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Let 21 be a simple, commutative, power-associative algebra of degree 2 over

an algebraically closed field 5 of characteristic not equal to 2, 3 or 5. The degree

of 21 is defined to be the number of elements in the maximal set of pairwise ortho-

gonal idempotents in 21. This algebra has a unit element 1 [1, Theorem 3]. The

algebras 21 of characteristic zero were considered by Kokoris [8] and found to

be Jordan algebras. Kokoris also gave examples of algebras 21 that were not

Jordan [6]. This left the problem of determining those algebras 21 that are not

Jordan algebras.

Since 1 = e 4-/ where e and / are primitive orthogonal idempotents, we have

a decomposition 21 = 2Ie(l) + 2Ie(l/2) + 2Ie(0) where xe2Ie(A) if and only if

ex = Xx. We have 2It.(A) = 2I/(l-A);2Ie(A)2I,(l/2) s 2Ie(l-A) + 2Ic(l/2) for A = 1,0;
and 2Ie(l) = eg 4- %, 2Ie(0) =/g + SR0 where 9^ and 9l0 are nilideals of 2Ie(l)

and 2Ie(0) respectively. If 2le(/l)2Ie(l/2) s 2Ie(l/2) for X = 1,0 we say that e is a

stable idempotent. If 2Ic(A)2Ie(l/2) £ 2le(l/2) + yt1_x for X = 1,0 we say that e

is a nilstable idempotent.

The results of Albert extend the characteristic zero case to include algebras

of characteristic pj=2,3,5 for which every idempotent is stable [2]. He also

characterized those algebras of characteristic p ^ 2,3,5 that have at least one

stable idempotent [3; A]. Recently Kokoris announced [9] that every simple,

flexible, power-associative algebra over an algebraically closed field of charac-

teristic # 2,3 that is of degree two and in which every idempotent is nilstable

is a J-simple algebra.

It is the purpose of this paper to fill in the remaining gap by giving a charac-

terization of those algebras 21 that have an idempotent that is not nilstable. An

example is also given of an algebra 21 that does not have a stable idempotent.

1. Let 21 be an algebra that is simple, commutative, power-associative, of

degree two and whose base field 5 is an algebraically closed field of characteristic

p ¥= 2,3,5. Let e be a primitive idempotent of 21 that is not nilstable. Since 21 is

power-associative we have x2x2 = x4 for all x e 21 and the linearization of this

identity

P(x,y,s,t) = A(xy)(st) + A(xs)iyt) + Aixt)(ys)

(1 ) - x [y(st) + s(yt) + t(ys)] - y [x(<s) + t(xs) + s(xt)]

- s [x(yt) + y(xt) + t(xy)] - t[x(ys) + y(xs) + s(xy)] = 0.
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We will use G to represent the space 9Ie(l) + 9Ie(0), ax to represent the 9Ie(A)-

component of a, a10 to represent the G-component of a, and z to represent e-f.

We will make frequent use of some of the results of Albert on commutative power-

associative algebras; namely, results (5), (6), (7), (8) of [1]. We state them as

(2) [9(xy\]x/2 = [(9xÀ)x/2yx]xl2 + [(gyA/2xJ,/2,

(3) [9(xy)x]i-x  - 2[(gxA)1/2y]1_¿ + 2[(gy,i)i/2x]1_A,

(4) l(9XX)il2yi-x]ll2   -   i(9yi-x)l,2Xx]l/2,

(5) (fl^i-iPi-i - 2[(gy1_i)1/2xJ1_2,

where X = l,0;g e 9I¿(l/2) and x and y are in G.

Two other relations

(6) 2[(xxg)x/2g}x + [(xxg)x-x g~]x = xkg2,

(7) (xig)n2 = (x0g)i/2   implies    (xxg)x/2 = (x20g)xl2

for x and g as above will be useful. The first of these is obtained from P(x, e, g,g) = 0

while the second can be derived from (2) and (4).

Theorem 1. G is an associative subalgebra of 91 with an element c e G such

that there is a we9Ic(l/2) with z(cw) = 1, (cxw)x/2 = (c0w)x/2 and(c2xw)0 = -2c0.

Proof. It is easily seen that the subset 3 of 9Ie(l) consisting of all elements of

the form (a0g)x is an ideal of 9IC(1) where g e 9Ie(l/2) and a0 is a fixed element

of %(0) because by (5) we have bx(a0g)x = 2[a0(h1g)1/2]1. The additive property

of an ideal is immediate.

We now let bx, dx be elements of 91e(l), g e 9Ie(l/2) and a0 e %(0) with (a0g)x

= ax. If we consider only the 9Ie(l)-components of each of the terms in

P(bx,dx,g,a0) = 0 we get 2(bxdx)ax = bx(dxax) + dx(bxax). If bx is also in 3

we can interchange ax and bx to get ax(dxbx) = 2bx(dxax) - dx(bxax). Therefore

ai(dibx) = (axdx)bx. Hence 3 is associative.

It has been shown [1, Lemma 11] that if (aog^eSRi for all a0e9Ie(0) and

g e 9L/1/2) then (axg)0e% for all aie9Ie(l) and ge9Ie(l/2). From this result

and the assumption that e is not nilstable we can conclude that there is an ele-

ment c0 e 9Ie(0) and an element g in 9I£(l/2) such that (c0g)x is nonsingular. If

bx is the inverse of (c0g)x in 9Ie(l) then [c0(2bxg)x/2]x = ^(cog^ = e. We may

also conclude that 9L/.1) = 3 is associative. In a similar manner we obtain the

result that 9IC(0) is associative.

If we take c0 e 9Ie(0) and w e 9le(l/2) such that (c0w)x = e and let 2cx =

(cqw)x = 4[c0(c0w)1/2]i then we can quote the results of Kokoris [7, Lemma 4

and Identity 29] that (cxw)0 = -/ or 0 and (cxw)x/2 = (c0w)x/2. No generality

will be lost if we also assume that c0 is nilpotent because 9Ie(0) = /g + 5R0 ar>d
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(c0w)l = [(<x/+ c0)w]¡ for any ae^. To complete the proof of the theorem it

remains only to show that (ciw)0 ^ 0. We assume that (ciw)0 = 0. If we examine

the 2Ie(l)-components of the terms of the relation Pic0, c0, w, w) = 0 we get

8(c0w)1 + 8[(c0w)i2/2]1=4[c0[w(wco)i]1/2]i+2^0^)1/2]!+ 4[w[c0(c0w)i/2]i/2]1.

Using this relation together with (2), (6), (7) and (c0w)i = e, we get 6e

+ 8[(c1w)2i/2]i = 2w2c12-2[w(c12w)0]i.But(cfw)0 = 4[c1(c1w)i/2]0=4[ci(c0w)i/2]o

= 2c0(ciw)0 = 0. Therefore either [(ciw)2/2]i or w2c2 must be nonsingular. If we

again use (1) with P(ci,ci,w,w) = 0 and examine the 2Ie(0)-components of the

resulting terms we get 8[(c0w)2/2]0 = 2cqW2. But then [(c0w)2/2]0 is nilpotent.

Since (c0w)i/2 = al 4- n where ne'3l1 + 5l0 [1, Lemma 10] we must also have

[(ciw)î/2]i nilpotent. Now by (6) we have 2[(c0w)j/2w]i = 2[(c!w)i/2w]i

= - [(ciw)0w]! + CiW2 = C!W2. But 2[(c0w)i/2w]0= - [(c0w)iw]0 + c0w2 = c0w2

is nilpotent. Therefore cxw2 and c\w2 are nilpotent. We have arrived at a contra-

diction. Hence (ciw)0 = —/ and the theorem is proved.

Theorem 2. There is an isomorphism T between 2Ie(l) and 2Ie(0) such

that for b1e2Ie(l), T(bt) is the unique element of 2Ie(0) satisfying (oiw)1/2

= [T(f>i)w]1/2. The subset 23 o/G of all elements of the form i>i 4- T(bi) is an

associative subalgebra of G isomorphic to both 2le(0) and 2Ie(l).;

Proof. We use clt c0 and w as in Theorem 1. If we consider only the 2Ie(l/2)-

components of the terms in P(c0,bltw,w) = 0 we get 8[(c0w)1/2(fc1w)0]i/2 +

4(i»iw)1/2 = 2[w{bl + [(b1w)1/2c0]1}]1/2 + 2{w[(c0w)i/2&i 4- (oxw)0c0]o}1/2

+ 2{c0[w(wbi)0]1/2}i/2 + ibiW)i/2. Using(5) and (2) on the terms [(c0w)1/2b1]0,

[(biw)i/2c0]i and {c0[w(wo1)o]i/2}1/2 this relation reduces to [(c0w)i/2(biw)0]1/2

= {vv[(cow)i/2Í'i]o}i/2- We now consider the 2Ie(l/2)-component of each term in

PÍCí, 61, w, w) = 0. We have

-A(biw)i/2 + 8[(c1w)1/2(i»1w)0]1/2

= 2{w[(c!Í?i)w +   C^biW)!^   +   fti(CiW)1/2]0}1/2

- (*>iw)i/2 + 2{c1[w(w/?i)0]i/2}i/2.

This relation together with (2) and (4) gives us 2[(ciw)i/2(f?iw)0]i/2 = (biw)1/2

+ {w[icibi)w]0}U2. But [(c0w)1/2(b1w)0]1/2 = {w[(c0w)i/2o1]0}i/2 and ic0w)1/2

= (c,w)1/2. Therefore (biw)li2 = ({2[(c1w)1/2o1]0 - f(c1ft1)w]0}w)1/2

=—2{[(b1w)1/2Ci]0w}1/2. We can now define T(fcj) = — 2[(i>!w)1/2Ci]0 to be the

element b0 in 2Ie(0) such that ibiw)1/2 = (b0w)l/2. To show that Tis well-defined

we assume (a0w)i/2 = 0- We have a0 = — a0(ciH')o = _ 2[c!(a0w)i/2]0 = 0 by

(5). Therefore (^0^)1/2 = (^ow)i/2 implies b0 = b'0. Simply by changing the signs

of ct and c0 and interchanging 1 and 0 we can get a similar result for 2Ie(0); i.e.,

for every boe2I(.(0) there is a unique bt = 2{[fb0w)1/2c0]lw}i/2 such that

(frow)i/2 = (kiw)i/2- Therefore Tis onto 2Ie(0) and is a 1-1 correspondence be-

tween 2IC(1) and 91,(0).
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Now if a and b are elements of 93 as defined in the theorem we have, with the

help of (2) and (4), that

[w(axbx)~¡x/2 = [(wbx)ax  + (wax)bx]x/2

= [(wb0)ax + (wao)^]^ = [(wax)b0 + (wbx)a0~\xl2

= [(wa0)b0 + (wb0)a0]1/2 = [w(a0fc0)]i/2-

Therefore T(axbx) = a0b0 and ab = axbx + a0b0e93. Clearly 93 is closed under

addition and scalar multiplication.

Define S(b) = be for every b e 93. It follows immediately from the above results

that S is a 1-1 correspondence of 93 onto 9Ie(l). From the definition we have

S(ab) = (ab)e = (ae)(be) = S(a)S(b) and S(a + b) = S(a) + S(b) for all a and

b in 93. Therefore 93 and 9Ie(l) are isomorphic as rings and hence as algebras. In

the same manner we show that 93 is isomorphic to 9Ie(0). We have shown also

that Tis an isomorphism. The associativity of 93 follows from that of G.

From the definition of93 it is clear that c = cx + c0 is in 93. From P(w,w,w,z)—0

it follows that w2 is in 93. Theorem 2 also implies that G =93 +93z.

Theorem 3. The mapping b -* D(b) = (bw)z is a derivation of 93 into 93

such that D(c) = 1.

Proof. Let a and b be arbitrary elements of 93. Then [(afc)w]]0 = [(afr^wjo

+ [(afc)0w]! = [(a1i>1)w]0 + [(a0fe0)w]1 = 2[a1(b1w)1/2]0 + 2[b1(a1w)1/2]0

+ 2[a0(b0w)x/2]x + 2[b0(a0w)1/2]i = 2[a1(fc0w)1/2]0 + 2[bi(a0w)1/2]0

+ 2[a0(b1w)1/2]1 + 2[ft0(aiw)1/2]1 = b0(axw)0 + a0(bxw)0 + bx(a0w)x

+ ax(b0w)x = b(aw)xo + a(bw)xo by (3), (5) and the definition of 93. If this re-

lation is multiplied by z we have D(ab) = aD(b) + bD(a) and D is a derivation

on 93 into G.

To show that D(b) lies in 93 for b = bx + b0, an element of 93, we need several

de)ntities ; the first of which is obtained from P(b0,w,w,cx) = 0. We get

%[(b0w)x(wcx)xl2]0 + 8[(fe0w)1/2 (wcx)x/2]0 = 2(boc0)w2+2 {[cx(wb0)x]w}0

after the usual simplifications using (2), (5), (6) and (cxw)x/2 = (c0w)1/2.

8[i'ovv)i/2(wci)i/2]o — 2(b0c0)w2 + 2{[c,(wfr0)1]w}0 after the usual simplifi-

cations. We consider P(b0,w,w, c0) = 0 next to get

- 3(b0cQ)w2 + 8[(f>0w)I/2(wc)1/2]0 + 6[(f>ow)i(c0w)1/2]0

= - 2{[(Vo)w]i/2w}0.

Finally we obtain 3(fejw)0 = 4[(ft1w)1/2(c0w)1/2]0 - 2{w[(c0b0)w]1/2}0 from

P(bx,w,w,cx) = 0. Now, from the proof of Theorem 2 and from (3) we have

6T[fe0w),] =  -I2{[(b0w)xw-]x/2cx}0

= 12[(c1w)1/2(fe0w)1]0 - 6{[(fe0w)iCi]w}0.
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By successively applying to this relation the three identities above in the order we

obtained them we get 6T[(i»0w)i]= -12[(f>0w)1(c1w)1/2]o-24[(bow)1/2(c1w)1/2]o

+ 6b0c0w2 = - 12[(b0w)i(cow)1/2]0 - 24[(fc0w)1/2(c0w)1/2]0 + 6c0b0w2

= 4{[(fe0c0)>v]1/2w}0 - 8[(t>0w)1/2(c0w)1/2]0 = -6(M')0. Therefore we have

D(b)z = (fcw)10z = (b0w)x — (bxw)0 e93. The fact that D(c) = 1 follows imme-

diately from the definition of c.

Theorem 4. // a and b are elements o/93 then [(wa)1/2b]1/2 = [w(afc)]1/2,

[Oa)1/2&]io = (wb)xoa and (wa)x/2(wb)x/2e 93.

Proof. By (2) and(4)and the definition of 93 we have [w(ab)]1/2 = 2[w(af>)1]1/2

= 2[(wa1)1/2f)1]1/2 + 2[(wfc,)1/2a1]1/2 = [(wa)1/2i)!]1/2 + 2[(wf>0)1/2a1]1/2

= [(wa)Xi2bx~]x/2 + 2[(wa,)i/2Mi/2 = t(wa)x/2bx]x/2 + [(wa)X/2b0)x/2

= [(wa)1/2ft]1/2. By (5) we have [(wa)1/2fc]10 = 2[(wa0)1/2b1]0 + 2[(wa1)1/260]1

= (wbx)0a0 + (wb0)xax = (wb)xoa. Now use P(w,w, a, b) to get 4w2ab + 8(wa)(wfc)

= 2w[(ab)w + (aw)b + (bw)a'] + a[w2b + 2w(w/>)] + b[w2a + 2w(wa)]. If

we consider only the G-components of each of the terms and if we use the facts

that (wa)10e93z for all ae93 and [w(az)]10e93 then 8(wa)j/2(wi»)1/2 -

4w[(afc)w]1/2 — 2a[w(wb)1/2] — 2b[w(wa)1/2] is in 93. Now P(w,w,az,z) — C)

implies 2w2a = — 2D2(a) + 2w(wa)1/2. Since a,w2 and D(a) are in 93, so also

is w(wa)x/2. Hence 8(wa)1/2(wi>)1/2 is in 93.

Corollary.   //aeG and fee 93 then [(wa))/2ft]i/2 = [w(ab)]1/2.

Proof. We can write a — a' + a"z where a' and a " are in 93. Since [(a"z)w~\x/2

= [(a"ftz)w]1/2=0 we have [(wa)x/2b]x/2 = [(wa')1/2fc]i/2 = [w(a'b)'\x/2

= [w(ab)]x/2.

We now define (5 to be the set of all g e 9Ie(l/2) such that (gc)xo is in 93.

Theorem 5. 9I,,(l/2) is the direct sum of the two subspaces (w93)1/2 and ©.

Moreover (®a)1/2 £ (5, [®(az)]1/2 s (w93)1/2, and [(w93)1/2(az)]1/2 £ ©, for

all ae93.

Proof. If g is any element of 9Ie(l/2), let (gc)x0 = a + a'z where a and a'

arein93.Since[(a'w)1/2c]10 = a'z we have {[g-(a'w)x/2]c}xo = a,[g-(a'w)x/2]

e © and g is equal to the sum of an element of ® and an element of (w93)1/2. If h

lies in both (w93)1/2 and © then (hc)x0 lies in 93z and 93. Hence (hc)xo = 0.

But [(wa)1/2c]10 = az. Therefore if n = (wa)x/2 then a = (wa)x/2 = 0 and n = 0.

Hence 9Ie(l/2) is the direct sum of © and (w93)1/2.

Since D(c2) = 2c, the 9Ie(l/2)-components of the terms obtained from

P(c, c, w, g) = 0 with g e © yield the relation

8[(cw)1/2(cg)10]i/2 = {2c[w(cg)10]i/2 + w(c2g)i0 + 2w[c(cg)i0]},/2

+ {2w[c(cg)i/2]10 + 6g(cz)}1/2.
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Using this relation, Theorem 4 and the property that (c^)i0e 23 it is easily seen

that [g(cz)]1/2 is in (w23)i/2. Therefore [g(cz)i,2c]i0ez23. But

[0(cz)i/2c]io = \igci)il2ci - (Éfc0)i/2ci - igc0)1/2c0 + igci)i/2c0]10

=  [(l/4)(c23) - (l/4)(c20) - (1/2) igCl\co + (l/2)(»c0)iC1]1

=   -(l/4)(c20)lo z + (1/2)(cz)(c0)iO.

Therefore since icg)l0 is an element of 23 we also have (c2g)i0 is an element of 23.

Similarly [(c3)1/2c]10 = (l/4)(c2g)i0 4- (l/2)c(c^)i0 is in 23. Therefore (cg)l/2

is in ©. We now examine the 2Ic(l/2)-components of the terms resulting from

P(ai,c„w,0) = 0. With the help of (3) and (4) we get

[2(aiw)o(ci0)i/2 + 2(aiw)l/2(ci0)o + 2(ciw)i/2(ai0)o + 2ic1w)0ia1g)U2]l/2
(8)

= {>[(aici)0]o + 0[(aiCi)w]o}1/2.

Interchanging the subscripts 1 and 0 we obtain

[2(a0w)i(coâf)1/2 + 2(aow)i/2(co0)1 + 2(cow)1/2(ao0)i + 2(cow)i(ao0)i/2],/2

= {w[ia0c0)g]i + 0[(aoco)w]i}i/2.

But

{fl[(a0cü)w]1}i/2 = {2g[a0(c0w)l/2 + c0(fl0w)i/2]i}i/2

= {^9laoiciV)iii]i+ glaiic0w)i]i)il2

- {glcii°-ow)i] + g<*i}i/2-

Therefore

[2(auw)i(c05)i/2 + 2(00^)1/2^00)1 + 2(c0vv)i/2(a0g)1 + 2(c0w)1(a0g)i/2],/2

(9)
= {ff[ciOow)i] + w[ia0c0)g]i + [aiS(]}i/2.

Again consider only the 2Ie(l/2)-components of the terms of P(a0,cL,w,g) = 0.

This relation together with (2), (3) and (4) gives us

[2(aow)i/2(ci0)o 4- 2(aow)i(ci0)1/2 4- 2(a0g)i(ciw)1/2 + 2(ciw)o(ao0)i/2]i/2

(10)
=   {[a0iciw)0]g   4-  3[ci(a0w)i] + w[a0(cig)0] + ^(aofiOi]}^-

Interchanging the subscripts 0 and 1 in (10) we obtain

[2(fliH')i/2(c03)i 4- 2(aiw)0(c0g)i/2 + 2(ai0)o(cow)i/2 + 2(c0w)1(a1g)i/2],/2

(11)
=   {[ai(cow)i]0   +   g[c0(aiw)0] +  w^a^c^i] 4- w[c0(aiáf)0]}j/2.

We now subtract the sum of identities (10) and (11) from the sum of the identities

(8) and (9) and use the facts that (alw)ll2 = (a0w)i/2> (¿1^)0 = -/and ic0w)i = e.

Wehave{2[(az)w]lo[(cz)0]1/2 + ia0g) - 2iaig) - g[(aiC1)w]04-g[c0(a1w)0]}i/2

is in (w23)i/2. Therefore
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{-2D(a)[(cz)g]1/2 + (a0g) - 2(fllg) - 2g[(alC|w)1/2]0

- 2g[c1(a,w)1/2]0 + 2g[a,(c0w)1/2]0}1/2

= {-2D(a)[(cz)g]1/2 + (a0g) - 2(axg) - 2g[a1(c1w)1/2]0

- 0[ao(ciw)o] + 2g[a1(c1w)1/2]0}1/2

= {-2D(a)[(cz)g]1/2 + (a0g) - 2(axg) + ga0}l/2

= {-2D(a)[(cz)g]1/2 - 2(az)g}1/2

is in 93. Since [(cz)g]1/2e (w93)1/2 we have [(az)g]1/2 e(w33)1/2. To show that

(ga)1/2e© for ae 93  we  consider

[(0fl)i/2<Oio = i(9ax)xt2cx + (^«0)1/2^1 + (gax)x/2c0 + (ga0)1/2c0]10

= [2(^0)1/2^1 + l9(az)~\x/2cx + 2(gax)x/2c0 - [g(az)]1/2c0]10

= [(9cxoa0 + (9c0)iai + g(az)xl2(cz)~]x0

=(gc)i0a + {[9(azy]x/2(cz)}X0.

Since (gc)xo e 93 so is (gc)i0a. Also since [g(az)~\x/2 e(w23)i/2 we have

{[g(az)-]x/2(cz)}X0e%.

Hence [(ga),/2c]10e 93 and (ga)1/2e®. Finally if we take a, b and h in 93

we have {[(wa^^^bz^^h^o = {[(wa0)i/2bi]i/2ni ~ [K)i/2Mi/2fti}o

= {[(wbx)a0\xl2hx - (l/4)(wni)0a0b0}o - {[(w&o)ao]i/2ñi - (l/4)(whx)0a0b0}0

= (l/4)(wn1)oMo-(l/4)(wn1)oMo = 0. Similarly {[(waoKbzXJ^no}! = 0. By

taking n = c we can see that the (w93)1/2 component of [(wa)1/2(6z)]1/2 is 0.

Hence [(wa)x/2(bz)~]x/2 is in ©.

Theorem 6. [(w93)1/2(a3z)]1/2 = 0.

Proof. Let a be a nilpotent element of 9Ie(l). There exists a Xe% such that

d = a + Xc has the property that (d0w)x is a nonsingular element bx of 9If(l)-Then

[d(2bx~1w)x/2]x = bx~1(dw)x = e. If we let b be the unique element of 93 whose

9Ic(l)-component is bx we have by the isomorphism established in Theorem 2 that

[d(b_1w)1/2]10 = b~iD(d)z = z. For these elements de G and (wfe-1)1/2 e 9I£(l/2)

we get a 93 £ G such that 33 + 93z = G and where 93 has the properties described

for 93 in Theorems 2-5. Let t + sze93z where t and se 93. We have

[(wb~%2(t +sz)~\xl2 = 0. Therefore (wb_1i)i/2 + [(wi>-1)i/2(sz)]i/2 = 0. Since

[(wb~l)x/2(sz)]x/2e © we must have (wb~1t)xl2 = 0 and b~1t = 0. Therefore

t = 0 and 93z £ 93z. If 93z is a proper subset of 33z then 33 is a proper subset of 33.

But this would imply that 93 +93z is a proper subset of G which is a contradiction.

Therefore we must have93z =93z and [(wi>_1)1/2(93z)]i/2 = 0- Now let S be the

subset of 33 of all elements s such that [(ws)1/2(33z)]i/2 = 0. Let x,ye33. There-
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lation P(y,x,w,z) = 0 yields [(wx)(yz)]i/2 4- [(wy)(xz)]1/2 = 0. Let íe 23, sand

s'e®. Then weget {[w(ss')]i/2(íz)}i/2= — {(wí)i/2(ss'z)} = 0 from P(fw,s,s'z) = 0.

Hence S is a subalgebra of 23. If we let b-¡ = <x + n where b is as described

above and n is a nilpotent element of 23 and a e $, then n e S and hence every

power of « is in S. But b is the sum of a multiple of the identity and a linear

combination of powers of n. Hence b = X + D(a)e<5 and the derivative of every

element of 23 is in S. Now a e 23 implies a = Dica) — cD(a). Since D(ca),

c = (l/2)D(c2) and D(a) are in S we have23 s S and [(w23)i/2(93z)]1/2 = 0.

At this point we have obtained partial results on the multiplications of 21.

However, the chief remaining gap in the characterization of 21 lies with the

products involving elements of ©. To facilitate the determination of these pro-

ducts we shall introduce some symbols Qg, d>g, kg, fg, and hg on 23 into 23 for

every g e © by letting

(12) ig(bz)]1/2 = [_wQ3(b)]U2,

(13) igb)10 = hjtb) + k,ib)z,

(14) [9iv*b)il2]i0 = f9ib) + <¡>sib)z

for every b e 23. In our subscripts we abbreviate iga)xi2 to ga.

From (2) and (3) and the definition of © we have

{\_iga)ii2Íbz)]mc}i = {[(0a)i/2Í>i]i/2Co}i   -   {[Wl/2¡>o]l/2Co}l

=  {2[(0ai)i/2bi]i/2Co  4- [iwQaiä))il2bi]ll2c0

- 2[(gai)i/2Mi/2i,o - [(wô9(a))i/2bi]i/2Co}i

= (\/2)igc0)iaibi  + il/2) btQeia)-il/2) biQgia)

- 2{[(ff&0)l/2fllJl/2Co}l

= (l.^KtfCoVibi -2{[(gfe1)1/2a,]i/2c0},

+ 2{[(wee(i>))i/2a,]1/2Co}.

= alQgib).

Now [iga)1/2ibz)]U2 = [wQgaib)]l/2 and therefore [(wÖ9(I(b))i/2c]io = Qgaib)z.

Hence

(15) Qgaib) = aQgib).

Consider hgbia) + kgbia)z = [igb)ll2a]i0 - [(áfo)i/2ai]0 4- (í/o)i/2«o]i

- 2ligb0)l/2ai]0 + íiwQgib))u2ai]Q + 2[(g&i)]/2a0]i - [(wQg(b))i/2a0]i

= b0(gai)0 + bi(ga0\ + Qí(b)[faz)w]i0 = bhgia) + bzkgia) - Qgib)D(a).

From this relation we obtain

(16) V(«) = bhjia) - Qgib)Dia),

(17) k9bia) = bktia).
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We now consider the G-components of the terms of P(a,a,g,z) = 0. We have

3ahg(a)z + 3akg(a) - 5hga(a)z - 5kga(a) = Qg(a)D(a)z - hg(a2)z - kg(a2). If

we equate 93-components and 93z-components we have

(18) kg(a2) = 2akg(a),

(19) hg(a2) = 2ahg(a) - 4Qg(a)D(a)

by using (16) and (17).

We have proved that kg is a derivation for every g e ©. We shall now prove

that Qg is a derivation for every ge®. We have

[wQg(aby]x/2 = [g(abz)~\xl2 = [g(ab)x~\xt2 - [g(ab)0]t/2

= [(9ax)xl2bx + (gbx)x/2a1 - (ga0)x/2b0 - (gfc0)i/2Ûo]i/2

= l(9ax)x/2bx + (gb0)x!2ax + (wQg(b))x/2ax - (ga0)x/2b0

- (9bx)Xi2aü + (wQg(b))x/2ao]x/2

= [(9ao)i,2b,+(wQg(a))x/2bx + (gb0)x/2ax+(wQg(b))i/2a1

-(9ai)i/2bo + (wQg(a))i/2bo  ~ (9bx)x/2a0 + (wQg(b)x¡2ao]i/2

= l(9a0)u2bi - (9bi)u2a0 + (gb0)i/2ax -(gax)x/2b0

+ v(Qg<a)b) + w(Qg(b)ay]xl2.

By (4) we have (wQg(ab))t/2 = [w(Qg(a)b + (?9(f>)a)]1/2. Therefore

(20) Qg(ab) = Qg(a)b + Qg(b)a .

Next, we consider the ©-components of the terms of P(g,a, bz, z) = 0 to get

4[(ga)b~\Xft = [ig(ab) + (gb)a~\)/2. However

[(<7«)f>]i/2 = I2(9a0)bx + (wQg(a))bx+ 2(gax)b0 - (wßÄ(a))fc0]1/2

= 2[(gft!)a0 + (gb0)ax]x/2

= [(gb)a0 + (wQg(b))a0 + (gb)ai - (wQg(b))ax]x,2

= [(9b)a]x/2.

If we combine the above two relations we have

(21) [(ga)b-\x/2 = [g(ab)-\xl2.

A similar computation using P(w,w,a,z) = 0 and P((wa)x/2,w,a,z) = 0 gives us

(22) w(wa)i/2 = w2a + D2(a)

(23^ (wa)2/2   = w2a2 +2aD2(a) - D(a)D(a).

If we consider the (w93)1/2-components of the terms of P(z,(aw)x¡2, w,g) = 0 we

have [wQg(w2a) + wQJD2(a)) + w(a<j>g(l)) + w^>Ä(a)]1/2 = 0. By letting a = 1 we get

(24) ^(D=-^ei(w2).
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Therefore

(25) <ptia) = \ a Qg(w2) - Qgiaw2) - Q9(D2(a)).

From (15) and (25) we have

(26) <t>gaib) = a4>gib)-

We now wish to express hg in terms of Qg and D. We examine the 23z-components

of Piw,g,c,a) = 0 and use (21) and (26) to get 3<pAc)a + 3<j>gia)c + 3hg(a)

+ 3aD(hgic)) + 3D(a)hg(c) + 3cD(hg(a)) - Ahgc(Dia)) = 34>JA)ca + Dihgica)
+ hja) + hgic)a + hjc) + h9ia)c) + Hgica) - 3/i9(D(ca)) - chg(D(a))

+ (j)g(Dia)). We simplify this relation using (25), (16) and the linearized form of

(19) to get -3Qg(D2(a))'c + 3hg(a) = -3QgiD\ca)) - Qgic)D2(a) - 3D(Qg(c))D(a)

- 3D(Qg(a)) - 3hgic)D(a) + lQgiD(a)). Since Qg and D are derivations we have

(27) 3hg(a)= -3D(Qg(c))D(a) - 3D(Qg(a)) - 3hg(c)Dia) + QgiD(a))-AQg(c)D2(a).

If we let a = c in (27) we get «8(c) = — £>(Qs(c)). Therefore (27) simplifies to

(28) 3h9ia) = - 3DiQg(a)) + Qg(D(a)) - AQg(c)D2(a).

We substitute the values obtained from (28) in hg(ac) = chg(a) + ahg(c) — 2Qg(a)

— 2Qg(c)D(a), a linearized form of (19), to get

(29) Qg(a) = Qe(c)D(a).

If we use this relation in (28) we obtain

(30) hg(a) = - D(Qg(c))Dia) - 2Qgic)D\a).

We now investigate the behaviour of fg. Consider the 23z-components of the

terms of PHwb)l/2,g,a,z) = 0.   We have

(31) 2fg(b)a =;ga(b) +fg(ab) - bD(kg(a)) - bkg(Dia)) - D(a)kg(b)

and when b = 1

(32) 2f9(l)a =/9a(l) +fg(a) - D(kg(a)) - kg(D(a)).

We define a new mapping Tg on 23 into 23 for each g by

(33) T9ia) +fg(l)a -fgaiA) + Dikg(a)).

This definition together with (32) gives us f9(a) =fg(l)a + Tg(a) + kg(D(a)) and

/3a(l) =fgil)a-T9ia) + D(k9(a)). Now/9a(b)= -fg(ab) + 2fg(b)a + b(Dkg+k9D)(a)

+ kg(b)D(a) and fga(b) = - fgJl) + 2fgail)b + a(Dkg + kgD)(b) + D(a)kg(b)
by (31) and (32). Substituting the values for fg(ab), f9ib), fgabi\) and /„„(l) ex-

pressed in terms of Tg in these relations and simplifying we have
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(34) Tg(ab) = Tg(a)b + Tg(b)a

and

(35) fga(b) =fg(l)ab + Tg(b)a - bTe(a) + akg(D(b)) + bD(kg(a)) - kg(a)D(b) .

It follows readily that

(36) Tga(b) = aTg(b) - D(b)kg(a).

We have already shown that <j>g(a) = Qg(c)[(l/2)aD(w2) - D(w2a) - D\a)].

We also have that P(g,g,(aw)x/2,z) = 0 implies [g<t>g(a)]x/2 = 0. If we let a = c3

we have <f>g(c3) = Q,,(c)[-(l/2)c3D(w2) - 3c2D(w2) - 6]. Since the second factor

on the right-hand side is nonsingular we have [gQg(c)~\x/2 = 0. Multiplying by cz

and considering the (w93)1/2-component we get

(37) 0,(c)2=O.

Similarly we have

(39) Qg(c)kg(a) = 0.

Now consider the element w' = [w — wD(Qg(c))~\xt2 + g of 31t,(l/2). We have

(c2w')0 = - f. By Theorem 1 and its proof, c2 — (l/2)(c2w')0 is an element a

in G such that (aw')z = 1. Also (c\w')0= -2c0 — 4(Qg(c))0. Therefore (aw')z

= {[> + Qa(c) - Qg(c)z-]w'}z = 1 - 2Z>(Ô,(c))2 - 2D(ßs(c))2z - 2Qg(c)D2(Qg(c))z

+ kg(Qg(c)) - 2Qg(c)D2(Qg(c)) + kg(Qg(c))z. Simple properties of derivations and

the fact that Qg(c)2 = 0 gives us (aw')z = 1 + kg(Qg(c)) + kg(Qg(c))z. Therefore

(40) kg(Qg(c)) = 0.

We also have from (35) and (36) that

(41) Tg(Qg(c)) = /9(l)ß9(c) and Tg(b)Qg(c) = 0

for every b e 93.

For w' and c' = c + Qg(c) — Qg(c)z we have a corresponding 93' and 33'z as

described in Theorem 2. To determine these two subspaces we let a + bz be an

element of G with a, fe e 93 and such that the 1/2-component of w'(a + bz) is 0.

We obtain wa - wD(Qg(c)a + ga + wQ0(b))x/2 = 0. Therefore a[l - D(Qg(c))]

= -Qg(c)D(b). Solving for a we have a = -D(fe)Q8(c).Since93' + 93'z = G, we can

conclude from the above result that 33' consists of all elements of the form

a — Qg(a)z. We note that the G-component of the element (a — Qg(a)z)w' must

be an element of 93'z by Theorem 3. If we calculate this element we obtain

D(a)z - D(a)D(Qg(c))z + Qg(c)D2(a) + kg(a)z - D(Qg(a))D(Qg(c)) + D(Q„(c))2

•D(a)z. In order for this element to be in33 'z we must have Qg(c)D2(a) + D(Qg(c))2D(a)

= Qg(c)D[D(a) - D(a)D(Qg(c)) + kg(a) + D(Qg(c))2D(a)~] by the definition of

93'z. Therefore
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(42) Qtic)Dikgia)) = k9ia)DiQaic)) = 0.

We also have

(43) Qgic)k,(b) = 0

for any teffi and any be 23 since Qgic)ktib) = k,iQgic)b)-k,(Qg(c))b = kt(Qgb(c))

- k,(Qg(c))b = -kgb(Q,(c)) - k,(Qg(c))b = -bkg(Q,(c)) - k,(Qg(c))b = 0.
We define t' to be the 1/2-component of

*l-D(Qt(c)D(Qg(c)) + Q,(c)D2(Qgic)) - k,(Qg(c))] + t

for f e©.ThentheG-componentof(c + Qg(c) - Qg(c)z)t' is

(44) -D(Q,(c)) - D(Qt(c))D(Qg(c)) - 2Q,ic)D2(Qg(c) + ktiQg(c)) + Qg(c)D2iQ,ic))z

since Qlc)D\Qgic)) + 2D(Qg(c))D(Qt(c)) + Qg(c)D2(Qt(c)) = 0 and

2D(Qt(c))D(Qg(c))DiQgic)) = - Q,(c)D2(Qg(c))D(Qg(c)) = 3Q,(c)Q9(c)D3iQgic)) = 0.

Hence t' is in ©'. We now compute D' and Q\. We have simply that

D' : a - Qg(a)z -> Día) - D(Q9(c))D(a) + D(Qgic))2D(a) + k9(a)
(45)

-lQg(c)D2(a) + D(Qg(c))2D(a)]z,

(46) 0', : c + Qg(c) - Qg(c)z -+ Qt(c) + Q,(c)D(Qg(c)) - Qg(c)DiQ,(c))z.

Therefore

D'Q't, : c + Qg(c) - Qg(c)z -+ D(Qt(c)) + DiQ,íc))DÍQgíc))

+ Q,(c)D2(Qg(c))-D(Qg(c))DÍQtíc)) + kgÍQtíc))-Qgíc)D2(Q,íc))z.

By (30) and (44) we have

DÍQÁc)) + D(Qt(c))D(Qg(c)) + Q2(c)D2(Qg(c)) - D(Qg(c))D(Qt(c)) + kg(Qt(c))

=D(Qt(c)) + D(Q,(c))D(Qg(c)) + 2Q,ic)D2iQgic))-ktiQg(c)).

Therefore   Qtic)D\Qgic)) - D(Qg(c))D(Qt(c)) = 2Qt(c)D2(Qg(c)) and

(47) Q,íc)D2ÍQgíc)) = -DÍQ,(c))DÍQgíc)).

Replacing t by (ci)1/2 we have cQ,ic)D2iQgic)) = - cDÍQt(c))DiQg(c)) - Qt(c)DiQgic))

and therefore

(48) Q,(c)DiQ9ic)) = 0.

We now examine the 23-components of the terms of Pig, t, a, z) = 0 for g, t e ©

and a e 23. We have

mil,a) + mía, 1) = 2m(l, l)a + 2DiQ,ic))D(D(Qgic))Dia))
(49)

+ 2D(Q9(c))D(D(Q,(c))D(a)) + (kgkt + ktkg)(a)
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where m(a, fe) denotes the 33-component of (ga)il2 (tb)xn. Since m(a,b) does

depend on g and t also, we will use mg,(a,fe) for m(a,fe) when there is any chance

of confusion. Replacing t by (<b)i/2 in (49) we obtain

m(l, ab) + m(a, fe) = 2m(\,b)a + 2bD(Qt(c))D(D(Qg(c))D(a))

(50) + 2bD(Qg(c))D(D(Q,(c))D(a)) + 2D(Qt(c))D(b)D(a)

+ kg(b)kt(a) + b(kgkt+ktkg)(a).
Define

(51) Sg_,(a) = m(l, a) - m(l, l)a - 2D(Qg(c))D(D(Q,(c))D(a)) - kgkt(a)

for all a e 33. If g = t the right-hand side of (51) reduces to identity (49) with g = t.

Therefore Sg¡g is identically zero. A simple linearization gives us

(52) S9,, = -S,t9.

Substituting (51) into (50) and letting a = fe we have Sgt(a2) + 2LgL,(a2)

+ m(a,a) + kgkt(a2) = 2Sg>t(a)a + m(l,l)a2 + 4aLgLt(a) + 2akgk,(a) where

Lg = D(Qg(c))D and Lr = D(Q,(c))D are derivations. Interchanging g and t in this

result and subtracting gives us 2Sg>,(a2) + 2LgLt(a2)-2L,Lg(a2) + (kgkt- k,kg)(a2)

= 4Sij((a)a + 4a(L9L, - L,Lg)(a) + 2a(kgkt - k,kg)(a). Since both LgLt - LtLg

and kgkt-ktkg are derivations this relation reduces to SgJa2) = 2aSg,(a).

Hence Sg>, is a derivation of 33 into 33.

We can now replace (50) by

m(a, fe) = m(\, \)ab + aSg t(b) - bSg ,(a) + 2aLgL,(b) + 2bL,Lg(a)
(53)

- 2Li(a)L,(fe) + akgk,(b) + bk,kg(a) - kg(a)k,(b).

By setting g = t, a = 1 and fe = Qg(c) in (53) we have

(54) m9,fl(l,l)o9(c) = 0.

An examination of the (w33)1/2-components of the terms of P(g,g,g,z) = 0

gives us

(55) O9(c)D(mii9(l,l)) = 0.

Finally we compute P((ga)x/2, (tb)x/2,w,z) = 0  to get

(56) ngJ(a, fe) = -aeff(/((l)fe - Tt(b) + D(k,(b) -)bQt(fg(\)a - Tg(a) + D(kg(a))

where ngt(a,b) is the33z-component of (ga)x/2-(tb)x/2. Now P(g,g,(wa)1/2,z) = 0

Therefore n9tS(l, l)a + 209(/9(l)a) + 2Q9(Tï(a)) = 0. From (56) with g = t and

a = fe = 1 we have

(57) Qg(Tg(a))=-Qg(a)1g(l).

2. In the previous section we expressed the multiplications of 91 in terms of

constants and derivations. In this section we use these multiplicative properties

to construct a simple power-associative algebra of degree two from an associative

algebra.
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Let 23 be an associative, commutative algebra over a field 5 of characteristic

p > 5. Also assume that 23 has a single nonzero idempotent 1 that is a unity

quantity.

Let 230, ...,23„_i be n homomorphic images of the vector space 23. We let 2

be a sum of these n vector spaces, but not necessarily the vector space direct

sum. We let z23 be a one-dimensional module over 23. Clearly z23 is a vector

space over g and we form the vector space direct sum 21 =23 + ß 4-z23.We

now extend the multiplication of 23 to 21 in such a way that 21 remains a commu-

tative, power-associative algebra. First we define

(58) (za)izb) = izb)(za) = ab,

(59) lx = x,

(60) z v = 0

for every a and b in 23, every x in 21 and every y in tí. The element e=(l/2)(l + z)

is an idempotent. We have already defined sufficient multiplicative properties to

determine an idempotent decomposition of 21. Clearly ß £ 2Ie(l/2) and

23 +23z s 2le(l) + 2IC(0). The second part of this statement follows by consid-

eration of a + bz = (c + cz) + id — dz) with 2c = a + b and 2d = a — b. For

each of the vector spaces 23¡ and the corresponding homomorphism of 23 onto

23¡ we define (g¡b)i/2 to be the image of b. Since this notation is consistent with

that of the decomposition of 21 with respect to e we will allow the confusion

of the two notations.

In order to complete our definitions of the multiplications of 21 we choose

elements by and b¡of23 and derivations Du and D¡on23 into 23 for i*J=0,l,...,n —1

with the following restrictions:

(61) DiJ=-DJi,       biJ = bji,       b0 = 0

for all values of i and j and

bibj = (bi + bj)biJ = Q,

btD0ibj) = (6, + bj)D0ibtj) = Dtfjb) + Djibtb) = 0,

(62) bjDoD^b) + bfloD/b) = bjDfb) = 0,

ib¡gj + bjgt)1/2 = 0,       b¡b0¡D0 = - b,D0öoi

for all  i and j different from 0 and all be 23. We now define

(63) igfi)u2b = [g(ab)]l/2-D0(ab,)DQ(b)-2biaD2(b) + aDi(b)z,

(64) (0¡a)i/2(bz) = - [(Sf¡a)i/2b]z 4- {g0íaD0íb)b^}1/2,

(65) igfi)migjb)ll2 = abbi} + aD^ib) - bDtfia) + aDpfJb) + bDtDj(a)

- Dj(b)D¡(a) + 2aL¡Lj(b) + 2bLjL¡(a) - 2Lj(b)Li(a)

+ abAPolDoß) - b0Jb - D0Dj(b)]}z ■ bbjD0[D0i(a) - b0ia - D^a^z



1962] ON COMMUTATIVE ALGEBRAS OF DEGREE TWO 309

where L¡ = D0(b¡)D0, i,j = 0, ...,n —1, and a and fee 33. Since we did not restrict

£ to be a direct sum of subspaces it is necessary to assume that our multiplica-

tions in 31, as defined above, are well-defined. We place two additional assump-

tions on 91. If TJ) is the set of derivations consisting of D¡ and Du for all i and j

we assume, in the terminology of Albert [3], that 33 is ÎJ-simple; i.e., there is no

nontrivial ideal 3 of 33 such that 3 is X>àdmissible. The second assumption is

that for every element g in S there is a t in £ such that gt is not zero.

Theorem 7. Every commutative, power-associative, simple algebra of de-

gree two over an algebraically closed field <$f of characteristic p^ 2,3,5

is an algebra of the type described above.

Proof. We choose a set of elements gx, ...,gn-x in © such that every element

of © is expressible in the form Z(g¡a¡)1/2 where a¡ e 33. We translate the notation

of §1 to the notation of this section by letting 2 — 3Ie(l/2), g0 = w, D0 = D,

feoo = w2, b0i=fgt(l), D0l=Tg„ D¡ = kg¡, b¡ = Qgí(c), btj = mgiygj(l,í) and

D¡j = S9i>9j. where i,j # 0. Identities (25)-(57) give us the relations (61)-(65).

If 3 is a nontrivial ideal of 33 that is Inadmissible then if a e3 we have

Qg(a), fga(b), <pg(a), <pga(b), fgb(a)mg,(a,b) and n9i((a,fe)e3. This is sufficient to

guarantee that 3 +3z + (w3)1/2 + (®3)1/2 is a proper ideal of 91. Since this

contradicts the simplicity of 91 we have that 33 is T>simple.

Let (wa)x/2 + g be an element of 9Ic(l/2) such that there is no element t in

9Ie(l/2) such that (wa)x/21 + gt ^ 0. Choosing t to be successively w,(wc)x/2 and

(wc2)x/2 and considering only the 33-components of the resulting terms we have

w2a + D2(a) +/9(1) = w2ac + cD2(a) - D(a) +fg(l)c + Tg(c) = w2ac2 + c2D2(a)

+ 2a — 2cD(a) + fg(l)c2 + 2cTg(c) = 0. Eliminating w2 from these equations

we have -D(a) + Tg(c) = 2a- cD(a) + cTg(c) = 0. Hence a = 0 and/9(l) = Tg(c)

= 0. If we multiply g by (wb)x/2 for fe e 33 we have /9(fe) = <j>g(b) = 0 by our as-

sumption on g. By a previous result we had that Qg(c) was a multiple of <f>g(c3).

Hence Qg(c) = 0. Now /9(fe) = Tg(b) + kg(D(b)) = 0 for all fe e33. If we substitute

fee for fe we have cTg(b) + ckg(D(b)) + kg(b) = 0. Therefore fe9(fe) = 0. We now

have that Gg = {(ag)Xf2 : a e93}. With this choice of g and for any fe e 33 we

have/9„(fe) = 0 by (35) and <t>ga(b) = 0 since Qga(c) = aQg(c). Also mg¡t(a,b)

= aSgt(b) — bSg%t(a). But by the assumption on g and (51) we have S9,=0. There-

fore mg,(a,fe) = 0 for all a and fe33. Combining this result with (56) we have

(9a)x/2t = 0 for all a e93 and all t e 9Ie(l/2). Therefore the ideal generated by

g is {(ag)x/2 : a e 93}. This contradicts the assumption of simplicity of 31. Hence

for each x e 9Ie(l/2) there is an element t in 9Ic(l/2) such that xt / 0.

Theorem 8. An algebra 91 over a field % of characteristic p ± 2,3,5 as

described in identities (58)—(65) is a commutative, power-associative, simple

algebra.
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Proof. It follows readily from the definition of 21 that 23 +23z 4- (#023)i/2

is a subalgebra of 21. We shall show that this subalgebra is power-associative

by examining P(x,y,s,i) for various values in 23 4-23z + (#023)i/2. IfP(x,y,s,f) =0

for all possible choices of the variables x,y,s and t in 23, 23zor(a023)i/2 we have

23 4-23z + (<7023)i/2 power-associative. We examine the powers of x = a + g0 for

a e 23. We have x2 = a2 4- b00 + (a#o)i/2 + 2D0(a)z, x3 = a3 4- 2ab00 - D20(a)

+ 5aD0(a)z + D0(b00)z + [(2a2 + boo)0o]i/2 and x2x2 = x3x. The proof of this

result depends on the properties

a(bz) = (ab)z,

iaz)ibz) = ab,

(66) (bz)(<70a)1/2=-aD0(b),

b(g0a)i/2 = liab)g0]i/2 + aD0ib)z,

Í9oa)ii2Í9ob)i/2 = abb00 + aD20ib) + bD20ia) - D0(a)D0(b).

If de 23 and if we replace D0 by dD0, b00 by b00d2 + 2dDl(d) - D0(d)2 and

9o by Í9od)i/2 we see tnat relations similar to those expressed in (66) hold. There-

fore we can conclude that a + ig0d)i/2 has a unique fourth power.

Next we investigate the fourth powers of x = az + g0. We have x2 = a2 4- b00

- 2D0(a), x3 = a3z + b00az + D0(b00)z - 2D2Q(a)z + a2 + b00 - i2D0(a)g0]l/2

and x2x2 = x3x. Again the only multiplicative properties used were those ex-

pressed in (66). Therefore az + ig0b)i/2 has a unique fourth power for all a and

be 23. It is easily seen that 23 +23z is associative. Hence a + bz has a unique

fourth power. The assumption on the characteristic and simple linearizations

of these three fourth powers we have obtained give us the result that P(x, y, s, t) = 0

provided that in any evaluation the four values x, y, s, and t are chosen from only

two of the three subspaces 23, 23z and (#0^)1/2- This leaves us those choices of

x, y, s and í for which xe23, ye23z, se(<¡f023)i/2 and t is arbitrary. Because

of the linearization process we need only consider P(a,bz,ig0d)i/2, a),

Pia,bz,ig0d)l/2,bz) and Pia, bz,(g0d)1/2,ig0d)l/2). Straightforward computations,

which we omit, show that each of these relations is zero. Therefore 23 4-23z

+(a033)i/2 is power-associative.

Now let g = Z(<7,a¡)i/2 where afe23. The index i, or indices i and j, of this

summmation and all subsequent ones will run from 1 to n — 1. Define

bg    =   Zufbj,

Dg    =   Ettf),,
b0g   =   Ia¡V - 2X¡(a¡) + Iö0l>i(«.)>

(   } Do„ =   laA,- 10^)00,

bgg   =   ¿Zbijaiaj + 2TlaiDij(aj)-rA'EajLjLi(ai)

-   iD^Djiaf).
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From (62) and (67) we have

b2g =  bgbgg = bgD0(bgg) = fe9D9(fe) = Dg(bg) - bgD0Dg(b) = 0,

(68) bgb0gD0(a)=-bgD0D0g(a),

(9bg)Xl2 = 0.

From (65) we have (ga)x/2(ga)x/2 = fe99 + 2aD2(a) - Dg(a)2 + 4 T,aaiLiajLj(a

- 22ZaiLi(a)ajLj(a).   Now    la^ia)   =    laß^bJD^a)    =    D0(bg)D0(a)

- 2ZbiD0(a¡)D0(a). Therefore 2~laiLi(a)ajLj(a) = Lg(a)2 where Lg=D0(bg)D0. Also

I¡aiLiaJLj(a) = 2ZLgajLj{a) - 2ZbiD0(ai)D0aJLJ(a)

= L2g(a) - lLgbjD0(ai)D0(a) -  2ZbiD0(ai)D0aJLj(a)

= L2g(a)-  2ZD0(bi)D0(bj)aiD0(aJ)D0(a)-  2ZbiD2(bJ)aJD0(ai)D0(a)

= I».

Therefore

(69) (ga)2x/2 = fe99 + 2aD2(a) - Dg(a)2 + 4aL2(a) - 2L9(a)2.

We also have

b(ga)x/2 = g(ab)x/2 - D0(abg)D0(b) - 2bgaD20(b) + aDg(b)z,

(bz)(ga)x/2 = g0(aD0(b)bg)x/2 - [(ga)xl2b~\z

for all a and fe in 93.

We now let g'0 = g0 + g and a' = a — bgD0(a)z for a e33. We define a deriva-

tion D'0(a') = [D0(a) + D0(bg)2D0(a) + D9(a)]'andletf = fe00 + 2fe09 - bgD0(b00)z

+ fe99 - 2bgD0(b0g)z. Now (D0 + D0(bg)2D0 + Dg)2 = (D + Dg)2 + 2L2. Therefore

a'D'02(a') = a(D0 + Dg)2(a) + 2aL2g(a) - bg[aD30(a) + aD20Dg(a) + D0(a)D2(a)-]z

since 3fe9D0L2(a) = 3fe9D2fe9D2(fe9)D0(a) = - 3D0(bg)D0(bg)D20(bg)D0(a)

= 2D0(bg)bgD3(bg)D0(a) = 0. Also [(D0 + D0(bg)2D0 + Dg)(a)\2 = [(D0+ Dg)(a)f

+ 2Lg(a)2. Therefore [D'0(a')f = [(D0 + Dg)(a)f + 2L9(a)2 - 2fe9D2(a)£»0(a)z.

We have, using these results, that (g'0a')X/2 = (g'0a)l/2   =   b00a2   +   2aDl(a)

- D0(a)2 + 2a2fe09 + 2aDgD0(a) + 2aD0Dg(a) - 2Dg(a)D0(a)  -  abgaD0(b00)z

- 2b00D0(a)abgz  -  2abgD3(a)z  +   bgga2  +  4aL2(a)  -  2L9(a)2   +   2aZ)2(a)

- Dg(a)2 - 2bga2D0(b0g)z - 2abgb0gD0(a) + 2abgD0D0g(a)z - 2bgaD20Dg(a)z

= t(a2)' + 2a'D'2(a') - D'(a')2 + 2bgb0gaD0(a) + 2bgaD0D0g(a) = t(a2)'

+ 2a'D'2(a') - D'(a')2. Since t = g02 we have

(71) (9'0a%2 * 9o + 2a'D'2(a) - D'0(a')2.

From (68) and (70) we have



312 R. H. OEHMKE [November

a'(b'z) = (a'b')z = (ab)'z,

(a'z)(b'z) = a'b' = iab)',

(72) (b'z)(g0a')i/2=-a'D¿(b'),

b'ig0a')il2 = [(a'b')fl0]i/2 4" a'D'0(b')z.

If 23' is the set of all elements of the form a' where a e 23 then23' +23'z + (g0S')i/2

is a subalgebra with multiplications similar to those expressed in (66). Hence

we can conclude that this subalgebra is power-associative and that a' + b'z

+ (g'od')i/2 has a unique fourth power for every a', b' and d'e 23'. But G = 23' +23'z.

Therefore a + bz + ig0d + gd)i/2 has a unique fourth power for every a, b, d e 23

and every g. If d is nonsingular then d can be absorbed in the coefficients a¡

of g¡ in the expression for g. Hence a + bz + (g0d)i/2 + g has a unique fourth

power if d is nonsingular. We can restate this as x = g0 + a(a + bz) + ß(g0d)l/2

+ yg has a unique fourth power for d a singular element of 23,a, be 23,

g = 2(a¡fl¡)i/2 and a,/Jeg. The characteristic is sufficiently high so that the at-

tached polynomials of the expression x2x2 — x4 are all zero [6]. The sum of

those polynomials with a coefficient ot'ßJyk where i + j + fc = 4 is of course also

equal to zero. But by replacing a, ß and y by 1 in this sum we get y2y2 — y4 = 0

where y = (a + bz + (g0d)i/2 + g). Hence any element of 21 has a unique fourth

power and 21 is power-associative.

To complete the proof it remains only to show the simplicity of 21. Let 3 be

a proper ideal of 21 with the nonzero element a + bz + t where a, b e 23 and

ieß. Since z3s3 we have az + be3. Now multiply az + b by g0 to get

ia9o)i/2 + T>o(a)z - T>o(b) e 3. By the above (aör0)i/2 6 3- Multiplying this

element by cz we get ae3 and therefore b,t, D(a) and D(b)e3. Let 23 be the

set of all elements of 23 that are in 3. Clearly, 23 is a proper ideal of 23. Since

23fi s 3 and (23ß)i/2ß s 3 it can be easily shown that 23 is 35-admissible. Hence

23 = 0 and the only nonzero elements that could be in 3 are of the form t

where t e ß. But by the assumption on 21 there is an x e ß such that gx # 0. Since

gx e 23 + 23z and 3 n (23 + 23z)=0 we must have 3=0. Therefore 21 is simple.

To further characterize the algebra 21 and its subalgebra 23 we quote a result

of Harper [5, Theorem 1].

Theorem 9. Let 23 be a commutative, associative algebra with unity 1

over an algebraically closed field g, and let 23 be T)-simple relative to a set

of derivations o/23 over g. Then 23 = %[l,xu...,x„] is an algebra with gener-

ators Xi,...,x„ over g which are independent except for the relations x{ = ...

= xpn = 0 where p is the characteristic of Ç.

3. Let p be a prime # 2,3,5 and let 23 be the associative commutative al-

gebra of all polynomials zZf=oaic'm c with c"= 0 and c°= 1, the identity of 23.

Let £ be {(^0a)i/2 : a e 23}. Then 21 = 23 + 23z + (fl093)1/2. Let b00 = 0 and D0

be ordinary polynomial differentiation; i.e., I>0(c) = !• Assume that u = a + bz
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+ Í9od)i/2> where a,b,de93, is an idempotent of 91 that is not in G. Then

a2 + b2 + 2dD20(d) - D0(d)2 - 2dD0(b) + labz + 2dD0(a)z + 2(g0(da))x/2

= a + fez + (g0d)1/2. Therefore d(2a-l) = 0 and 2afe + 2dZ)0(a) = fe. If d = 0then

u e G. By our assumptions d ^ 0 and we must have 2a — 1 is singular. Therefore

we can write a = 1/2 + c's where s is a nonsingular element of 33 and ( ¡£ 1. We

have dc' = 0 and c'fe -I- tc'~ld = 0. Hence c,+ 1fe = 0. Since

(73) a2 + b2 + 2dD20(d) - D0(d)2 - 2dD0(b) = a

it follows that a2c'+1 = ac'+2. But this implies that c,+ 1 = 2c'+1. Hence t + 1 ^ p.

Assume t = p - 1; then cp_1fe = c"~2d. Now if fe = Ig^iV and d = Ig'V

then we must have a0 = 0 and ß0 = ax. From (73) we must also have ßl — a2 = 1/4

which is a contradiction. Therefore t + 1 > p and a = 1/2.

Let x' = a' + fe'z + (god')x/2 be an arbitrary element of 91. By considering the

product x'u we see that a necessary and sufficient condition that x' e 9I„(1) is that

2a'd = d',
(74)

2fea' + 2D0(a')d = fe'.

The correspondence a' -> a' + 2a'bz + 2D0(a')dz + 2[g0(a'd)]1/2 is clearly a

1-1 correspondence between 93 and 9I„(1) preserving the vector space operations.

Therefore 9I„(1) is of dimension p.

If u is a stable idempotent then Albert has shown [3; 4] that 31 = 3I„(1)

+ 9Iu(0) + (wG')+© where G' = 3I„(1) + 9I11(0) and wG' + © = 3Iu(l/2). Albert also
showed that the dimensions of 9IU(1), 9IU(0) and wG' are all equal. Therefore

© = 0. A further result of Albert's is that 9I„(1) + 9IU(0) + wG' is associative.

This implies that 91 is a simple, associative algebra and hence we must have c = 0.

We can conclude that our example contains no stable idempotents.
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