ON COMMUTATIVE ALGEBRAS OF DEGREE TWO(¹)

BY
ROBERT H. OEHMKE

Let \mathfrak{A} be a simple, commutative, power-associative algebra of degree 2 over an algebraically closed field \mathfrak{F} of characteristic not equal to 2,3 or 5 . The degree of \mathfrak{A} is defined to be the number of elements in the maximal set of pairwise orthogonal idempotents in \mathfrak{A}. This algebra has a unit element 1 [1, Theorem 3]. The algebras \mathfrak{A} of characteristic zero were considered by Kokoris [8] and found to be Jordan algebras. Kokoris also gave examples of algebras \mathfrak{A} that were not Jordan [6]. This left the problem of determining those algebras \mathfrak{A} that are not Jordan algebras.

Since $1=e+f$ where e and f are primitive orthogonal idempotents, we have a decomposition $\mathfrak{H}=\mathfrak{A}_{e}(1)+\mathfrak{U}_{e}(1 / 2)+\mathfrak{U}_{e}(0)$ where $x \in \mathfrak{A}_{e}(\lambda)$ if and only if ex $=\lambda x$. We have $\mathfrak{A}_{e}(\lambda)=\mathfrak{U}_{f}(1-\lambda) ; \mathfrak{U}_{e}(\lambda) \mathfrak{U}_{e}(1 / 2) \subseteq \mathfrak{A}_{e}(1-\lambda)+\mathfrak{U}_{e}(1 / 2)$ for $\lambda=1,0$; and $\mathfrak{A}_{e}(1)=e \mathfrak{F}+\mathfrak{N}_{1}, \mathfrak{A}_{e}(0)=f \mathscr{F}+\mathfrak{N}_{0}$ where \mathfrak{N}_{1} and \mathfrak{N}_{0} are nilideals of $\mathfrak{A}_{e}(1)$ and $\mathfrak{A}_{e}(0)$ respectively. If $\mathfrak{A}_{e}(\lambda) \mathfrak{A}_{e}(1 / 2) \subseteq \mathfrak{A}_{e}(1 / 2)$ for $\lambda=1,0$ we say that e is a stable idempotent. If $\mathfrak{A}_{e}(\lambda) \mathfrak{H}_{e}(1 / 2) \subseteq \mathfrak{A}_{e}(1 / 2)+\mathfrak{N}_{1-\lambda}$ for $\lambda=1,0$ we say that e is a nilstable idempotent.

The results of Albert extend the characteristic zero case to include algebras of characteristic $p \neq 2,3,5$ for which every idempotent is stable [2]. He also characterized those algebras of characteristic $p \neq 2,3,5$ that have at least one stable idempotent [3; 4]. Recently Kokoris announced [9] that every simple, flexible, power-associative algebra over an algebraically closed field of characteristic $\neq 2,3$ that is of degree two and in which every idempotent is nilstable is a J-simple algebra.

It is the purpose of this paper to fill in the remaining gap by giving a characterization of those algebras \mathfrak{A} that have an idempotent that is not nilstable. An example is also given of an algebra \mathfrak{A} that does not have a stable idempotent.

1. Let \mathfrak{A} be an algebra that is simple, commutative, power-associative, of degree two and whose base field \mathfrak{F} is an algebraically closed field of characteristic $p \neq 2,3,5$. Let e be a primitive idempotent of \mathfrak{A} that is not nilstable. Since \mathfrak{A} is power-associative we have $x^{2} x^{2}=x^{4}$ for all $x \in \mathfrak{A}$ and the linearization of this identity

$$
\begin{align*}
P(x, y, s, t)= & 4(x y)(s t)+4(x s)(y t)+4(x t)(y s) \\
& -x[y(s t)+s(y t)+t(y s)]-y[x(t s)+t(x s)+s(x t)] \tag{1}\\
& -s[x(y t)+y(x t)+t(x y)]-t[x(y s)+y(x s)+s(x y)]=0 .
\end{align*}
$$

${ }^{(1)}$ This research was partially supported by the National Science Foundation.

We will use \mathfrak{C} to represent the space $\mathfrak{A}_{e}(1)+\mathfrak{A}_{e}(0), a_{\lambda}$ to represent the $\mathfrak{A}_{e}(\lambda)$ component of a, a_{10} to represent the \mathfrak{C}-component of a, and z to represent $e-f$. We will make frequent use of some of the results of Albert on commutative powerassociative algebras; namely, results (5), (6), (7), (8) of [1]. We state them as

$$
\begin{align*}
{\left[g(x y)_{\lambda}\right]_{1 / 2} } & =\left[\left(g x_{\lambda}\right)_{1 / 2} y_{\lambda}\right]_{1 / 2}+\left[\left(g y_{\lambda}\right)_{1 / 2} x_{\lambda}\right]_{1 / 2} \tag{2}\\
{\left[g(x y)_{\lambda}\right]_{1-\lambda} } & =2\left[\left(g x_{\lambda}\right)_{1 / 2} y\right]_{1-\lambda}+2\left[\left(g y_{\lambda}\right)_{1 / 2} x\right]_{1-\lambda} \tag{3}
\end{align*}
$$

$$
\begin{align*}
{\left[\left(g x_{\lambda}\right)_{1,2} y_{1-\lambda}\right]_{1 / 2} } & =\left[\left(g y_{1-\lambda}\right)_{1 / 2} x_{\lambda}\right]_{1 / 2} \tag{4}\\
\left(g x_{\lambda}\right)_{1-\lambda} y_{1-\lambda} & =2\left[\left(g y_{1-\lambda}\right)_{1 / 2} x_{\lambda}\right]_{1-2} \tag{5}
\end{align*}
$$

where $\lambda=1,0 ; g \in \mathfrak{A}_{e}(1 / 2)$ and x and y are in \mathbb{C}.
Two other relations

$$
\begin{align*}
2\left[\left(x_{\lambda} g\right)_{1 / 2} g\right]_{\lambda}+\left[\left(x_{\lambda} g\right)_{1-\lambda} g\right]_{\lambda} & =x_{\lambda} g^{2} \tag{6}\\
\left(x_{1} g\right)_{1 / 2}=\left(x_{0} g\right)_{1 / 2} \text { implies } \quad\left(x_{1}^{2} g\right)_{1 / 2} & =\left(x_{0}^{2} g\right)_{1 / 2} \tag{7}
\end{align*}
$$

for x and g as above will be useful. The first of these is obtained from $P(x, e, g, g)=0$ while the second can be derived from (2) and (4).

Theorem 1. \mathfrak{C} is an associative subalgebra of \mathfrak{A} with an element $c \in \mathbb{C}$ such that there is $a w \in \mathfrak{A}_{e}(1 / 2)$ with $z(c w)=1,\left(c_{1} w\right)_{1 / 2}=\left(c_{0} w\right)_{1 / 2}$ and $\left(c_{1}^{2} w\right)_{0}=-2 c_{0}$.

Proof. It is easily seen that the subset \mathfrak{I} of $\mathfrak{A}_{e}(1)$ consisting of all elements of the form $\left(a_{0} g\right)_{1}$ is an ideal of $\mathfrak{A}_{e}(1)$ where $g \in \mathfrak{A}_{e}(1 / 2)$ and a_{0} is a fixed element of $\mathfrak{U}_{e}(0)$ because by (5) we have $b_{1}\left(a_{0} g\right)_{1}=2\left[a_{0}\left(b_{1} g\right)_{1 / 2}\right]_{1}$. The additive property of an ideal is immediate.

We now let b_{1}, d_{1} be elements of $\mathfrak{A}_{e}(1), g \in \mathfrak{A}_{e}(1 / 2)$ and $a_{0} \in \mathfrak{A}_{e}(0)$ with $\left(a_{0} g\right)_{1}$ $=a_{1}$. If we consider only the $\mathfrak{A}_{e}(1)$-components of each of the terms in $P\left(b_{1}, d_{1}, g, a_{0}\right)=0$ we get $2\left(b_{1} d_{1}\right) a_{1}=b_{1}\left(d_{1} a_{1}\right)+d_{1}\left(b_{1} a_{1}\right)$. If b_{1} is also in \mathfrak{I} we can interchange a_{1} and b_{1} to get $a_{1}\left(d_{1} b_{1}\right)=2 b_{1}\left(d_{1} a_{1}\right)-d_{1}\left(b_{1} a_{1}\right)$. Therefore $a_{1}\left(d_{1} b_{1}\right)=\left(a_{1} d_{1}\right) b_{1}$. Hence \mathfrak{I} is associative.

It has been shown [1, Lemma 11] that if $\left(a_{0} g\right)_{1} \in \mathfrak{N}_{1}$ for all $a_{0} \in \mathfrak{A}_{e}(0)$ and $g \in \mathfrak{A}_{e}(1 / 2)$ then $\left(a_{1} g\right)_{0} \in \mathfrak{N}_{0}$ for all $a_{1} \in \mathfrak{A}_{e}(1)$ and $g \in \mathfrak{A}_{e}(1 / 2)$. From this result and the assumption that e is not nilstable we can conclude that there is an element $c_{0} \in \mathfrak{A}_{e}(0)$ and an element g in $\mathfrak{U}_{e}(1 / 2)$ such that $\left(c_{0} g\right)_{1}$ is nonsingular. If b_{1} is the inverse of $\left(c_{0} g\right)_{1}$ in $\mathfrak{A}_{e}(1)$ then $\left[c_{0}\left(2 b_{1} g\right)_{1 / 2}\right]_{1}=b_{1}\left(c_{0} g\right)_{1}=e$. We may also conclude that $\mathfrak{A}_{e}(1)=\mathfrak{J}$ is associative. In a similar manner we obtain the result that $\mathfrak{A}_{e}(0)$ is associative.

If we take $c_{0} \in \mathfrak{A}_{e}(0)$ and $w \in \mathfrak{A}_{e}(1 / 2)$ such that $\left(c_{0} w\right)_{1}=e$ and let $2 c_{1}=$ $\left(c_{0}^{2} w\right)_{1}=4\left[c_{0}\left(c_{0} w\right)_{1 / 2}\right]_{1}$ then we can quote the results of Kokoris [7, Lemma 4 and Identity 29] that $\left(c_{1} w\right)_{0}=-f$ or 0 and $\left(c_{1} w\right)_{1 / 2}=\left(c_{0} w\right)_{1 / 2}$. No generality will be lost if we also assume that c_{0} is nilpotent because $\mathfrak{U}_{e}(0)=f \mathscr{F}+\mathfrak{N}_{0}$ and
$\left(c_{0} w\right)_{1}=\left[\left(\alpha f+c_{0}\right) w\right]_{1}$ for any $\alpha \in \mathscr{F}$. To complete the proof of the theorem it remains only to show that $\left(c_{1} w\right)_{0} \neq 0$. We assume that $\left(c_{1} w\right)_{0}=0$. If we examine the $\mathfrak{A}_{e}(1)$-components of the terms of the relation $P\left(c_{0}, c_{0}, w, w\right)=0$ we get $8\left(c_{0} w\right)_{1}^{2}+8\left[\left(c_{0} w\right)_{1 / 2}^{2}\right]_{1}=4\left[c_{0}\left[w\left(w c_{0}\right)_{1}\right]_{1 / 2}\right]_{1}+2\left[w\left(c_{0}^{2} w\right)_{1 / 2}\right]_{1}+4\left[w\left[c_{0}\left(c_{0} w\right)_{1 / 2}\right]_{1 / 2}\right]_{1}$. Using this relation together with (2), (6), (7) and $\left(c_{0} w\right)_{1}=e$, we get $6 e$ $+8\left[\left(c_{1} w\right)_{1 / 2}^{2}\right]_{1}=2 w^{2} c_{1}^{2}-2\left[w\left(c_{1}^{2} w\right)_{0}\right]_{1}$. But $\left(c_{1}^{2} w\right)_{0}=4\left[c_{1}\left(c_{1} w\right)_{1 / 2}\right]_{0}=4\left[c_{1}\left(c_{0} w\right)_{1 / 2}\right]_{0}$ $=2 c_{0}\left(c_{1} w\right)_{0}=0$. Therefore either $\left[\left(c_{1} w\right)_{1 / 2}^{2}\right]_{1}$ or $w^{2} c_{1}^{2}$ must be nonsingular. If we again use (1) with $P\left(c_{1}, c_{1}, w, w\right)=0$ and examine the $\mathfrak{A}_{e}(0)$-components of the resulting terms we get $8\left[\left(c_{0} w\right)_{1 / 2}^{2}\right]_{0}=2 c_{0}^{2} w^{2}$. But then $\left[\left(c_{0} w\right)_{1 / 2}^{2}\right]_{0}$ is nilpotent. Since $\left(c_{0} w\right)_{1 / 2}^{2}=\alpha 1+n$ where $n \in \mathfrak{N}_{1}+\mathfrak{N}_{0}[1$, Lemma 10] we must also have $\left[\left(c_{1} w\right)_{1 / 2}^{2}\right]_{1}$ nilpotent. Now by (6) we have $2\left[\left(c_{0} w\right)_{1 / 2} w\right]_{1}=2\left[\left(c_{1} w\right)_{1 / 2} w\right]_{1}$ $=-\left[\left(c_{1} w\right)_{0} w\right]_{1}+c_{1} w^{2}=c_{1} w^{2}$. But $2\left[\left(c_{0} w\right)_{1 / 2} w\right]_{0}=-\left[\left(c_{0} w\right)_{1} w\right]_{0}+c_{0} w^{2}=c_{0} w^{2}$ is nilpotent. Therefore $c_{1} w^{2}$ and $c_{1}^{2} w^{2}$ are nilpotent. We have arrived at a contradiction. Hence $\left(c_{1} w\right)_{0}=-f$ and the theorem is proved.

Theorem 2. There is an isomorphism T between $\mathfrak{A}_{e}(1)$ and $\mathfrak{A}_{e}(0)$ such that for $b_{1} \in \mathfrak{A}_{e}(1), T\left(b_{1}\right)$ is the unique element of $\mathfrak{A}_{e}(0)$ satisfying $\left(b_{1} w\right)_{1 / 2}$ $=\left[T\left(b_{1}\right) w\right]_{1 / 2}$. The subset \mathfrak{B} of \mathfrak{C} of all elements of the form $b_{1}+T\left(b_{1}\right)$ is an associative subalgebra of \mathbb{C} isomorphic to both $\mathfrak{U}_{e}(0)$ and $\mathfrak{U}_{e}(1)$.

Proof. We use c_{1}, c_{0} and w as in Theorem 1. If we consider only the $\mathfrak{A}_{e}(1 / 2)$ components of the terms in $P\left(c_{0}, b_{1}, w, w\right)=0$ we get $8\left[\left(c_{0} w\right)_{1 / 2}\left(b_{1} w\right)_{0}\right]_{1 / 2}+$ $4\left(b_{1} w\right)_{1 / 2}=2\left[w\left\{b_{1}+\left[\left(b_{1} w\right)_{1 / 2} c_{0}\right]_{1}\right\}\right]_{1 / 2}+2\left\{w\left[\left(c_{0} w\right)_{1 / 2} b_{1}+\left(b_{1} w\right)_{0} c_{0}\right]_{0}\right\}_{1 / 2}$ $+2\left\{c_{0}\left[w\left(w b_{1}\right)_{0}\right]_{1 / 2}\right\}_{1 / 2}+\left(b_{1} w\right)_{1 / 2}$. Using (5) and (2) on the terms $\left[\left(c_{0} w\right)_{1 / 2} b_{1}\right]_{0}$, $\left[\left(b_{1} w\right)_{1 / 2} c_{0}\right]_{1}$ and $\left\{c_{0}\left[w\left(w b_{1}\right)_{0}\right]_{1 / 2}\right\}_{1 / 2}$ this relation reduces to $\left[\left(c_{0} w\right)_{1 / 2}\left(b_{1} w\right)_{0}\right]_{1 / 2}$ $=\left\{w\left[\left(c_{0} w\right)_{1 / 2} b_{1}\right]_{0}\right\}_{1 / 2}$. We now consider the $\mathfrak{A}_{e}(1 / 2)$-component of each term in $P\left(c_{1}, b_{1}, w, w\right)=0$. We have

$$
\begin{aligned}
-4\left(b_{1} w\right)_{1 / 2}+ & 8\left[\left(c_{1} w\right)_{1 / 2}\left(b_{1} w\right)_{0}\right]_{1 / 2} \\
= & 2\left\{w\left[\left(c_{1} b_{1}\right) w+c_{1}\left(b_{1} w\right)_{1 / 2}+b_{1}\left(c_{1} w\right)_{1 / 2}\right]_{0}\right\}_{1 / 2} \\
& -\left(b_{1} w\right)_{1 / 2}+2\left\{c_{1}\left[w\left(w b_{1}\right)_{0}\right]_{1 / 2}\right\}_{1 / 2}
\end{aligned}
$$

This relation together with (2) and (4) gives us $2\left[\left(c_{1} w\right)_{1 / 2}\left(b_{1} w\right)_{0}\right]_{1 / 2}=\left(b_{1} w\right)_{1 / 2}$ $+\left\{w\left[\left(c_{1} b_{1}\right) w\right]_{0}\right\}_{1 / 2}$. But $\left[\left(c_{0} w\right)_{1 / 2}\left(b_{1} w\right)_{0}\right]_{1 / 2}=\left\{w\left[\left(c_{0} w\right)_{1 / 2} b_{1}\right]_{0}\right\}_{1 / 2}$ and $\left(c_{0} w\right)_{1 / 2}$ $=\left(c_{1} w\right)_{1 / 2}$. Therefore $\left(b_{1} w\right)_{1 / 2}=\left(\left\{2\left[\left(c_{1} w\right)_{1 ; 2} b_{1}\right]_{0}-\left[\left(c_{1} b_{1}\right) w\right]_{0}\right\} w\right)_{1 / 2}$ $=-2\left\{\left[\left(b_{1} w\right)_{1 / 2} c_{1}\right]_{0} w\right\}_{1 / 2}$. We can now define $T\left(b_{1}\right)=-2\left[\left(b_{1} w\right)_{1 / 2} c_{1}\right]_{0}$ to be the element b_{0} in $\mathfrak{U}_{e}(0)$ such that $\left(b_{1} w\right)_{1 / 2}=\left(b_{0} w\right)_{1 / 2}$. To show that T is well-defined we assume $\left(a_{0} w\right)_{1 / 2}=0$. We have $a_{0}=-a_{0}\left(c_{1} w\right)_{0}=-2\left[c_{1}\left(a_{0} w\right)_{1 / 2}\right]_{0}=0$ by (5). Therefore $\left(b_{0} w\right)_{1 / 2}=\left(b_{0}^{\prime} w\right)_{1 / 2}$ implies $b_{0}=b_{0}^{\prime}$. Simply by changing the signs of c_{1} and c_{0} and interchanging 1 and 0 we can get a similar result for $\mathfrak{A}_{e}(0)$; i.e., for every $b_{0} \in \mathfrak{H}_{e}(0)$ there is a unique $b_{1}=2\left\{\left[\left(b_{0} w\right)_{1 / 2} c_{0}\right]_{1} w\right\}_{1 / 2}$ such that $\left(b_{0} w\right)_{1 / 2}=\left(b_{1} w\right)_{1 / 2}$. Therefore T is onto $\mathfrak{U}_{e}(0)$ and is a $1-1$ correspondence between $\mathfrak{U}_{\boldsymbol{e}}(1)$ and $\mathfrak{H}_{e}(0)$.

Now if a and b are elements of \mathfrak{B} as defined in the theorem we have, with the help of (2) and (4), that

$$
\begin{aligned}
{\left[w\left(a_{1} b_{1}\right)\right]_{1 / 2} } & =\left[\left(w b_{1}\right) a_{1}+\left(w a_{1}\right) b_{1}\right]_{1 / 2} \\
& =\left[\left(w b_{0}\right) a_{1}+\left(w a_{0}\right) b_{1}\right]_{1 / 2}=\left[\left(w a_{1}\right) b_{0}+\left(w b_{1}\right) a_{0}\right]_{1 / 2} \\
& =\left[\left(w a_{0}\right) b_{0}+\left(w b_{0}\right) a_{0}\right]_{1 / 2}=\left[w\left(a_{0} b_{0}\right)\right]_{1 / 2}
\end{aligned}
$$

Therefore $T\left(a_{1} b_{1}\right)=a_{0} b_{0}$ and $a b=a_{1} b_{1}+a_{0} b_{0} \in \mathfrak{B}$. Clearly \mathfrak{B} is closed under addition and scalar multiplication.

Define $S(b)=b e$ for every $b \in \mathfrak{B}$. It follows immediately from the above results that S is a $1-1$ correspondence of \mathfrak{B} onto $\mathfrak{A}_{e}(1)$. From the definition we have $S(a b)=(a b) e=(a e)(b e)=S(a) S(b)$ and $S(a+b)=S(a)+S(b)$ for all a and b in \mathfrak{B}. Therefore \mathfrak{B} and $\mathfrak{A}_{e}(1)$ are isomorphic as rings and hence as algebras. In the same manner we show that \mathfrak{B} is isomorphic to $\mathfrak{A}_{e}(0)$. We have shown also that T is an isomorphism. The associativity of \mathfrak{B} follows from that of \mathbb{C}.

From the definition of \mathfrak{B} it is clear that $c=c_{1}+c_{0}$ is in \mathfrak{B}. From $P(w, w, w, z)=0$ it follows that w^{2} is in \mathfrak{B}. Theorem 2 also implies that $\mathfrak{C}=\mathfrak{B}+\mathfrak{B} z$.

Theorem 3. The mapping $b \rightarrow D(b)=(b w) z$ is a derivation of \mathfrak{B} into \mathfrak{B} such that $D(c)=1$.

Proof. Let a and b be arbitrary elements of \mathfrak{B}. Then $[(a b) w]_{10}=\left[(a b)_{1} w\right]_{0}$ $+\left[(a b)_{0} w\right]_{1}=\left[\left(a_{1} b_{1}\right) w\right]_{0}+\left[\left(a_{0} b_{0}\right) w\right]_{1}=2\left[a_{1}\left(b_{1} w\right)_{1 / 2}\right]_{0}+2\left[b_{1}\left(a_{1} w\right)_{1 / 2}\right]_{0}$ $+2\left[a_{0}\left(b_{0} w\right)_{1 / 2}\right]_{1}+2\left[b_{0}\left(a_{0} w\right)_{1 / 2}\right]_{1}=2\left[a_{1}\left(b_{0} w\right)_{1 / 2}\right]_{0}+2\left[b_{1}\left(a_{0} w\right)_{1 / 2}\right]_{0}$ $+2\left[a_{0}\left(b_{1} w\right)_{1 / 2}\right]_{1}+2\left[b_{0}\left(a_{1} w\right)_{1 / 2}\right]_{1}=b_{0}\left(a_{1} w\right)_{0}+a_{0}\left(b_{1} w\right)_{0}+b_{1}\left(a_{0} w\right)_{1}$ $+a_{1}\left(b_{0} w\right)_{1}=b(a w)_{10}+a(b w)_{10}$ by (3), (5) and the definition of \mathfrak{B}. If this relation is multiplied by z we have $D(a b)=a D(b)+b D(a)$ and D is a derivation on \mathfrak{B} into \mathfrak{C}.

To show that $D(b)$ lies in \mathfrak{B} for $b=b_{1}+b_{0}$, an element of \mathfrak{B}, we need several de)ntities; the first of which is obtained from $P\left(b_{0}, w, w, c_{1}\right)=0$. We get $8\left[\left(b_{0} w\right)_{1}\left(w c_{1}\right)_{1 / 2}\right]_{0}+8\left[\left(b_{0} w\right)_{1 / 2}\left(w c_{1}\right)_{1 / 2}\right]_{0}=2\left(b_{0} c_{0}\right) w^{2}+2\left\{\left[c_{1}\left(w b_{0}\right)_{1}\right] w\right\}_{0}$ after the usual simplifications using (2), (5), (6) and $\left(c_{1} w\right)_{1 / 2}=\left(c_{0} w\right)_{1 / 2}$. $\left.8\left[b_{0} w\right)_{1 / 2}\left(w c_{1}\right)_{1 / 2}\right]_{0}=2\left(b_{0} c_{0}\right) w^{2}+2\left\{\left[c_{1}\left(w b_{0}\right)_{1}\right] w\right\}_{0}$ after the usual simplifications. We consider $P\left(b_{0}, w, w, c_{0}\right)=0$ next to get

$$
\begin{aligned}
-3\left(b_{0} c_{0}\right) w^{2} & +8\left[\left(b_{0} w\right)_{1 / 2}(w c)_{1 / 2}\right]_{0}+6\left[\left(b_{0} w\right)_{1}\left(c_{0} w\right)_{1 / 2}\right]_{0} \\
& =-2\left\{\left[\left(b_{0} c_{0}\right) w\right]_{1 / 2} w\right\}_{0} .
\end{aligned}
$$

Finally we obtain $3\left(b_{1} w\right)_{0}=4\left[\left(b_{1} w\right)_{1 / 2}\left(c_{0} w\right)_{1 / 2}\right]_{0}-2\left\{w\left[\left(c_{0} b_{0}\right) w\right]_{1 / 2}\right\}_{0}$ from $P\left(b_{1}, w, w, c_{1}\right)=0$. Now, from the proof of Theorem 2 and from (3) we have

$$
\begin{aligned}
\left.6 T\left[b_{0} w\right)_{1}\right] & =-12\left\{\left[\left(b_{0} w\right)_{1} w\right]_{1 / 2} c_{1}\right\}_{0} \\
& =12\left[\left(c_{1} w\right)_{1 / 2}\left(b_{0} w\right)_{1}\right]_{0}-6\left\{\left[\left(b_{0} w\right)_{1} c_{1}\right] w\right\}_{0}
\end{aligned}
$$

By successively applying to this relation the three identities above in the order we obtained them we get $6 T\left[\left(b_{0} w\right)_{1}\right]=-12\left[\left(b_{0} w\right)_{1}\left(c_{1} w\right)_{1 / 2}\right]_{0}-24\left[\left(b_{0} w\right)_{1 / 2}\left(c_{1} w\right)_{1 / 2}\right]_{0}$ $+6 b_{0} c_{0} w^{2}=-12\left[\left(b_{0} w\right)_{1}\left(c_{0} w\right)_{1 / 2}\right]_{0}-24\left[\left(b_{0} w\right)_{1 / 2}\left(c_{0} w\right)_{1 / 2}\right]_{0}+6 c_{0} b_{0} w^{2}$ $=4\left\{\left[\left(b_{0} c_{0}\right) w\right]_{1 / 2} w\right\}_{0}-8\left[\left(b_{0} w\right)_{1 / 2}\left(c_{0} w\right)_{1 / 2}\right]_{0}=-6\left(b_{1} w\right)_{0}$. Therefore we have $D(b) z=(b w)_{10} z=\left(b_{0} w\right)_{1}-\left(b_{1} w\right)_{0} \in \mathfrak{B}$. The fact that $D(c)=1$ follows immediately from the definition of c.

Theorem 4. If a and b are elements of \mathfrak{B} then $\left[(w a)_{1 / 2} b\right]_{1 / 2}=[w(a b)]_{1 / 2}$, $\left[(w a)_{1 / 2} b\right]_{10}=(w b)_{10} a$ and $(w a)_{1 / 2}(w b)_{1 / 2} \in \mathfrak{B}$.

Proof. By (2) and (4) and the definition of \mathfrak{B} we have $[w(a b)]_{1 / 2}=2\left[w(a b)_{1}\right]_{1 / 2}$ $=2\left[\left(w a_{1}\right)_{1 / 2} b_{1}\right]_{1 / 2}+2\left[\left(w b_{1}\right)_{1 / 2} a_{1}\right]_{1 / 2}=\left[(w a)_{1 / 2} b_{1}\right]_{1 / 2}+2\left[\left(w b_{0}\right)_{1 / 2} a_{1}\right]_{1 / 2}$ $=\left[(w a)_{1,2} b_{1}\right]_{1 / 2}+2\left[\left(w a_{1}\right)_{1 / 2} b_{0}\right]_{1 / 2}=\left[(w a)_{1 / 2} b_{1}\right]_{1 / 2}+\left[(w a)_{1 / 2} b_{0}\right]_{1 / 2}$ $=\left[(w a)_{1 / 2} b\right]_{1 / 2}$. By (5) we have $\left[(w a)_{1 / 2} b\right]_{10}=2\left[\left(w a_{0}\right)_{1 / 2} b_{1}\right]_{0}+2\left[\left(w a_{1}\right)_{1 / 2} b_{0}\right]_{1}$ $=\left(w b_{1}\right)_{0} a_{0}+\left(w b_{0}\right)_{1} a_{1}=(w b)_{10} a$. Now use $P(w, w, a, b)$ to get $4 w^{2} a b+8(w a)(w b)$ $=2 w[(a b) w+(a w) b+(b w) a]+a\left[w^{2} b+2 w(w b)\right]+b\left[w^{2} a+2 w(w a)\right]$. If we consider only the \mathbb{C}-components of each of the terms and if we use the facts that $(w a)_{10} \in \mathfrak{B z}$ for all $a \in \mathfrak{B}$ and $[w(a z)]_{10} \in \mathfrak{B}$ then $8(w a)_{1 / 2}(w b)_{1 / 2}$ $4 w[(a b) w]_{1 / 2}-2 a\left[w(w b)_{1 / 2}\right]-2 b\left[w(w a)_{1 / 2}\right]$ is in \mathfrak{B}. Now $P(w, w, a z, z)=0$ implies $2 w^{2} a=-2 D^{2}(a)+2 w(w a)_{1 / 2}$. Since a, w^{2} and $D(a)$ are in \mathfrak{B}, so also is $w(w a)_{1 / 2}$. Hence $8(w a)_{1 / 2}(w b)_{1 / 2}$ is in \mathfrak{B}.

Corollary. If $a \in \mathbb{C}$ and $b \in \mathfrak{B}$ then $\left[(w a)_{1 / 2} b\right]_{1 / 2}=[w(a b)]_{1 / 2}$.
Proof. We can write $a=a^{\prime}+a^{\prime \prime} z$ where a^{\prime} and $a^{\prime \prime}$ are in \mathfrak{B}. Since $\left[\left(a^{\prime \prime} z\right) w\right]_{1 / 2}$ $=\left[\left(a^{\prime \prime} b z\right) w\right]_{1 / 2}=0$ we have $\left[(w a)_{1 / 2} b\right]_{1 / 2}=\left[\left(w a^{\prime}\right)_{1 / 2} b\right]_{1 / 2}=\left[w\left(a^{\prime} b\right)\right]_{1 / 2}$ $=[w(a b)]_{1 / 2}$.
We now define \mathfrak{G} to be the set of all $g \in \mathfrak{A}_{e}(1 / 2)$ such that $(g c)_{10}$ is in \mathfrak{B}.
Theorem 5. $\mathfrak{X}_{e}(1 / 2)$ is the direct sum of the two subspaces $(w \mathfrak{B})_{1 / 2}$ and \mathfrak{G}. Moreover $(\mathfrak{G} a)_{1 / 2} \subseteq \mathfrak{G},[\mathfrak{G}(a z)]_{1 / 2} \subseteq(w \mathfrak{B})_{1 / 2}$, and $\left[(w \mathfrak{B})_{1 / 2}(a z)\right]_{1 / 2} \subseteq \mathfrak{G}$, for all $a \in \mathfrak{B}$.

Proof. If g is any element of $\mathfrak{A}_{e}(1 / 2)$, let $(g c)_{10}=a+a^{\prime} z$ where a and a^{\prime} are in \mathfrak{B}. Since $\left[\left(a^{\prime} w\right)_{1 / 2} c\right]_{10}=a^{\prime} z$ we have $\left\{\left[g-\left(a^{\prime} w\right)_{1 / 2}\right] c\right\}_{10}=a,\left[g-\left(a^{\prime} w\right)_{1 / 2}\right]$ $\in \mathfrak{G}$ and g is equal to the sum of an element of \mathfrak{G} and an element of $(w \mathfrak{B})_{1 / 2}$. If h lies in both $(w \mathfrak{B})_{1 / 2}$ and \mathfrak{G} then $(h c)_{10}$ lies in $\mathfrak{B z}$ and \mathfrak{B}. Hence $(h c)_{10}=0$. But $\left[(w a)_{1 / 2} c\right]_{10}=a z$. Therefore if $h=(w a)_{1 / 2}$ then $a=(w a)_{1 / 2}=0$ and $h=0$. Hence $\mathfrak{U}_{e}(1 / 2)$ is the direct sum of \mathfrak{G} and $(w \mathfrak{B})_{1 / 2}$.
Since $D\left(c^{2}\right)=2 c$, the $\mathfrak{A}_{e}(1 / 2)$-components of the terms obtained from $P(c, c, w, g)=0$ with $g \in(\mathfrak{5}$ yield the relation

$$
\begin{aligned}
8\left[(c w)_{1 / 2}(c g)_{10}\right]_{1 / 2}= & \left\{2 c\left[w(c g)_{10}\right]_{1 / 2}+w\left(c^{2} g\right)_{10}+2 w\left[c(c g)_{10}\right]\right\}_{1 / 2} \\
& +\left\{2 w\left[c(c g)_{1 / 2}\right]_{10}+6 g(c z)\right\}_{1 / 2}
\end{aligned}
$$

Using this relation, Theorem 4 and the property that $(c g)_{10} \in \mathfrak{B}$ it is easily seen that $[g(c z)]_{1 / 2}$ is in $(w \mathfrak{B})_{1 / 2}$. Therefore $\left[g(c z)_{1 / 2} c\right]_{10} \in z \mathfrak{B}$. But

$$
\begin{aligned}
{\left[g(c z)_{1 / 2} c\right]_{10} } & =\left[\left(g c_{1}\right)_{1 / 2} c_{1}-\left(g c_{0}\right)_{1 / 2} c_{1}-\left(g c_{0}\right)_{1 / 2} c_{0}+\left(g c_{1}\right)_{1 / 2} c_{0}\right]_{10} \\
& =\left[(1 / 4)\left(c_{1}^{2} g\right)-(1 / 4)\left(c_{0}^{2} g\right)-(1 / 2)\left(g c_{1}\right)_{0} c_{0}+(1 / 2)\left(g c_{0}\right)_{1} c_{1}\right]_{1} \\
& =-(1 / 4)\left(c^{2} g\right)_{10} z+(1 / 2)(c z)(c g)_{10}
\end{aligned}
$$

Therefore since $(c g)_{10}$ is an element of \mathfrak{B} we also have $\left(c^{2} g\right)_{10}$ is an element of \mathfrak{B}. Similarly $\left[(c g)_{1 / 2} c\right]_{10}=(1 / 4)\left(c^{2} g\right)_{10}+(1 / 2) c(c g)_{10}$ is in \mathfrak{B}. Therefore $(c g)_{1 / 2}$ is in \mathfrak{G}. We now examine the $\mathfrak{A}_{e}(1 / 2)$-components of the terms resulting from $P\left(a_{1}, c_{1}, w, g\right)=0$. With the help of (3) and (4) we get

$$
\begin{align*}
{\left[2\left(a_{1} w\right)_{0}\left(c_{1} g\right)_{1 / 2}+\right.} & \left.2\left(a_{1} w\right)_{1 / 2}\left(c_{1} g\right)_{0}+2\left(c_{1} w\right)_{1 / 2}\left(a_{1} g\right)_{0}+2\left(c_{1} w\right)_{0}\left(a_{1} g\right)_{1 / 2}\right]_{1 / 2} \tag{8}\\
& =\left\{w\left[\left(a_{1} c_{1}\right) g\right]_{0}+g\left[\left(a_{1} c_{1}\right) w\right]_{0}\right\}_{1 / 2}
\end{align*}
$$

Interchanging the subscripts 1 and 0 we obtain

$$
\begin{gathered}
{\left[2\left(a_{0} w\right)_{1}\left(c_{0} g\right)_{1 / 2}+2\left(a_{0} w\right)_{1 / 2}\left(c_{0} g\right)_{1}+2\left(c_{0} w\right)_{1 / 2}\left(a_{0} g\right)_{1}+2\left(c_{0} w\right)_{1}\left(a_{0} g\right)_{1 / 2}\right]_{1 / 2}} \\
=\left\{w\left[\left(a_{0} c_{0}\right) g\right]_{1}+g\left[\left(a_{0} c_{0}\right) w\right]_{1}\right\}_{1 / 2}
\end{gathered}
$$

But

$$
\begin{aligned}
\left\{g\left[\left(a_{0} c_{0}\right) w\right]_{1}\right\}_{1 / 2} & =\left\{2 g\left[a_{0}\left(c_{0} w\right)_{1 / 2}+c_{0}\left(a_{0} w\right)_{1 / 2}\right]_{1}\right\}_{1 / 2} \\
& =\left\{2 g\left[a_{0}\left(c_{1} w\right)_{1 / 2}\right]_{1}+g\left[a_{1}\left(c_{0} w\right)_{1}\right]_{1}\right\}_{1 / 2} \\
& =\left\{g\left[c_{1}\left(a_{0} w\right)_{1}\right]+g a_{1}\right\}_{1 / 2}
\end{aligned}
$$

Therefore

$$
\begin{align*}
{\left[2\left(a_{0} w\right)_{1}\left(c_{0} g\right)_{1 / 2}+\right.} & \left.2\left(a_{0} w\right)_{1 / 2}\left(c_{0} g\right)_{1}+2\left(c_{0} w\right)_{1 / 2}\left(a_{0} g\right)_{1}+2\left(c_{0} w\right)_{1}\left(a_{0} g\right)_{1 / 2}\right]_{1 / 2} \\
& =\left\{g\left[c_{1}\left(a_{0} w\right)_{1}\right]+w\left[\left(a_{0} c_{0}\right) g\right]_{1}+\left[a_{1} g\right]\right\}_{1 / 2} \tag{9}
\end{align*}
$$

Again consider only the $\mathfrak{A}_{e}(1 / 2)$-components of the terms of $P\left(a_{0}, c_{1}, w, g\right)=0$. This relation together with (2), (3) and (4) gives us

$$
\begin{align*}
& {\left[2\left(a_{0} w\right)_{1 / 2}\left(c_{1} g\right)_{0}+2\left(a_{0} w\right)_{1}\left(c_{1} g\right)_{1 / 2}+2\left(a_{0} g\right)_{1}\left(c_{1} w\right)_{1 / 2}+2\left(c_{1} w\right)_{0}\left(a_{0} g\right)_{1 / 2}\right]_{1 / 2}} \tag{10}\\
& =\left\{\left[a_{0}\left(c_{1} w\right)_{0}\right] g+g\left[c_{1}\left(a_{0} w\right)_{1}\right]+w\left[a_{0}\left(c_{1} g\right)_{0}\right]+w\left[c_{1}\left(a_{0} g\right)_{1}\right]\right\}_{1 / 2} .
\end{align*}
$$

Interchanging the subscripts 0 and 1 in (10) we obtain

$$
\begin{align*}
& {\left[2\left(a_{1} w\right)_{1 / 2}\left(c_{0} g\right)_{1}+2\left(a_{1} w\right)_{0}\left(c_{0} g\right)_{1 / 2}+2\left(a_{1} g\right)_{0}\left(c_{0} w\right)_{1 / 2}+2\left(c_{0} w\right)_{1}\left(a_{1} g\right)_{1 / 2}\right]_{1 / 2}} \tag{11}\\
& =\left\{\left[a_{1}\left(c_{0} w^{\prime}\right)_{1}\right] g+g\left[c_{0}\left(a_{1} w\right)_{0}\right]+w\left[a_{1}\left(c_{1} g\right)_{1}\right]+w\left[c_{0}\left(a_{1} g\right)_{0}\right]\right\}_{1 / 2} .
\end{align*}
$$

We now subtract the sum of identities (10) and (11) from the sum of the identities (8) and (9) and use the facts that $\left(a_{1} w\right)_{1 / 2}=\left(a_{0} w\right)_{1 / 2},\left(c_{1} w\right)_{0}=-f$ and $\left(c_{0} w\right)_{1}=e$. We have $\left\{2[(a z) w]_{10}[(c z) g]_{1 / 2}+\left(a_{0} g\right)-2\left(a_{1} g\right)-g\left[\left(a_{1} c_{1}\right) w\right]_{0}+g\left[c_{0}\left(a_{1} w\right)_{0}\right]\right\}_{1 / 2}$ is in $(w \mathfrak{B})_{1 / 2}$. Therefore

$$
\begin{aligned}
&\left\{-2 D(a)[(c z) g]_{1 / 2}+\left(a_{0} g\right)-2\left(a_{1} g\right)-2 g\left[\left(a_{1} c_{1} w\right)_{1 / 2}\right]_{0}\right. \\
&\left.-2 g\left[c_{1}\left(a_{1} w\right)_{1 / 2}\right]_{0}+2 g\left[a_{1}\left(c_{0} w\right)_{1 / 2}\right]_{0}\right\}_{1 / 2} \\
&=\left\{-2 D(a)[(c z) g]_{1 / 2}+\left(a_{0} g\right)-2\left(a_{1} g\right)-2 g\left[a_{1}\left(c_{1} w\right)_{1 / 2}\right]_{0}\right. \\
&\left.-g\left[a_{0}\left(c_{1} w\right)_{0}\right]+2 g\left[a_{1}\left(c_{1} w\right)_{1 / 2}\right]_{0}\right\}_{1 / 2} \\
&=\left\{-2 D(a)[(c z) g]_{1 / 2}+\left(a_{0} g\right)-2\left(a_{1} g\right)+g a_{0}\right\}_{1 / 2} \\
&=\{ \left\{-2 D(a)[(c z) g]_{1 / 2}-2(a z) g\right\}_{1 / 2}
\end{aligned}
$$

is in \mathfrak{B}. Since $[(c z) g]_{1 / 2} \in(w \mathfrak{B})_{1 / 2}$ we have $[(a z) g]_{1 / 2} \in(w \mathfrak{B})_{1 / 2}$. To show that $(g a)_{1 / 2} \in \mathfrak{F}$ for $a \in \mathfrak{B}$ we consider

$$
\begin{aligned}
{\left[(g a)_{1 / 2} c\right]_{10} } & =\left[\left(g a_{1}\right)_{1 / 2} c_{1}+\left(g a_{0}\right)_{1 / 2} c_{1}+\left(g a_{1}\right)_{1 / 2} c_{0}+\left(g a_{0}\right)_{1 / 2} c_{0}\right]_{10} \\
& =\left[2\left(g a_{0}\right)_{1 / 2} c_{1}+[g(a z)]_{1 / 2} c_{1}+2\left(g a_{1}\right)_{1 / 2} c_{0}-[g(a z)]_{1 / 2} c_{0}\right]_{10} \\
& =\left[\left(g c_{10} a_{0}+\left(g c_{0}\right)_{1} a_{1}+g(a z)_{1 / 2}(c z)\right]_{10}\right. \\
& =(g c)_{10} a+\left\{[g(a z)]_{1 / 2}(c z)\right\}_{10} .
\end{aligned}
$$

Since $(g c)_{10} \in \mathfrak{B}$ so is $(g c)_{10} a$. Also since $[g(a z)]_{1 / 2} \in(w \mathfrak{B})_{1 / 2}$ we have

$$
\left\{[g(a z)]_{1 / 2}(c z)\right\}_{10} \in \mathfrak{B}
$$

Hence $\left[(g a)_{1 / 2} c\right]_{10} \in \mathfrak{B}$ and $(g a)_{1 / 2} \in \mathfrak{G}$. Finally if we take a, b and h in \mathfrak{B} we have $\left\{\left[\left(w a_{0}\right)_{1 / 2}(b z)\right]_{1 / 2} h_{1}\right\}_{0}=\left\{\left[\left(w a_{0}\right)_{1 / 2} b_{1}\right]_{1 / 2} h_{1}-\left[\left(w a_{0}\right)_{1 / 2} b_{0}\right]_{1 / 2} h_{1}\right\}_{0}$ $=\left\{\left[\left(w b_{1}\right) a_{0}\right]_{1 / 2} h_{1}-(1 / 4)\left(w h_{1}\right)_{0} a_{0} b_{0}\right\}_{0}=\left\{\left[\left(w b_{0}\right) a_{0}\right]_{1 / 2} h_{1}-(1 / 4)\left(w h_{1}\right)_{0} a_{0} b_{0}\right\}_{0}$ $=(1 / 4)\left(w h_{1}\right)_{0} b_{0} a_{0}-(1 / 4)\left(w h_{1}\right)_{0} b_{0} a_{0}=0$. Similarly $\left\{\left[\left(w a_{0}\right)(b z)\right]_{1 / 2} h_{0}\right\}_{1}=0$. By taking $h=c$ we can see that the $(w \mathfrak{B})_{1 / 2}$ component of $\left[(w a)_{1 / 2}(b z)\right]_{1 / 2}$ is 0 . Hence $\left[(w a)_{1 / 2}(b z)\right]_{1 / 2}$ is in \mathfrak{G}.

Theorem 6. $\left[(w \mathfrak{B})_{1 / 2}(\mathfrak{B z})\right]_{1 / 2}=0$.
Proof. Let a be a nilpotent element of $\mathfrak{X}_{e}(1)$. There exists a $\lambda \in \mathfrak{F}$ such that $d=a+\lambda c$ has the property that $\left(d_{0} w\right)_{1}$ is a nonsingular element b_{1} of $\mathfrak{A}_{e}(1)$. Then $\left[d\left(2 b_{1}^{-1} w\right)_{1 / 2}\right]_{1}=b_{1}^{-1}(d w)_{1}=e$. If we let b be the unique element of \mathfrak{B} whose $\mathfrak{2}_{e}(1)$-component is b_{1} we have by the isomorphism established in Theorem 2 that $\left[d\left(b^{-1} w\right)_{\tilde{R}^{\prime} 2}\right]_{10}=b^{-1} D(d) z=z$. For these elements $d \in \mathbb{C}$ and $\left(w b^{-1}\right)_{1 / 2} \in \mathfrak{A}_{e}(1 / 2)$ we get a $\tilde{\mathfrak{B}} \subseteq \mathbb{C}$ such that $\tilde{\mathfrak{B}}+\tilde{\mathfrak{B}} z=\mathbb{C}$ and where $\tilde{\mathfrak{B}}$ has the properties described for \mathfrak{B} in Theorems 2-5. Let $t+s z \in \tilde{\mathfrak{B}} z$ where t and $s \in \mathfrak{B}$. We have $\left[\left(w b^{-1}\right)_{1 / 2}(t+s z)\right]_{1 / 2}=0$. Therefore $\left(w b^{-1} t\right)_{1 / 2}+\left[\left(w b^{-1}\right)_{1 / 2}(s z)\right]_{1 / 2}=0$. Since $\left[\left(w b^{-1}\right)_{1 / 2}(s z)\right]_{1 / 2} \in \mathfrak{G}$ we must have $\left(w b^{-1} t\right)_{1 / 2}=0$ and $b^{-1} t=0$. Therefore $t=0$ and $\tilde{\mathfrak{B}} z \subseteq \mathfrak{B} z$. If $\tilde{\mathfrak{B}}_{z}$ is a proper subset of \mathfrak{B}_{z} then $\tilde{\mathfrak{B}}$ is a proper subset of \mathfrak{B}. But this would imply that $\tilde{\mathfrak{B}}+\tilde{\mathfrak{B}} z$ is a proper subset of \mathbb{C} which is a contradiction. Therefore we must have $\tilde{\mathfrak{B}} z=\mathfrak{B} z$ and $\left[\left(w b^{-1}\right)_{1 / 2}(\mathfrak{B} z)\right]_{1 / 2}=0$. Now let \mathfrak{S} be the subset of \mathfrak{B} of all elements s such that $\left[(w s)_{1 / 2}(\mathfrak{B z})\right]_{1 / 2}=0$. Let $x, y \in \mathfrak{B}$. The re-
lation $P(y, x, w, z)=0$ yields $[(w x)(y z)]_{1 / 2}+[(w y)(x z)]_{1 / 2}=0$. Let $t \in \mathfrak{B}$, s and $s^{\prime} \in \mathbb{S}$. Then we get $\left\{\left[w\left(s s^{\prime}\right)\right]_{1 / 2}(t z)\right\}_{1 / 2}=-\left\{(w t)_{1 / 2}\left(s s^{\prime} z\right)\right\}=0$ from $P\left(t w, s, s^{\prime} z\right)=0$. Hence \mathfrak{S} is a subalgebra of \mathfrak{B}. If we let $b_{-1}=\alpha+n$ where b is as described above and n is a nilpotent element of \mathfrak{B} and $\alpha \in \mathscr{F}$, then $n \in \mathbb{S}$ and hence every power of n is in \mathcal{S}. But b is the sum of a multiple of the identity and a linear combination of powers of n. Hence $b=\lambda+D(a) \in S$ and the derivative of every element of \mathfrak{B} is in \mathfrak{S}. Now $a \in \mathfrak{B}$ implies $a=D(c a)-c D(a)$. Since $D(c a)$, $c=(1 / 2) D\left(c^{2}\right)$ and $D(a)$ are in \subseteq we have $\mathfrak{B} \subseteq \subseteq$ and $\left[(w \mathfrak{B})_{1 / 2}(\mathfrak{B} z)\right]_{1 / 2}=0$.

At this point we have obtained partial results on the multiplications of \mathfrak{A}. However, the chief remaining gap in the characterization of \mathfrak{A} lies with the products involving elements of \mathfrak{G}. To facilitate the determination of these products we shall introduce some symbols $Q_{g}, \phi_{g}, k_{g}, f_{g}$, and h_{g} on \mathfrak{B} into \mathfrak{B} for every $g \in(5)$ by letting

$$
\begin{align*}
{[g(b z)]_{1 / 2} } & =\left[w Q_{g}(b)\right]_{1 / 2}, \tag{12}\\
(g b)_{10} & =h_{g}(b)+k_{g}(b) z \tag{13}\\
{\left[g(w b)_{1 / 2}\right]_{10} } & =f_{g}(b)+\phi_{g}(b) z \tag{14}
\end{align*}
$$

for every $b \in \mathfrak{B}$. In our subscripts we abbreviate $(g a)_{1 / 2}$ to $g a$.
From (2) and (3) and the definition of \mathfrak{G} we have

$$
\begin{aligned}
\left\{\left[(g a)_{1 / 2}(b z)\right]_{1 / 2} c\right\}_{1}= & \left\{\left[(g a)_{1 / 2} b_{1}\right]_{1 / 2} c_{0}\right\}_{1}-\left\{\left[(g a)_{1 / 2} b_{0}\right]_{1 / 2} c_{0}\right\}_{1} \\
= & \left\{2\left[\left(g a_{1}\right)_{1 / 2} b_{1}\right]_{1 / 2} c_{0}+\left[\left(w Q_{g}(a)\right)_{1 / 2} b_{1}\right]_{1 / 2} c_{0}\right. \\
& \left.-2\left[\left(g a_{1}\right)_{1 / 2} b_{0}\right]_{1 / 2} c_{0}-\left[\left(w Q_{g}(a)\right)_{1 / 2} b_{1}\right]_{1 / 2} c_{0}\right\}_{1} \\
= & (1 / 2)\left(g c_{0}\right)_{1} a_{1} b_{1}+(1 / 2) b_{1} Q_{g}(a)-(1 / 2) b_{1} Q_{g}(a) \\
& -2\left\{\left[\left(g b_{0}\right)_{1 / 2} a_{1}\right]_{1 / 2} c_{0}\right\}_{1} \\
= & (1 / 2)\left(g c_{0}\right)_{1} a_{1} b_{1}-2\left\{\left[\left(g b_{1}\right)_{1 / 2} a_{1}\right]_{1 / 2} c_{0}\right\}_{1} \\
& +2\left\{\left[\left(w Q_{\theta}(b)\right)_{1 / 2} a_{1}\right]_{1 / 2} c_{0}\right\}_{1} \\
= & a_{1} Q_{g}(b) .
\end{aligned}
$$

Now $\left[(g a)_{1 / 2}(b z)\right]_{1 / 2}=\left[w Q_{g a}(b)\right]_{1 / 2}$ and therefore $\left[\left(w Q_{g a}(b)\right)_{1 / 2} c\right]_{10}=Q_{g a}(b) z$. Hence

$$
\begin{equation*}
Q_{g u}(b)=a Q_{g}(b) \tag{15}
\end{equation*}
$$

Consider $\left.h_{g b}(a)+k_{g b}(a) z=\left[(g b)_{1 / 2} a\right]_{10}=\left[(g b)_{1 / 2} a_{1}\right]_{0}+(g b)_{1 / 2} a_{0}\right]_{1}$ $=2\left[\left(g b_{0}\right)_{1 / 2} a_{1}\right]_{0}+\left[\left(w Q_{g}(b)\right)_{1 / 2} a_{1}\right]_{0}+2\left[\left(g b_{1}\right)_{1 / 2} a_{0}\right]_{1}-\left[\left(w Q_{g}(b)\right)_{1 / 2} a_{0}\right]_{1}$ $=b_{0}\left(g a_{1}\right)_{0}+b_{1}\left(g a_{0}\right)_{1}+Q_{g}(b)[(a z) w]_{10}=b h_{g}(a)+b z k_{g}(a)-Q_{g}(b) D(a)$.
From this relation we obtain

$$
\begin{align*}
& h_{g b}(a)=b h_{g}(a)-Q_{g}(b) D(a), \tag{16}\\
& k_{g b}(a)=b k_{g}(a) . \tag{17}
\end{align*}
$$

We now consider the $(5$-components of the terms of $P(a, a, g, z)=0$. We have $3 a h_{g}(a) z+3 a k_{g}(a)-5 h_{g a}(a) z-5 k_{g a}(a)=Q_{g}(a) D(a) z-h_{g}\left(a^{2}\right) z-k_{g}\left(a^{2}\right)$. If we equate \mathfrak{B}-components and $\mathfrak{B z}$-components we have

$$
\begin{align*}
& k_{g}\left(a^{2}\right)=2 a k_{g}(a) \tag{18}\\
& h_{g}\left(a^{2}\right)=2 a h_{g}(a)-4 Q_{g}(a) D(a) \tag{19}
\end{align*}
$$

by using (16) and (17).
We have proved that k_{g} is a derivation for every $g \in \mathfrak{G}$. We shall now prove that Q_{g} is a derivation for every $g \in(\mathfrak{5}$. We have

$$
\begin{aligned}
& {\left[w Q_{g}(a b)\right]_{1 / 2}=} {[g(a b z)]_{1 / 2}=\left[g(a b)_{1}\right]_{1 / 2}-\left[g(a b)_{0}\right]_{1 / 2} } \\
&= {\left[\left(g a_{1}\right)_{1 / 2} b_{1}+\left(g b_{1}\right)_{1 / 2} a_{1}-\left(g a_{0}\right)_{1 / 2} b_{0}-\left(g b_{0}\right)_{1 / 2} a_{0}\right]_{1 / 2} } \\
&= {\left[\left(g a_{1}\right)_{1 / 2} b_{1}+\left(g b_{0}\right)_{1 / 2} a_{1}+\left(w Q_{g}(b)\right)_{1 / 2} a_{1}-\left(g a_{0}\right)_{1 / 2} b_{0}\right.} \\
&\left.\quad-\left(g b_{1}\right)_{1 / 2} a_{0}+\left(w Q_{g}(b)\right)_{1 / 2} a_{0}\right]_{1 / 2} \\
&= {\left[\left(g a_{0}\right)_{1 / 2} b_{1}+\left(w Q_{g}(a)\right)_{1 / 2} b_{1}+\left(g b_{0}\right)_{1 / 2} a_{1}+\left(w Q_{g}(b)\right)_{1 / 2} a_{1}\right.} \\
&-\left(g a_{1}\right)_{1 / 2} b_{0}+\left(w Q_{g}(a)\right)_{1 / 2} b_{0}-\left(g b_{1}\right)_{1 / 2} a_{0}+\left(w Q_{g}(b)_{1 / 2} a_{0}\right]_{1 / 2} \\
&= {\left[\left(g a_{0}\right)_{1 / 2} b_{1}-\left(g b_{1}\right)_{1 / 2} a_{0}+\left(g b_{0}\right)_{1 / 2} a_{1}-\left(g a_{1}\right)_{1 / 2} b_{0}\right.} \\
&\left.\quad+w\left(Q_{g}(a) b\right)+w\left(Q_{g}(b) a\right)\right]_{1 / 2} .
\end{aligned}
$$

By (4) we have $\left(w Q_{g}(a b)\right)_{1 / 2}=\left[w\left(Q_{g}(a) b+Q_{g}(b) a\right)\right]_{1 / 2}$. Therefore

$$
\begin{equation*}
Q_{g}(a b)=Q_{\theta}(a) b+Q_{g}(b) a \tag{20}
\end{equation*}
$$

Next, we consider the \mathfrak{G}-components of the terms of $P(g, a, b z, z)=0$ to get $4[(g a) b]_{1 / 2}=[3 g(a b)+(g b) a]_{1 / 2}$. However

$$
\begin{aligned}
{[(g a) b]_{1 / 2} } & =\left[2\left(g a_{0}\right) b_{1}+\left(w Q_{g}(a)\right) b_{1}+2\left(g a_{1}\right) b_{0}-\left(w Q_{g}(a)\right) b_{0}\right]_{1 / 2} \\
& =2\left[\left(g b_{1}\right) a_{0}+\left(g b_{0}\right) a_{1}\right]_{1 / 2} \\
& =\left[(g b) a_{0}+\left(w Q_{g}(b)\right) a_{0}+(g b) a_{1}-\left(w Q_{g}(b)\right) a_{1}\right]_{1 / 2} \\
& =[(g b) a]_{1 / 2} .
\end{aligned}
$$

If we combine the above two relations we have

$$
\begin{equation*}
[(g a) b]_{1 / 2}=[g(a b)]_{1 / 2} . \tag{21}
\end{equation*}
$$

A similar computation using $P(w, w, a, z)=0$ and $P\left((w a)_{1 / 2}, w, a, z\right)=0$ gives us

$$
\begin{gather*}
w(w a)_{1 / 2}=w^{2} a+D^{2}(a) \tag{22}\\
(w a)_{1 / 2}^{2}=w^{2} a^{2}+2 a D^{2}(a)-D(a) D(a) \tag{23}
\end{gather*}
$$

If we consider the $(w \mathfrak{B})_{1 / 2}$-components of the terms of $P\left(z,(a w)_{1 / 2}, w, g\right)=0$ we have $\left[w Q_{g}\left(w^{2} a\right)+w Q_{g}\left(D^{2}(a)\right)+w\left(a \phi_{g}(1)\right)+w \phi_{g}(a)\right]_{1 / 2}=0$. By letting $a=1$ we get

$$
\begin{equation*}
\phi_{g}(1)=-\frac{1}{2} Q_{\theta}\left(w^{2}\right) \tag{24}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\phi_{g}(a)=\frac{1}{2} a Q_{g}\left(w^{2}\right)-Q_{g}\left(a w^{2}\right)-Q_{g}\left(D^{2}(a)\right) \tag{25}
\end{equation*}
$$

From (15) and (25) we have

$$
\begin{equation*}
\phi_{g a}(b)=a \phi_{g}(b) \tag{26}
\end{equation*}
$$

We now wish to express h_{g} in terms of Q_{g} and D. We examine the $\mathfrak{B z}$-components of $P(w, g, c, a)=0$ and use (21) and (26) to get $3 \phi_{g}(c) a+3 \phi_{g}(a) c+3 h_{g}(a)$
$+3 a D\left(h_{g}(c)\right)+3 D(a) h_{g}(c)+3 c D\left(h_{g}(a)\right)-4 h_{g c}(D(a))=3 \phi_{g}(1) c a+D\left(h_{g}(c a)\right.$
$\left.+h_{g c}(a)+h_{g}(c) a+h_{g a}(c)+h_{g}(a) c\right)+3 \phi_{g}(c a)-3 h_{g}(D(c a))-c h_{g}(D(a))$ $+\phi_{g}(D(a))$. We simplify this relation using (25), (16) and the linearized form of (19) to get $-3 Q_{g}\left(D^{2}(a)\right) c+3 h_{g}(a)=-3 Q_{g}\left(D^{2}(c a)\right)-Q_{g}(c) D^{2}(a)-3 D\left(Q_{g}(c)\right) D(a)$ $-3 D\left(Q_{g}(a)\right)-3 h_{g}(c) D(a)+7 Q_{g}(D(a))$. Since Q_{g} and D are derivations we have
(27) $3 h_{g}(a)=-3 D\left(Q_{y}(c)\right) D(a)-3 D\left(Q_{y}(a)\right)-3 h_{g}(c) D(a)+Q_{g}(D(a))-4 Q_{g}(c) D^{2}(a)$. If we let $a=c$ in (27) we get $h_{g}(c)=-D\left(Q_{g}(c)\right)$. Therefore (27) simplifies to

$$
\begin{equation*}
3 h_{g}(a)=-3 D\left(Q_{g}(a)\right)+Q_{\theta}(D(a))-4 Q_{g}(c) D^{2}(a) . \tag{28}
\end{equation*}
$$

We substitute the values obtained from (28) in $h_{g}(a c)=c h_{g}(a)+a h_{g}(c)-2 Q_{g}(a)$ $-2 Q_{g}(c) D(a)$, a linearized form of (19), to get

$$
\begin{equation*}
Q_{\theta}(a)=Q_{\vartheta}(c) D(a) \tag{29}
\end{equation*}
$$

If we use this relation in (28) we obtain

$$
\begin{equation*}
h_{g}(a)=-D\left(Q_{g}(c)\right) D(a)-2 Q_{g}(c) D^{2}(a) \tag{30}
\end{equation*}
$$

We now investigate the behaviour of f_{g}. Consider the $\mathfrak{B z}$-components of the terms of $P\left((w b)_{1 / 2}, g, a, z\right)=0$. We have

$$
\begin{equation*}
2 f_{g}(b) a=f_{g a}(b)+f_{g}(a b)-b D\left(k_{g}(a)\right)-b k_{g}(D(a))-D(a) k_{g}(b) \tag{31}
\end{equation*}
$$

and when $b=1$

$$
\begin{equation*}
2 f_{g}(1) a=f_{g a}(1)+f_{g}(a)-D\left(k_{g}(a)\right)-k_{g}(D(a)) . \tag{32}
\end{equation*}
$$

We define a new mapping T_{g} on \mathfrak{B} into \mathfrak{B} for each g by

$$
\begin{equation*}
T_{g}(a)+f_{g}(1) a-f_{g a}(1)+D\left(k_{g}(a)\right) \tag{33}
\end{equation*}
$$

This definition together with (32) gives us $f_{g}(a)=f_{g}(1) a+T_{g}(a)+k_{g}(D(a))$ and $f_{g a}(1)=f_{g}(1) a-T_{g}(a)+D\left(k_{g}(a)\right)$. Now $f_{g a}(b)=-f_{g}(a b)+2 f_{g}(b) a+b\left(D k_{g}+k_{g} D\right)(a)$ $+k_{g}(b) D(a)$ and $f_{g a}(b)=-f_{g a b}(1)+2 f_{g a}(1) b+a\left(D k_{g}+k_{g} D\right)(b)+D(a) k_{g}(b)$ by (31) and (32). Substituting the values for $f_{g}(a b), f_{g}(b), f_{g a b}(1)$ and $f_{g a}(1)$ expressed in terms of T_{g} in these relations and simplifying we have

$$
\begin{equation*}
T_{g}(a b)=T_{g}(a) b+T_{\theta}(b) a \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{g a}(b)=f_{g}(1) a b+T_{g}(b) a-b T_{g}(a)+a k_{g}(D(b))+b D\left(k_{g}(a)\right)-k_{g}(a) D(b) . \tag{35}
\end{equation*}
$$

It follows readily that

$$
\begin{equation*}
T_{g a}(b)=a T_{g}(b)-D(b) k_{g}(a) \tag{36}
\end{equation*}
$$

We have already shown that $\phi_{g}(a)=Q_{9}(c)\left[(1 / 2) a D\left(w^{2}\right)-D\left(w^{2} a\right)-D^{3}(a)\right]$. We also have that $P\left(g, g,(a w)_{1 / 2}, z\right)=0$ implies $\left[g \phi_{g}(a)\right]_{1 / 2}=0$. If we let $a=c^{3}$ we have $\phi_{g}\left(c^{3}\right)=Q_{g}(c)\left[-(1 / 2) c^{3} D\left(w^{2}\right)-3 c^{2} D\left(w^{2}\right)-6\right]$. Since the second factor on the right-hand side is nonsingular we have $\left[g Q_{g}(c)\right]_{1 / 2}=0$. Multiplying by $c z$ and considering the ($w \mathfrak{B})_{1 / 2}$-component we get

$$
\begin{equation*}
Q_{g}(c)^{2}=0 . \tag{37}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
Q_{g}(c) k_{g}(a)=0 \tag{39}
\end{equation*}
$$

Now consider the element $w^{\prime}=\left[w-w D\left(Q_{g}(c)\right)\right]_{1 / 2}+g$ of $\mathfrak{A}_{e}(1 / 2)$. We have $\left(c_{2} w^{\prime}\right)_{0}=-f$. By Theorem 1 and its proof, $c_{2}-(1 / 2)\left(c_{2}^{2} w^{\prime}\right)_{0}$ is an element a in \mathbb{C} such that $\left(a w^{\prime}\right) z=1$. Also $\left(c_{2}^{2} w^{\prime}\right)_{0}=-2 c_{0}-4\left(Q_{g}(c)\right)_{0}$. Therefore $\left(a w^{\prime}\right) z$ $=\left\{\left[c+Q_{g}(c)-Q_{g}(c) z\right] w^{\prime}\right\} z=1-2 D\left(Q_{\theta}(c)\right)^{2}-2 D\left(Q_{g}(c)\right)^{2} z-2 Q_{g}(c) D^{2}\left(Q_{g}(c)\right) z$ $+k_{g}\left(Q_{g}(c)\right)-2 Q_{g}(c) D^{2}\left(Q_{g}(c)\right)+k_{g}\left(Q_{g}(c)\right) z$. Simple properties of derivations and the fact that $Q_{g}(c)^{2}=0$ gives us $\left(a w^{\prime}\right) z=1+k_{g}\left(Q_{g}(c)\right)+k_{g}\left(Q_{g}(c)\right) z$. Therefore

$$
\begin{equation*}
k_{g}\left(Q_{g}(c)\right)=0 . \tag{40}
\end{equation*}
$$

We also have from (35) and (36) that

$$
\begin{equation*}
T_{g}\left(Q_{g}(c)\right)=f_{g}(1) Q_{g}(c) \text { and } T_{g}(b) Q_{g}(c)=0 \tag{41}
\end{equation*}
$$

for every $b \in \mathfrak{B}$.
For w^{\prime} and $c^{\prime}=c+Q_{g}(c)-Q_{\theta}(c) z$ we have a corresponding \mathfrak{B}^{\prime} and $\mathfrak{B}^{\prime} z$ as described in Theorem 2. To determine these two subspaces we let $a+b z$ be an element of \mathbb{C} with $a, b \in \mathfrak{B}$ and such that the $1 / 2$-component of $w^{\prime}(a+b z)$ is 0 . We obtain $w a-w D\left(Q_{g}(c) a+g a+w Q_{\rho}(b)\right)_{1 / 2}=0$. Therefore $a\left[1-D\left(Q_{g}(c)\right)\right]$ $=-Q_{g}(c) D(b)$. Solving for a we have $a=-D(b) Q_{g}(c)$. Since $\mathfrak{B}^{\prime}+\mathfrak{B}^{\prime} z=\mathfrak{C}$, we can conclude from the above result that \mathfrak{B}^{\prime} consists of all elements of the form $a-Q_{g}(a) z$. We note that the \mathbb{C}-component of the element $\left(a-Q_{g}(a) z\right) w^{\prime}$ must be an element of $\mathfrak{B}^{\prime} z$ by Theorem 3. If we calculate this element we obtain $D(a) z-D(a) D\left(Q_{g}(c)\right) z+Q_{g}(c) D^{2}(a)+k_{g}(a) z-D\left(Q_{g}(a)\right) D\left(Q_{g}(c)\right)+D\left(Q_{g}(c)\right)^{2}$ - $D(a) z$. In order for this element to be in $\mathfrak{B}^{\prime} z$ we must have $Q_{g}(c) D^{2}(a)+D\left(Q_{g}(c)\right)^{2} D(a)$ $=Q_{g}(c) D\left[D(a)-D(a) D\left(Q_{g}(c)\right)+k_{g}(a)+D\left(Q_{g}(c)\right)^{2} D(a)\right]$ by the definition of \mathfrak{B}^{\prime} z. Therefore

$$
\begin{equation*}
Q_{g}(c) D\left(k_{g}(a)\right)=k_{g}(a) D\left(Q_{g}(c)\right)=0 . \tag{42}
\end{equation*}
$$

We also have

$$
\begin{equation*}
Q_{\theta}(c) k_{t}(b)=0 \tag{43}
\end{equation*}
$$

for any $t \in \mathfrak{G}$ and any $b \in \mathfrak{B}$ since $Q_{g}(c) k_{t}(b)=k_{t}\left(Q_{g}(c) b\right)-k_{t}\left(Q_{g}(c)\right) b=k_{t}\left(Q_{g b}(c)\right)$ $-k_{t}\left(Q_{g}(c)\right) b=-k_{g b}\left(Q_{t}(c)\right)-k_{t}\left(Q_{g}(c)\right) b=-b k_{g}\left(Q_{t}(c)\right)-k_{t}\left(Q_{g}(c)\right) b=0$.
We define t^{\prime} to be the $1 / 2$-component of

$$
w\left[-D\left(Q_{t}(c) D\left(Q_{g}(c)\right)+Q_{t}(c) D^{2}\left(Q_{g}(c)\right)-k_{t}\left(Q_{g}(c)\right)\right]+t\right.
$$

for $t \in \mathfrak{G}$. Then the \mathbb{C}-component of $\left(c+Q_{g}(c)-Q_{g}(c) z\right) t^{\prime}$ is
(44) $-D\left(Q_{t}(c)\right)-D\left(Q_{t}(c)\right) D\left(Q_{g}(c)\right)-2 Q_{t}(c) D^{2}\left(Q_{g}(c)+k_{t}\left(Q_{g}(c)\right)+Q_{g}(c) D^{2}\left(Q_{t}(c)\right) z\right.$ since $Q_{t}(c) D^{2}\left(Q_{g}(c)\right)+2 D\left(Q_{g}(c)\right) D\left(Q_{t}(c)\right)+Q_{g}(c) D^{2}\left(Q_{t}(c)\right)=0$ and $2 D\left(Q_{t}(c)\right) D\left(Q_{g}(c)\right) D\left(Q_{g}(c)\right)=-Q_{t}(c) D^{2}\left(Q_{g}(c)\right) D\left(Q_{g}(c)\right)=3 Q_{t}(c) Q_{g}(c) D^{3}\left(Q_{g}(c)\right)=0$.
Hence t^{\prime} is in \mathfrak{G}^{\prime}. We now compute D^{\prime} and $Q_{t^{\prime}}^{\prime}$. We have simply that

$$
\begin{align*}
& D^{\prime}: a-Q_{g}(a) z \rightarrow D(a)-D\left(Q_{g}(c)\right) D(a)+D\left(Q_{g}(c)\right)^{2} D(a)+k_{g}(a) \tag{45}\\
&-\left[Q_{g}(c) D^{2}(a)+D\left(Q_{g}(c)\right)^{2} D(a)\right] z \\
& Q_{t^{\prime}}^{\prime}: c+Q_{g}(c)-Q_{g}(c) z \rightarrow Q_{t}(c)+Q_{t}(c) D\left(Q_{g}(c)\right)-Q_{g}(c) D\left(Q_{t}(c)\right) z \tag{46}
\end{align*}
$$

Therefore

$$
\begin{aligned}
D^{\prime} Q_{t^{\prime}}^{\prime}: c & +Q_{g}(c)-Q_{g}(c) z \rightarrow D\left(Q_{t}(c)\right)+D\left(Q_{t}(c)\right) D\left(Q_{g}(c)\right) \\
& +Q_{t}(c) D^{2}\left(Q_{g}(c)\right)-D\left(Q_{g}(c)\right) D\left(Q_{t}(c)\right)+k_{g}\left(Q_{t}(c)\right)-Q_{g}(c) D^{2}\left(Q_{t}(c)\right) z
\end{aligned}
$$

By (30) and (44) we have

$$
\begin{aligned}
& D\left(Q_{t}(c)\right)+D\left(Q_{t}(c)\right) D\left(Q_{g}(c)\right)+Q^{2}(c) D^{2}\left(Q_{g}(c)\right)-D\left(Q_{g}(c)\right) D\left(Q_{t}(c)\right)+k_{g}\left(Q_{t}(c)\right) \\
& \quad=D\left(Q_{t}(c)\right)+D\left(Q_{t}(c)\right) D\left(Q_{g}(c)\right)+2 Q_{t}(c) D_{2}\left(Q_{g}(c)\right)-k_{t}\left(Q_{g}(c)\right)
\end{aligned}
$$

Therefore $Q_{t}(c) D^{2}\left(Q_{g}(c)\right)-D\left(Q_{g}(c)\right) D\left(Q_{t}(c)\right)=2 Q_{t}(c) D^{2}\left(Q_{g}(c)\right)$ and

$$
\begin{equation*}
Q_{l}(c) D^{2}\left(Q_{g}(c)\right)=-D\left(Q_{t}(c)\right) D\left(Q_{g}(c)\right) \tag{47}
\end{equation*}
$$

Replacing t by $(c t)_{1 / 2}$ we have $c Q_{t}(c) D^{2}\left(Q_{g}(c)\right)=-c D\left(Q_{t}(c)\right) D\left(Q_{g}(c)\right)-Q_{t}(c) D\left(Q_{g}(c)\right)$ and therefore

$$
\begin{equation*}
Q_{t}(c) D\left(Q_{g}(c)\right)=0 \tag{48}
\end{equation*}
$$

We now examine the \mathfrak{B}-components of the terms of $P(g, t, a, z)=0$ for $g, t \in \mathfrak{G}$ and $a \in \mathfrak{B}$. We have

$$
\begin{align*}
m(1, a)+m(a, 1)= & 2 m(1,1) a+2 D\left(Q_{t}(c)\right) D\left(D\left(Q_{g}(c)\right) D(a)\right) \\
& +2 D\left(Q_{g}(c)\right) D\left(D\left(Q_{t}(c)\right) D(a)\right)+\left(k_{g} k_{t}+k_{t} k_{g}\right)(a) \tag{49}
\end{align*}
$$

where $m(a, b)$ denotes the \mathfrak{B}-component of $(g a)_{1 / 2} \cdot(t b)_{1 / 2}$. Since $m(a, b)$ does depend on g and t also, we will use $m_{g, t}(a, b)$ for $m(a, b)$ when there is any chance of confusion. Replacing t by $(t b)_{1 / 2}$ in (49) we obtain

$$
\begin{aligned}
m(1, a b)+m(a, b)= & 2 m(1, b) a+2 b D\left(Q_{t}(c)\right) D\left(D\left(Q_{g}(c)\right) D(a)\right) \\
& +2 b D\left(Q_{g}(c)\right) D\left(D\left(Q_{t}(c)\right) D(a)\right)+2 D\left(Q_{t}(c)\right) D(b) D(a) \\
& +k_{g}(b) k_{t}(a)+b\left(k_{g} k_{t}+k_{t} k_{g}\right)(a)
\end{aligned}
$$

Define

$$
\begin{equation*}
S_{g, t}(a)=m(1, a)-m(1,1) a-2 D\left(Q_{g}(c)\right) D\left(D\left(Q_{t}(c)\right) D(a)\right)-k_{g} k_{t}(a) \tag{51}
\end{equation*}
$$

for all $a \in \mathfrak{B}$. If $g=t$ the right-hand side of (51) reduces to identity (49) with $g=t$. Therefore $S_{g, g}$ is identically zero. A simple linearization gives us

$$
\begin{equation*}
S_{g, t}=-S_{t, g} . \tag{52}
\end{equation*}
$$

Substituting (51) into (50) and letting $a=b$ we have $S_{g, t}\left(a^{2}\right)+2 L_{g} L_{t}\left(a^{2}\right)$ $+m(a, a)+k_{g} k_{t}\left(a^{2}\right)=2 S_{g, r}(a) a+m(1,1) a^{2}+4 a L_{g} L_{t}(a)+2 a k_{g} k_{t}(a)$ where $L_{g}=D\left(Q_{g}(c)\right) D$ and $L_{t}=D\left(Q_{t}(c)\right) D$ are derivations. Interchanging g and t in this result and subtracting gives us $2 S_{g, t}\left(a^{2}\right)+2 L_{g} L_{t}\left(a^{2}\right)-2 L_{t} L_{g}\left(a^{2}\right)+\left(k_{g} k_{t}-k_{t} k_{g}\right)\left(a^{2}\right)$ $=4 S_{g, t}(a) a+4 a\left(L_{g} L_{t}-L_{t} L_{g}\right)(a)+2 a\left(k_{g} k_{t}-k_{t} k_{g}\right)(a)$. Since both $L_{g} L_{t}-L_{t} L_{g}$ and $k_{g} k_{t}-k_{t} k_{g}$ are derivations this relation reduces to $S_{g, g}\left(a^{2}\right)=2 a S_{g, t}(a)$. Hence $S_{g, t}$ is a derivation of \mathfrak{B} into \mathfrak{B}.
We can now replace (50) by

$$
\begin{align*}
m(a, b)= & m(1,1) a b+a S_{g, t}(b)-b S_{g, t}(a)+2 a L_{g} L_{t}(b)+2 b L_{t} L_{g}(a) \tag{53}\\
& -2 L_{g}(a) L_{t}(b)+a k_{g} k_{t}(b)+b k_{t} k_{g}(a)-k_{g}(a) k_{t}(b) .
\end{align*}
$$

By setting $g=t, a=1$ and $b=Q_{g}(c)$ in (53) we have

$$
\begin{equation*}
m_{g, 9}(1,1) Q_{g}(c)=0 . \tag{54}
\end{equation*}
$$

An examination of the $(w \mathfrak{B})_{1 / 2}$-components of the terms of $P(g, g, g, z)=0$ gives us

$$
\begin{equation*}
Q_{g}(c) D\left(m_{g, g}(1,1)\right)=0 . \tag{55}
\end{equation*}
$$

Finally we compute $P\left((g a)_{1 / 2},(t b)_{1 / 2}, w, z\right)=0$ to get

$$
\begin{equation*}
n_{g, t}(a, b)=-a Q_{g}\left(f_{t}(1) b-T_{t}(b)+D\left(k_{t}(b)-\right) b Q_{t}\left(f_{g}(1) a-T_{g}(a)+D\left(k_{g}(a)\right)\right.\right. \tag{56}
\end{equation*}
$$ where $n_{g, t}(a, b)$ is the $\mathfrak{B} z$-component of $(g a)_{1 / 2} \cdot(t b)_{1 / 2}$. Now $P\left(g, g,(w a)_{1 / 2}, z\right)=0$ Therefore $n_{g, g}(1,1) a+2 Q_{g}\left(f_{g}(1) a\right)+2 Q_{g}\left(T_{g}(a)\right)=0$. From (56) with $g=t$ and $a=b=1$ we have

$$
\begin{equation*}
Q_{g}\left(T_{g}(a)\right)=-Q_{g}(a) f_{g}(1) . \tag{57}
\end{equation*}
$$

2. In the previous section we expressed the multiplications of \mathfrak{A} in terms of constants and derivations. In this section we use these multiplicative properties to construct a simple power-associative algebra of degree two from an associative algebra.

Let \mathfrak{B} be an associative, commutative algebra over a field \mathfrak{F} of characteristic $p>5$. Also assume that \mathfrak{B} has a single nonzero idempotent 1 that is a unity quantity.

Let $\mathfrak{B}_{0}, \ldots, \mathfrak{B}_{n-1}$ be n homomorphic images of the vector space \mathfrak{B}. We let \mathfrak{L} be a sum of these n vector spaces, but not necessarily the vector space direct sum. We let $z \mathfrak{B}$ be a one-dimensional module over \mathfrak{B}. Clearly $z \mathfrak{B}$ is a vector space over \mathfrak{F} and we form the vector space direct sum $\mathfrak{A}=\mathfrak{B}+\mathfrak{L}+z \mathfrak{B}$.We now extend the multiplication of \mathfrak{B} to \mathfrak{H} in such a way that \mathfrak{H} remains a commutative, power-associative algebra. First we define

$$
\begin{align*}
(z a)(z b) & =(z b)(z a)=a b \tag{58}\\
1 x & =x \tag{59}\\
z y & =0 \tag{60}
\end{align*}
$$

for every a and b in \mathfrak{B}, every x in \mathfrak{A} and every y in \mathfrak{Q}. The element $e=(1 / 2)(1+z)$ is an idempotent. We have already defined sufficient multiplicative properties to determine an idempotent decomposition of \mathfrak{N}. Clearly $\mathfrak{Q} \subseteq \mathfrak{A}_{e}(1 / 2)$ and $\mathfrak{B}+\mathfrak{B z} \subseteq \mathfrak{A}_{e}(1)+\mathfrak{A}_{e}(0)$. The second part of this statement follows by consideration of $a+b z=(c+c z)+(d-d z)$ with $2 c=a+b$ and $2 d=a-b$. For each of the vector spaces \mathfrak{B}_{i} and the corresponding homomorphism of \mathfrak{B} onto \mathfrak{B}_{i} we define $\left(g_{i} b\right)_{1 / 2}$ to be the image of b. Since this notation is consistent with that of the decomposition of \mathfrak{A} with respect to e we will allow the confusion of the two notations.

In order to complete our definitions of the multiplications of \mathfrak{A} we choose elements $b_{i j}$ and b_{i} of \mathfrak{B} and derivations $D_{i j}$ and D_{i} on \mathfrak{B} into \mathfrak{B} for $i, j=0,1, \ldots, n-1$ with the following restrictions:

$$
\begin{equation*}
D_{i j}=-D_{j i}, \quad b_{i j}=b_{j i}, \quad b_{0}=0 \tag{61}
\end{equation*}
$$

for all values of i and j and

$$
\begin{align*}
b_{i} b_{j} & =\left(b_{i}+b_{j}\right) b_{i j}=0, \\
b_{i} D_{0}\left(b_{j}\right) & =\left(b_{i}+b_{j}\right) D_{0}\left(b_{i j}\right)=D_{i}\left(b_{j} b\right)+D_{j}\left(b_{i} b\right)=0, \\
b_{j} D_{0} D_{i}(b)+b_{i} D_{0} D_{j}(b) & =b_{j} D_{i}(b)=0, \tag{62}\\
\left(b_{i} g_{j}+b_{j} g_{i}\right)_{1 / 2} & =0, \quad b_{i} b_{0 i} D_{0}=-b_{i} D_{0} D_{0 i}
\end{align*}
$$

for all i and j different from 0 and all $b \in \mathfrak{B}$. We now define

$$
\begin{align*}
& \quad\left(g_{i} a\right)_{1 / 2} b=[g(a b)]_{1 / 2}-D_{0}\left(a b_{i}\right) D_{0}(b)-2 b_{i} a D_{0}^{2}(b)+a D_{i}(b) z \tag{63}\\
& \quad\left(g_{i} a\right)_{1 / 2}(b z)=-\left[\left(g_{i} a\right)_{1 / 2} b\right] z+\left\{g_{0}\left[a D_{0}(b) b_{i}\right]\right\}_{1 / 2} \tag{64}\\
& \left(g_{i} a\right)_{1 / 2}\left(g_{j} b\right)_{1 / 2}=a b b_{i j}+a D_{i j}(b)-b D_{i j}(a)+a D_{j} D_{i}(b)+b D_{i} D_{j}(a) \tag{65}\\
& -D_{j}(b) D_{i}(a)+2 a L_{i} L_{j}(b)+2 b L_{j} L_{i}(a)-2 L_{j}(b) L_{i}(a) \\
& +a b_{i}\left\{D_{0}\left[D_{0 j}(b)-b_{0 j} b-D_{0} D_{j}(b)\right]\right\} z \cdot b b_{j} D_{0}\left[D_{0 i}(a)-b_{0 i} a-D_{0} D_{i}(a)\right] z
\end{align*}
$$

where $L_{i}=D_{0}\left(b_{i}\right) D_{0}, i, j=0, \ldots, n-1$, and a and $b \in \mathfrak{B}$. Since we did not restrict \mathfrak{L} to be a direct sum of subspaces it is necessary to assume that our multiplications in \mathfrak{A}, as defined above, are well-defined. We place two additional assumptions on \mathfrak{A}. If \mathfrak{D} is the set of derivations consisting of D_{i} and $D_{i j}$ for all i and j we assume, in the terminology of Albert [3], that \mathfrak{B} is \mathfrak{D}-simple; i.e., there is no nontrivial ideal \mathfrak{I} of \mathfrak{B} such that \mathfrak{I} is \mathfrak{D}-admissible. The second assumption is that for every element g in \mathcal{L} there is a t in \mathcal{L} such that $g t$ is not zero.

Theorem 7. Every commutative, power-associative, simple algebra of degree two over an algebraically closed field \mathfrak{F} of characteristic $p \neq 2,3,5$ is an algebra of the type described above.

Proof. We choose a set of elements g_{1}, \ldots, g_{n-1} in \mathfrak{G} such that every element of \mathfrak{F} is expressible in the form $\Sigma\left(g_{i} a_{i}\right)_{1 / 2}$ where $a_{i} \in \mathfrak{B}$. We translate the notation of $\S 1$ to the notation of this section by letting $\mathcal{L}=\mathfrak{A}_{e}(1 / 2), g_{0}=w, D_{0}=D$, $b_{00}=w^{2}, \quad b_{0 i}=f_{g_{i}}(1), \quad D_{0 i}=T_{g i}, \quad D_{i}=k_{i t}, \quad b_{i}=Q_{g i}(c), \quad b_{i j}=m_{g i, g j}(1,1) \quad$ and $D_{i j}=S_{g_{i}, g_{j}}$ where $i, j \neq 0$. Identities (25)-(57) give us the relations (61)-(65).

If \mathfrak{I} is a nontrivial ideal of \mathfrak{B} that is \mathfrak{D}-admissible then if $a \in \mathfrak{I}$ we have $Q_{g}(a), f_{g a}(b), \phi_{g}(a), \phi_{g a}(b), f_{g b}(a) m_{g, t}(a, b)$ and $n_{g, t}(a, b) \in \mathfrak{I}$. This is sufficient to guarantee that $\mathfrak{I}+\mathfrak{I z}+(w \mathfrak{I})_{1 / 2}+(\mathfrak{G I})_{1 / 2}$ is a proper ideal of \mathfrak{A}. Since this contradicts the simplicity of \mathfrak{A} we have that \mathfrak{B} is \mathfrak{D}-simple.

Let $(w a)_{1 / 2}+g$ be an element of $\mathfrak{U}_{e}(1 / 2)$ such that there is no element t in $\mathfrak{U}_{e}(1 / 2)$ such that $(w a)_{1 / 2} t+g t \neq 0$. Choosing t to be successively $w,(w c)_{1 / 2}$ and $\left(w c^{2}\right)_{1 / 2}$ and considering only the \mathfrak{B}-components of the resulting terms we have $w^{2} a+D^{2}(a)+f_{g}(1)=w^{2} a c+c D^{2}(a)-D(a)+f_{g}(1) c+T_{g}(c)=w^{2} a c^{2}+c^{2} D^{2}(a)$ $+2 a-2 c D(a)+f_{g}(1) c^{2}+2 c T_{g}(c)=0$. Eliminating w^{2} from these equations we have $-D(a)+T_{g}(c)=2 a-c D(a)+c T_{g}(c)=0$. Hence $a=0$ and $f_{g}(1)=T_{g}(c)$ $=0$. If we multiply g by $(w b)_{1 / 2}$ for $b \in \mathfrak{B}$ we have $f_{g}(b)=\phi_{g}(b)=0$ by our assumption on g. By a previous result we had that $Q_{g}(c)$ was a multiple of $\phi_{g}\left(c^{3}\right)$. Hence $Q_{g}(c)=0$. Now $f_{g}(b)=T_{g}(b)+k_{g}(D(b))=0$ for all $b \in \mathfrak{B}$. If we substitute $b c$ for b we have $c T_{g}(b)+c k_{g}(D(b))+k_{g}(b)=0$. Therefore $k_{g}(b)=0$. We now have that $\mathfrak{C} g=\left\{(a g)_{1 / 2}: a \in \mathfrak{B}\right\}$. With this choice of g and for any $b \in \mathfrak{B}$ we have $f_{g a}(b)=0$ by (35) and $\phi_{g a}(b)=0$ since $Q_{g a}(c)=a Q_{g}(c)$. Also $m_{g, t}^{\prime}(a, b)$ $=a S_{g, t}(b)-b S_{g, t}(a)$. But by the assumption on g and (51) we have $S_{g, t}=0$. Therefore $m_{g, t}(a, b)=0$ for all a and $b \mathfrak{B}$. Combining this result with (56) we have $(g a)_{1 / 2} t=0$ for all $a \in \mathfrak{B}$ and all $t \in \mathfrak{A}_{e}(1 / 2)$. Therefore the ideal generated by g is $\left\{(a g)_{1 / 2}: a \in \mathfrak{B}\right\}$. This contradicts the assumption of simplicity of \mathfrak{A}. Hence for each $x \in \mathfrak{A}_{e}(1 / 2)$ there is an element t in $\mathfrak{U}_{e}(1 / 2)$ such that $x t \neq 0$.

Theorem 8. An algebra \mathfrak{A} over a field \mathfrak{F} of characteristic $p \neq 2,3,5$ as described in identities (58)-(65) is a commutative, power-associative, simple algebra.

Proof. It follows readily from the definition of \mathfrak{A} that $\mathfrak{B}+\mathfrak{B} z+\left(g_{0} \mathfrak{B}\right)_{1 / 2}$ is a subalgebra of \mathfrak{A}. We shall show that this subalgebra is power-associative by examining $P(x, y, s, t)$ for various values in $\mathfrak{B}+\mathfrak{B} z+\left(g_{0} \mathfrak{B}\right)_{1 / 2}$. If $P(x, y, s, t)=0$ for all possible choices of the variables x, y, s and t in $\mathfrak{B}, \mathfrak{B z}$ or $\left(g_{0} \mathfrak{B}\right)_{1 / 2}$ we have $\mathfrak{B}+\mathfrak{B} z+\left(g_{0} \mathfrak{B}\right)_{1 / 2}$ power-associative. We examine the powers of $x=a+g_{0}$ for $a \in \mathfrak{B}$. We have $x^{2}=a^{2}+b_{00}+\left(a g_{0}\right)_{1 / 2}+2 D_{0}(a) z, x^{3}=a^{3}+2 a b_{00}-D_{0}^{2}(a)$ $+5 a D_{0}(a) z+D_{0}\left(b_{00}\right) z+\left[\left(2 a^{2}+b_{00}\right) g_{0}\right]_{1 / 2}$ and $x^{2} x^{2}=x^{3} x$. The proof of this result depends on the properties

$$
\begin{align*}
a(b z) & =(a b) z, \\
(a z)(b z) & =a b, \\
(b z)\left(g_{0} a\right)_{1 / 2} & =-a D_{0}(b), \tag{66}\\
b\left(g_{0} a\right)_{1 / 2} & =\left[(a b) g_{0}\right]_{1 / 2}+a D_{0}(b) z, \\
\left(g_{0} a\right)_{1 / 2}\left(g_{0} b\right)_{1 / 2} & =a b b_{00}+a D_{0}^{2}(b)+b D_{0}^{2}(a)-D_{0}(a) D_{0}(b) .
\end{align*}
$$

If $d \in \mathfrak{B}$ and if we replace D_{0} by $d D_{0}, b_{00}$ by $b_{00} d^{2}+2 d D_{0}^{2}(d)-D_{0}(d)^{2}$ and g_{0} by $\left(g_{0} d\right)_{1 / 2}$ we see that relations similar to those expressed in (66) hold. Therefore we can conclude that $a+\left(g_{0} d\right)_{1 / 2}$ has a unique fourth power.

Next we investigate the fourth powers of $x=a z+g_{0}$. We have $x^{2}=a^{2}+b_{00}$ $-2 D_{0}(a), x^{3}=a^{3} z+b_{00} a z+D_{0}\left(b_{00}\right) z-2 D_{0}^{2}(a) z+a^{2}+b_{00}-\left[2 D_{0}(a) g_{0}\right]_{1 / 2}$ and $x^{2} x^{2}=x^{3} x$. Again the only multiplicative properties used were those expressed in (66). Therefore $a z+\left(g_{0} b\right)_{1 / 2}$ has a unique fourth power for all a and $b \in \mathfrak{B}$. It is easily seen that $\mathfrak{B}+\mathfrak{B z}$ is associative. Hence $a+b z$ has a unique fourth power. The assumption on the characteristic and simple linearizations of these three fourth powers we have obtained give us the result that $P(x, y, s, t)=0$ provided that in any evaluation the four values x, y, s, and t are chosen from only two of the three subspaces $\mathfrak{B}, \mathfrak{B z}$ and $\left(g_{0} \mathfrak{B}\right)_{1 / 2}$. This leaves us those choices of x, y, s and t for which $x \in \mathfrak{B}, y \in \mathfrak{B z}, s \in\left(g_{0} \mathfrak{B}\right)_{1 / 2}$ and t is arbitrary. Because of the linearization process we need only consider $P\left(a, b z,\left(g_{0} d\right)_{1 / 2}, a\right)$, $P\left(a, b z,\left(g_{0} d\right)_{1 / 2}, b z\right)$ and $P\left(a, b z,\left(g_{0} d\right)_{1 / 2},\left(g_{0} d\right)_{1 / 2}\right)$. Straightforward computations, which we omit, show that each of these relations is zero. Therefore $\mathfrak{B}+\mathfrak{B z}$ $+\left(g_{0} \mathfrak{B}\right)_{1 / 2}$ is power-associative.
Now let $g=\Sigma\left(g_{i} a_{i}\right)_{1 / 2}$ where $a_{i} \in \mathfrak{B}$. The index i, or indices i and j, of this summmation and all subsequent ones will run from 1 to $n-1$. Define

$$
\begin{align*}
b_{g}= & \sum a_{i} b_{i} \\
D_{g}= & \sum a_{i} D_{i}, \\
b_{0 g}= & \sum a_{i} b_{0 i}-\sum D_{0 i}\left(a_{i}\right)+\sum D_{0} D_{i}\left(a_{i}\right), \\
D_{0 g}= & \sum a_{i} D_{0 i}-\sum D_{i}\left(a_{i}\right) D_{0}, \tag{67}\\
b_{g g}= & \sum b_{i j} a_{i} a_{j}+2 \sum a_{i} D_{i j}\left(a_{j}\right)+4 \sum a_{j} L_{j} L_{i}\left(a_{i}\right) \\
& -\sum D_{i}\left(a_{i}\right) D_{j}\left(a_{j}\right) .
\end{align*}
$$

From (62) and (67) we have

$$
\begin{gather*}
b_{g}^{2}=b_{g} b_{g g}=b_{g} D_{0}\left(b_{g g}\right)=b_{g} D_{g}(b)=D_{g}\left(b_{g}\right)=b_{g} D_{0} D_{g}(b)=0, \\
b_{g} b_{0 g} D_{0}(a)=-b_{g} D_{0} D_{0 g}(a), \tag{68}\\
\left(g b_{g}\right)_{1 / 2}=0 .
\end{gather*}
$$

From (65) we have $(g a)_{1 / 2}(g a)_{1 / 2}=b_{g g}+2 a D_{g}^{2}(a)-D_{g}(a)^{2}+4 \sum a a_{i} L_{i} a_{j} L_{j}(a$ $-2 \sum a_{i} L_{i}(a) a_{j} L_{j}(a)$. Now $\sum a_{i} L_{i}(a)=\sum a_{i} D_{0}\left(b_{i}\right) D_{0}(a)=D_{0}\left(b_{g}\right) D_{0}(a)$
$-\Sigma b_{i} D_{0}\left(a_{i}\right) D_{0}(a)$. Therefore $\sum a_{i} L_{i}(a) a_{j} L_{j}(a)=L_{g}(a)^{2}$ where $L_{g}=D_{0}\left(b_{g}\right) D_{0}$. Also

$$
\begin{aligned}
\Sigma a_{i} L_{i} a_{j} L_{j}(a) & =\Sigma L_{g} a_{j} L_{j}(a)-\Sigma b_{i} D_{0}\left(a_{i}\right) D_{0} a_{j} L_{j}(a) \\
& =L_{g}^{2}(a)-\Sigma L_{g} b_{j} D_{0}\left(a_{i}\right) D_{0}(a)-\Sigma b_{i} D_{0}\left(a_{i}\right) D_{0} a_{j} L_{j}(a) \\
& =L_{g}^{2}(a)-\Sigma D_{0}\left(b_{i}\right) D_{0}\left(b_{j}\right) a_{i} D_{0}\left(a_{j}\right) D_{0}(a)-\Sigma b_{i} D_{0}^{2}\left(b_{j}\right) a_{j} D_{0}\left(a_{i}\right) D_{0}(a) \\
& =L_{g}^{2}(a)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
(g a)_{1 / 2}^{2}=b_{g g}+2 a D_{g}^{2}(a)-D_{g}(a)^{2}+4 a L_{g}^{2}(a)-2 L_{g}(a)^{2} . \tag{69}
\end{equation*}
$$

We also have

$$
\begin{align*}
b(g a)_{1 / 2} & =g(a b)_{1 / 2}-D_{0}\left(a b_{g}\right) D_{0}(b)-2 b_{g} a D_{0}^{2}(b)+a D_{g}(b) z, \\
(b z)(g a)_{1 / 2} & =g_{0}\left(a D_{0}(b) b_{g}\right)_{1 / 2}-\left[(g a)_{1 / 2} b\right] z \tag{70}
\end{align*}
$$

for all a and b in \mathfrak{B}.
We now let $g_{0}^{\prime}=g_{0}+g$ and $a^{\prime}=a-b_{g} D_{0}(a) z$ for $a \in \mathfrak{B}$. We define a derivation $D_{0}^{\prime}\left(a^{\prime}\right)=\left[D_{0}(a)+D_{0}\left(b_{g}\right)^{2} D_{0}(a)+D_{g}(a)\right]^{\prime}$ and let $t=b_{00}+2 b_{0 g}-b_{g} D_{0}\left(b_{00}\right) z$ $+b_{g g}-2 b_{g} D_{0}\left(b_{0 g}\right) z$. Now $\left(D_{0}+D_{0}\left(b_{g}\right)^{2} D_{0}+D_{g}\right)^{2}=\left(D+D_{g}\right)^{2}+2 L_{g}^{2}$. Therefore $a^{\prime} D_{0}^{\prime 2}\left(a^{\prime}\right)=a\left(D_{0}+D_{g}\right)^{2}(a)+2 a L_{g}^{2}(a)-b_{g}\left[a D_{0}^{3}(a)+a D_{0}^{2} D_{g}(a)+D_{0}(a) D_{0}^{2}(a)\right] z$ since $3 b_{g} D_{0} L_{g}^{2}(a)=3 b_{g} D_{0}^{2} b_{g} D_{0}^{2}\left(b_{g}\right) D_{0}(a)=-3 D_{0}\left(b_{g}\right) D_{0}\left(b_{g}\right) D_{0}^{2}\left(b_{g}\right) D_{0}(a)$ $=2 D_{0}\left(b_{g}\right) b_{g} D_{0}^{3}\left(b_{g}\right) D_{0}(a)=0$. Also $\left[\left(D_{0}+D_{0}\left(b_{g}\right)^{2} D_{0}+D_{g}\right)(a)\right]^{2}=\left[\left(D_{0}+D_{g}\right)(a)\right]^{2}$ $+2 L_{g}(a)^{2}$. Therefore $\left[D_{0}^{\prime}\left(a^{\prime}\right)\right]^{2}=\left[\left(D_{0}+D_{g}\right)(a)\right]^{2}+2 L_{g}(a)^{2}-2 b_{g} D_{0}^{2}(a) D_{0}(a) z$. We have, using these results, that $\left(g_{0}^{\prime} a^{\prime}\right)_{1 / 2}^{2}=\left(g_{0}^{\prime} a\right)_{1 / 2}^{2}=b_{00} a^{2}+2 a D_{0}^{2}(a)$ $-D_{0}(a)^{2}+2 a^{2} b_{0 g}+2 a D_{g} D_{0}(a)+2 a D_{0} D_{g}(a)-2 D_{g}(a) D_{0}(a)-a b_{g} a D_{0}\left(b_{00}\right) z$ $-2 b_{00} D_{0}(a) a b_{g} z-2 a b_{g} D_{0}^{3}(a) z+b_{g g} a^{2}+4 a L_{g}^{2}(a)-2 L_{g}(a)^{2}+2 a D_{g}^{2}(a)$ $-D_{g}(a)^{2}-2 b_{g} a^{2} D_{0}\left(b_{0 g}\right) z-2 a b_{g} b_{0 g} D_{0}(a)+2 a b_{g} D_{0} D_{0_{g}}(a) z-2 b_{g} a D_{0}^{2} D_{g}(a) z$ $=t\left(a^{2}\right)^{\prime}+2 a^{\prime} D^{\prime 2}\left(a^{\prime}\right)-D^{\prime}\left(a^{\prime}\right)^{2}+2 b_{g} b_{0_{g}} a D_{0}(a)+2 b_{g} a D_{0} D_{0_{g}}(a)=t\left(a^{2}\right)^{\prime}$ $+2 a^{\prime} D^{\prime 2}\left(a^{\prime}\right)-D^{\prime}\left(a^{\prime}\right)^{2}$. Since $t=g_{0}^{\prime 2}$ we have

$$
\begin{equation*}
\left(g_{0}^{\prime} a^{\prime}\right)_{1 / 2}^{2}=g_{0}^{\prime 2}+2 a^{\prime} D_{0}^{\prime 2}(a)-D_{0}^{\prime}\left(a^{\prime}\right)^{2} \tag{71}
\end{equation*}
$$

From (68) and (70) we have

$$
\begin{align*}
a^{\prime}\left(b^{\prime} z\right) & =\left(a^{\prime} b^{\prime}\right) z=(a b)^{\prime} z, \\
\left(a^{\prime} z\right)\left(b^{\prime} z\right) & =a^{\prime} b^{\prime}=(a b)^{\prime} \\
\left(b^{\prime} z\right)\left(g_{0} a^{\prime}\right)_{1 / 2} & =-a^{\prime} D_{0}^{\prime}\left(b^{\prime}\right), \tag{72}\\
b^{\prime}\left(g_{0} a^{\prime}\right)_{1 / 2} & =\left[\left(a^{\prime} b^{\prime}\right) g_{0}^{\prime}\right]_{1 / 2}+a^{\prime} D_{0}^{\prime}\left(b^{\prime}\right) z
\end{align*}
$$

If \mathfrak{B}^{\prime} is the set of all elements of the form a^{\prime} where $a \in \mathfrak{B}$ then $\mathfrak{B}^{\prime}+\mathfrak{B}^{\prime} z+\left(g_{0}^{\prime} \mathfrak{B}^{\prime}\right)_{1 / 2}$ is a subalgebra with multiplications similar to those expressed in (66). Hence we can conclude that this subalgebra is power-associative and that $a^{\prime}+b^{\prime} z$ $+\left(g_{0}^{\prime} d^{\prime}\right)_{1 / 2}$ has a unique fourth power for every a^{\prime}, b^{\prime} and $d^{\prime} \in \mathfrak{B}^{\prime}$. But $\mathfrak{C}=\mathfrak{B}^{\prime}+\mathfrak{B}^{\prime} z$. Therefore $a+b z+\left(g_{0} d+g d\right)_{1 / 2}$ has a unique fourth power for every $a, b, d \in \mathfrak{B}$ and every g. If d is nonsingular then d can be absorbed in the coefficients a_{i} of g_{i} in the expression for g. Hence $a+b z+\left(g_{0} d\right)_{1 / 2}+g$ has a unique fourth power if d is nonsingular. We can restate this as $x=g_{0}+\alpha(a+b z)+\beta\left(g_{0} d\right)_{1 / 2}$ $+\gamma g$ has a unique fourth power for d a singular element of $\mathfrak{B}, a, b \in \mathfrak{B}$, $g=\Sigma\left(a_{i} g_{i}\right)_{1 / 2}$ and $\alpha, \beta \in \mathfrak{F}$. The characteristic is sufficiently high so that the attached polynomials of the expression $x^{2} x^{2}-x^{4}$ are all zero [6]. The sum of those polynomials with a coefficient $\alpha^{i} \beta^{j} \gamma^{k}$ where $i+j+k=4$ is of course also equal to zero. But by replacing α, β and γ by 1 in this sum we get $y^{2} y^{2}-y^{4}=0$ where $y=\left(a+b z+\left(g_{0} d\right)_{1 / 2}+g\right)$. Hence any element of \mathfrak{A} has a unique fourth power and \mathfrak{A} is power-associative.

To complete the proof it remains only to show the simplicity of \mathfrak{A}. Let \mathfrak{I} be a proper ideal of \mathfrak{A} with the nonzero element $a+b z+t$ where $a, b \in \mathfrak{B}$ and $t \in \mathfrak{L}$. Since $z \mathfrak{I} \subseteq \mathfrak{I}$ we have $a z+b \in \mathfrak{I}$. Now multiply $a z+b$ by g_{0} to get $\left(a g_{0}\right)_{1 / 2}+D_{0}(a) z-D_{0}(b) \in \mathfrak{I}$. By the above $\left(a g_{0}\right)_{1 / 2} \in \mathfrak{I}$. Multiplying this element by $c z$ we get $a \in \mathfrak{I}$ and therefore $b, t, D(a)$ and $D(b) \in \mathfrak{I}$. Let \mathfrak{P} be the set of all elements of \mathfrak{B} that are in \mathfrak{I}. Clearly, \mathfrak{P} is a proper ideal of \mathfrak{B}. Since $\mathfrak{P} \subseteq \subseteq \mathfrak{I}$ and $(\mathfrak{P} \mathbb{Q})_{1 / 2} \mathfrak{Q} \subseteq \mathfrak{I}$ it can be easily shown that \mathfrak{P} is \mathfrak{D}-admissible. Hence $\mathfrak{P}=0$ and the only nonzero elements that could be in \mathfrak{I} are of the form t where $t \in \mathfrak{L}$. But by the assumption on \mathfrak{A} there is an $x \in \mathcal{L}$ such that $g x \neq 0$. Since $g x \in \mathfrak{B}+\mathfrak{B} z$ and $\mathfrak{I} \cap(\mathfrak{B}+\mathfrak{B z})=0$ we must have $\mathfrak{I}=0$. Therefore \mathfrak{A} is simple.

To further characterize the algebra \mathfrak{A} and its subalgebra \mathfrak{B} we quote a result of Harper [5, Theorem 1].

Theorem 9. Let \mathfrak{B} be a commutative, associative algebra with unity 1 over an algebraically closed field \mathfrak{F}, and let \mathfrak{B} be \mathfrak{D}-simple relative to a set of derivations of \mathfrak{B} over \mathfrak{F}. Then $\mathfrak{B}=\mathfrak{F}\left[1, x_{1}, \ldots, x_{n}\right]$ is an algebra with generators x_{1}, \ldots, x_{n} over \mathfrak{F} which are independent except for the relations $x_{1}^{p}=\ldots$ $=x_{n}^{p}=0$ where p is the characteristic of \mathscr{F}.
3. Let p be a prime $\neq 2,3,5$ and let \mathfrak{B} be the associative commutative algebra of all polynomials $\sum_{i=0}^{p-1} \alpha_{i} c^{i}$ in c with $c^{p}=0$ and $c^{0}=1$, the identity of \mathfrak{B}. Let \mathcal{L} be $\left\{\left(g_{0} a\right)_{1 / 2}: a \in \mathfrak{B}\right\}$. Then $\mathfrak{A}=\mathfrak{B}+\mathfrak{B} z+\left(g_{0} \mathfrak{B}\right)_{1 / 2}$. Let $b_{00}=0$ and D_{0} be ordinary polynomial differentiation; i.e., $D_{0}(c)=1$. Assume that $u=a+b z$
$+\left(g_{0} d\right)_{1 / 2}$, where $a, b, d \in \mathfrak{B}$, is an idempotent of \mathfrak{A} that is not in \mathfrak{C}. Then $a^{2}+b^{2}+2 d D_{0}^{2}(d)-D_{0}(d)^{2}-2 d D_{0}(b)+2 a b z+2 d D_{0}(a) z+2\left(g_{0}(d a)\right)_{1 / 2}$ $=a+b z+\left(g_{0} d\right)_{1 / 2}$. Therefore $d(2 a-1)=0$ and $2 a b+2 d D_{0}(a)=b$. If $d=0$ then $u \in \mathbb{C}$. By our assumptions $d \neq 0$ and we must have $2 a-1$ is singular. Therefore we can write $a=1 / 2+c^{t} s$ where s is a nonsingular element of \mathfrak{B} and $t \geqq 1$. We have $d c^{t}=0$ and $c^{t} b+t c^{t-1} d=0$. Hence $c^{t+1} b=0$. Since

$$
\begin{equation*}
a^{2}+b^{2}+2 d D_{0}^{2}(d)-D_{0}(d)^{2}-2 d D_{0}(b)=a \tag{73}
\end{equation*}
$$

it follows that $a^{2} c^{t+1}=a c^{t+2}$. But this implies that $c^{t+1}=2 c^{t+1}$. Hence $t+1 \geqq p$. Assume $t=p-1$; then $c^{p-1} b=c^{p-2} d$. Now if $b=\sum_{0}^{p-1} \beta_{i} c^{i}$ and $d=\sum_{0}^{p-1} \alpha_{i} i^{i}$ then we must have $\alpha_{0}=0$ and $\beta_{0}=\alpha_{1}$. From (73) we must also have $\beta_{0}^{2}-\alpha_{1}^{2}=1 / 4$ which is a contradiction. Therefore $t+1>p$ and $a=1 / 2$.

Let $x^{\prime}=a^{\prime}+b^{\prime} z+\left(g_{0} d^{\prime}\right)_{1 / 2}$ be an arbitrary element of \mathfrak{A}. By considering the product $x^{\prime} u$ we see that a necessary and sufficient condition that $x^{\prime} \in \mathfrak{A}_{u}(1)$ is that

$$
\begin{align*}
2 a^{\prime} d & =d^{\prime}, \\
2 b a^{\prime}+2 D_{0}\left(a^{\prime}\right) d & =b^{\prime} \tag{74}
\end{align*}
$$

The correspondence $a^{\prime} \rightarrow a^{\prime}+2 a^{\prime} b z+2 D_{0}\left(a^{\prime}\right) d z+2\left[g_{0}\left(a^{\prime} d\right)\right]_{1 / 2}$ is clearly a $1-1$ correspondence between \mathfrak{B} and $\mathfrak{A}_{u}(1)$ preserving the vector space operations. Therefore $\mathfrak{A}_{u}(1)$ is of dimension p.

If u is a stable idempotent then Albert has shown [3; 4] that $\mathfrak{A}=\mathfrak{U}_{u}(1)$ $+\mathfrak{A}_{u}(0)+\left(w \mathbb{C}^{\prime}\right)+\mathfrak{F}$ where $\mathfrak{C}^{\prime}=\mathfrak{A}_{u}(1)+\mathfrak{A}_{u}(0)$ and $w \mathbb{C}^{\prime}+\mathfrak{G}=\mathfrak{A}_{u}(1 / 2)$. Albert also showed that the dimensions of $\mathfrak{A}_{u}(1), \mathfrak{A}_{u}(0)$ and $w \mathbb{C}^{\prime}$ are all equal. Therefore $\mathfrak{G}=0$. A further result of Albert's is that $\mathfrak{A}_{u}(1)+\mathfrak{A}_{u}(0)+w \mathbb{C}^{\prime}$ is associative. This implies that \mathfrak{A} is a simple, associative algebra and hence we must have $c=0$. We can conclude that our example contains no stable idempotents.

Bibliography

1. A. A. Albert, A theory of power-associative commutative algebras, Trans. Amer. Math. Soc. 69 (1950), 503-527.
2. -, On commutative power-associative algebras of degree two,Trans. Amer. Math. Soc. 74 (1953), 323-343.
3. ———On partially stable algebras, Trans. Amer. Math. Soc. 84 (1957), 430-443.
4. __, Addendum to the paper on partially stable algebras, Trans. Amer. Math. Soc. 87 (1958), 57-62
5. L. R. Harper, On differentiably simple algebras, Trans. Amer. Math Soc. 100 (1961), 63-72.
6. L. A. Kokoris, Power-associative commutative algebras of degree two, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 534-537.
7. 363-373.
8. --, Simple power-associative algebras of degree two, Ann. of Math. 64 (1956), 544-550.

9 ——, Flexible nilstable algebras, Proc. Amer. Math. Soc. 13 (1962), 335-340.
Michigan State University,
East Lansing, Michigan

