obviously closed under multiplication and divi-

sion, and Bp0(V,Ñ) is obviously closed under addition and subtraction, Ä0(Y)

is a field.
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