ON COMMUTATIVE ALGEBRAS OF DEGREE TWO(Y)
BY’
ROBERT H. OEHMKE

Let U be a simple, commutative, power-associative algebra of degree 2 over
an algebraically closed field § of characteristic not equal to 2, 3 or 5. The degree
of W is defined to be the number of elements in the maximal set of pairwise ortho-
gonal idempotents in . This algebra has a unit element 1 [1, Theorem 3]. The
algebras U of characteristic zero were considered by Kokoris [8] and found to
be Jordan algebras. Kokoris also gave examples of algebras U that were not
Jordan [6]. This left the problem of determining those algebras 9 that are not
Jordan algebras.

Since 1 = e + f where e and f are primitive orthogonal idempotents, we have
a decomposition A = WA (1) + A(1/2) + A, (0) where xe A, (1) if and only if
ex=Ax. We have U (1)=UA,(1-1); U () AL(1/2) = A, (1-2)+A[(1/2) for A=1,0;
and A (1) = eF + N,, N(0) =fF + N, where N, and N, are nilideals of A, (1)
and U,(0) respectively. If W, ()A(1/2) = ,(1/2) for A = 1,0 we say that e is a
stable idempotent. If W (D)A(1/2) = U(1/2) + N, -, for 1 =1,0 we say that e
is a nilstable idempotent.

The results of Albert extend the characteristic zero case to include algebras
of characteristic p # 2,3,5 for which every idempotent is stable [2]. He also
characterized those algebras of characteristic p # 2,3,5 that have at least one
stable idempotent [3; 4]. Recently Kokoris announced [9] that every simple,
flexible, power-associative algebra over an algebraically closed field of charac-
teristic # 2,3 that is of degree two and in which every idempotent is nilstable
is a J-simple algebra. '

It is the purpose of this paper to fill in the remaining gap by giving a charac-
terization of those algebras U that have an idempotent that is not nilstable. An
example is also given of an algebra U that does not have a stable idempotent.

1. Let A be an algebra that is simple, commutative, power-associative, of
degree two and whose base field § is an algebraically closed field of characteristic
p #2,3,5. Let e be a primitive idempotent of U that is not nilstable. Since U is
power-associative we have x’x? = x* for all xe U and the linearization of this
identity

P(x,y,5,t) = 4(xy)(st) + 4(xs)(y1) + 4(xt)(ys)
1 — x[y(st) + s(yt) + t(ys)] — y[x(ts) + t(xs) + s(xt)]
— s[x(yt) + y(xt) + t(xp)] — t[x(ys) + p(xs) + s(xy)] = 0.
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We will use € to represent the space A,(1) + A (0), a, to represent the A (1)-
component of a, a,, to represent the €-component of a, and z to represent e—f.
We will make frequent use of some of the results of Albert on commutative power-
associative algebras; namely, results (5), (6), (7), (8) of [1]. We state them as

@ LoGxy)adiz = [@xD12¥3]i2 + [(@yD1/2 %3] 125
3 l9Gxy)di-2 = 2[(gxD1/2¥]1-2 + 2[(g¥D1/2X]1-2
C)) [(9xD)1,2V1-2]12 = [(gy1-D12%:d1/20

&) (9x)1-2V1-2 = 2[(@Y1-D1/2%]1-2

where 4 = 1,0;9 € A,(1/2) and x and y are in €.
Two other relations

(6) 2[(x19)1/29): + [(%29)1-2 912 = x:9%
@) (x19)1/2 = (x09)1/2 1implies (xlzg)x/z = (x(zlg)llz

for x and g as above will be useful. The first of these is obtained from P(x,e,g,9)=0
while the second can be derived from (2) and (4).

THEOREM 1. € is an associative subalgebra of W with an element c € € such
that there is a we U (1/2) with z(cw) = 1, (c;w)y,; = (coW)y/, and (ciw)o = —2c,.

Proof. It is easily seen that the subset I of A,(1) consisting of all elements of
the form (aqg), is an ideal of A, (1) where g e A, (1/2) and a, is a fixed element
of A,(0) because by (5) we have b,(aog); = 2[ao(b,9)/2]:. The additive property
of an ideal is immediate.

We now let b,, d; be elements of (1), g€ A(1/2) and a, € A(0) with (aeg),
=a,. If we consider only the Qle(l)-components of each of the terms in
P(b,,d;,g,a,) =0 we get 2(b,d,)a, = b,(dya,) + dy(bia,). If b, is also in J
we can interchange a; and b, to get a,(d,b,) = 2b1(dla,) d(ba)). Therefore
a,(d.b,) = (a,d,)b,. Hence'J is associative.

It has been shown [1, Lemma 11] that if (aog); €N, for all a,e A, (0) and
g €A, (1/2) then (a,g9),€ N, for all a; € A (1) and g € A,(1/2). From this result
and the assumption that e is not nilstable we can conclude that there is an ele-
ment ¢y € W, (0) and an element g in A, (1/2) such that (co,g), is nonsingular. If
b, is the inverse of (cog); in (1) then [cy(2b19)s/2]1 = bi(cog); = e. We may
also conclude that U (1) =3J is associative. In a similar manner we obtain the
result that ,(0) is associative.

If we take coe W (0) and we A, (1/2) such that (cow);=e and let 2¢; =
(c3w); = 4[co(cow);/2]; then we can quote the results of Kokoris [7, Lemma 4
and Identity 29] that (c;w)o = —f or 0 and (c,w),,, = (cow);,,. No generality
will be lost if we also assume that ¢, is nilpotent because A (0) = fF + N, and
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(cow); = [(af + co)w]; for any ae . To complete the proof of the theorem it
remains only to show that (c,w), # 0. We assume that (c,w), = 0. If we examine
the A, (1)-components of the terms of the relation P(cgy,co,w,w) =0 we get
8(cow)} +8[(cow)i/2]s =4Lcolw(weo)1 11 211 +2[w(cdw)1 2]s +4[Wlco(cow)s 2]1 /2]
Using this relation together with (2), (6), (7) and (cow); = e, we get Ge
+8[(cyw)i/2]s =2w %= 2[w(ciw)o] ;. But (cIw)o = 4[c1(c1w)y 2]o = 4Ler(cow)s;2]o
= 2co(c,w)o = 0. Therefore either [(c,w)? j2)1 or w2cZ must be nonsingular. If we
again use (1) with P(c,, ¢, w,w) =0 and examine the U, (0)-components of the
resulting terms we get 8[(cow)?,2]o = 2ciw?. But then [(cow)},,], is nilpotent.
Since (cow);;; = al +n where ne R, + N, [1, Lemma 10] we must also have
[(cyw)i,2]; nilpotent. Now by (6) we have 2[(cow);; ;W] = 2[(c;w)1,2w];
= — [(cyw)ow]s + ¢yw’ =c,w’. But 2[(coW)1/2w]o= — [(cow)W]o + cow? = cow?
is nilpotent. Therefore c,w? and c?w? are nilpotent. We have arrived at a contra-
diction. Hence (¢;w), = —f and the theorem is proved.

THEOREM 2. There is an isomorphism T between W, (1) and W,(0) such
that for b, € U[(1), T(b,) is the unique element of WL0) satisfying (byw)y,,
=[T(by)W]y;,. The subsetB of € of all elements of the form b, + T(b,) is an
associative subalgebra of ® isomorphic to both A, (0) and A (1)..

Proof. We use ¢,, ¢, and w as in Theorem 1. If we consider only the U, (1/2)-
components of the terms in P(co, by, w,w) =0 we get 8[(cow)y;2(byw)oly/2 +
4(byw)y = 2[w{by + [(ByW)12¢0]1}]12 + 2{wl(coW)1j2br + (byW)ocolo}r/2
+ 2{co[Ww(Wb1)o]1/2}1/2 + (byW)y/2. Using(5)and (2) on the terms [(cow)/2b1]0s
[(b1w)1/2¢0]1 and {co[W(Wb1)o]1/2}1/2 this relation reduces to [(cow)y/2(b1W)ol1/2
= {w[(cow)1,2b1]0}1/2- We now consider the U, (1/2)-component of each term in
P(cy, by, w,w) =0. We have '

—4(byw)y;; + 8[(ciw)12(b1W)o]y)2
= 2{w[(c bW + c;(byw)y;2 + bi(ciW)i2]o}1/2
— (byw)yjz + 2{ci[w(Wb1)o]1/2}1/2-

This relation together with (2) and (4) gives us 2[(c;w)y,2(b;W)ol1/2 = (byW),,2
+ {wl(cyb)wlo}12- But [(cow)y/2(biW)olijz = {wl(coW)1/2b1]o}1/2 and (cow)y)2
= (cW)y2. Therefore (b;w);;, = ({2[(cyW)1,201]0 — [(Clbl)w]o}w)llz
= —2{[(b;w);2¢1]0o W}1/2- We can now define T(b,) = —2[(b;W),,2¢1]o to be the
element b, in A,(0) such that (b;w),,, = (bow);,2. To show that Tis well-defined
we assume (aow);,, =0. We have a, = —ao(c;w)y = —2[ci(aoW)y2J0 = 0 by
(5). Therefore (bow), > = (bow),,, implies by = b,. Simply by changing the signs
of ¢, and ¢, and interchanging 1 and 0 we can get a similar result for U,(0); i.e.,
for every boe A 0) there is a unique by = 2{[(byW)y/2¢0]1W}1/> such that
(boW)y,2 = (byw)y,5. Therefore T is onto A,0) and is a 1-1 correspondence be-
tween A, (1) and A, (0).
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Now if a and b are elements of B as defined in the theorem we have, with the
help of (2) and (4), that

[w(ayby)]y)2 = [(Why)ay + (way)bi]y)s
= [(who)a, + (wag)b 112 = [(way)bo + (wby)aoly/2
=[(wag)bo + (Whbo)aoli/2=[w(aobo)]y,2-

Therefore T(a,b,) = agb, and ab = a, b, + aobye B. Clearly B is closed under
addition and scalar multiplication.

Define S(b) = be for every b e B. It follows immediately from the above results
that S is a 1-1 correspondence of B onto A, (1). From the definition we have
S(ab) = (ab)e = (ae)(be) = S(a)S(b) and S(a + b) = S(a) + S(b) for all a and
b in B. Therefore B and A (1) are isomorphic as rings and hence as algebras. In
the same manner we show that B is isomorphic to U,(0). We have shown also
that T is an isomorphism. The associativity of B follows from that of ¢.

From the definition of B it is clear that ¢ = ¢; + ¢, is in B. From P(w,w,w,z)=0
it follows that w? is in 8. Theorem 2 also implies that € =B +Bz.

THEOREM 3. The mapping b— D(b) = (bw)z is a derivation of B into B
such that D(c) = 1.

Proof. Let a and b be arbitrary elements of B. Then [(ab)w],, = [(ab),w]o
+ [(ab)ow]y = [(a;b)w]o + [(aobo)w]i = 2[as(byw)y)2]o + 2[bi(aiw)yi;2]o
+ 2[ag(bow)y)2]s  +  2[bo(aoW)12]i = 2[ay(bow)yz]o + 2[b1(aow)1/2]o
+ 2[ag(biw)i2]s + 2[bo(a;w)y2]i = bo(aw)e + ao(byw)e + by(aew),
+ a,(bow); = b(aw);o + a(bw);o by (3), (5) and the definition of B. If this re-
lation is multiplied by z we have D(ab) = aD(b) + bD(a) and D is a derivation
onB into €.

To show that D(b) lies in B for b = b, + by, an element of B, we need several
de)ntities; the first of which is obtained from P(bo,w,w,c,)=0. We get
8[(bow)i(wep)1j2do + 8[(boW)yz (Wep)y2do = 2bocow >+ 2 {[cy(who)1Iw}o
after the usual simplifications using (2), (5), (6) and (c,w),;;; = (coW)y/2-
8[bow)1,2(Wey)12Jo = 2boco)w? + 2{[cy(who),]w}, after the usual simplifi-
cations. We consider P(by,w,w,c,) =0 next to get

— 3(boco)w? + 8[(bow)y,2(we)y/2]o + 6[(bow)1(coW)y/2]0
= - 2{[(boco)w]1/zw}o-

Finally we obtain 3(byw)y = 4[(byw)y2(cow)ys2]o — 2{w[(cobo)W];,2}o from
P(b,,w,w,c;) =0. Now, from the proof of Theorem 2 and from (3) we have

6T[bow),] = —12{[(bow)1W]y2¢1}0
= 12[(c;w)y,2(bew);1Jo — 6{[(bow)c;]w}o.
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By successively applying to this relation the three identities above in the order we
obtained them we get 6T[(bow),]= —12[(bow);(c1W)1/2]o —24[(bow),,2(c1W)1)2]0
+ 6bocow? = — 12[(bow)i(coW)1szdo — 24[(boW)yja(cow)ijzo + 6cobow?
= 4{[(boco)W]s/2W}o — 8[(boW)1/2(coW)y1/2]o = —6(byw)o. Therefore we have
D(b)z = (bw)yoz= (byw); — (b,w)o €B. The fact that D(c) = 1 follows imme-
diately from the definition of c.

THEOREM 4. If a and b are elements of B then [(wa),;,b],, = [w(ab)}y,s,
[(wa)y/2b]10 = (Wb)10a and (wa),;»(wh)y;» € B.

Proof. By (2) and (4)and the definition of B we have [w(ab)],,, = 2[w(ab)],,,
= 2[(W“1)1/2b1]1/2 + 2[(Wby)1201)y2 = [Wa)y)2bilisz + 2[(Who)1j2a1]1/2
= [(wa),2b,]s2 + 2[(wap)ijaboliz = [(wa)1;2bydi2 +  [(Wa)1,2bol12
= [(wa)y;2b]1/2. By (5) we have [(wa),,,b];0 = 2[(wag)y/2b1Jo + 2[(way)1/2b0]1
= (wby)oao + (Why),a; = (wb),oa. Now use P(w,w, a, b) to get 4w?ab + 8(wa) (wb)
= 2w[(abw + (aw)b + (bw)a] + a[w?b + 2w(wb)] + b[w?a + 2w(wa)]. If
we consider only the €-components of each of the terms and if we use the facts
that (wa);oe Bz for all aeB and [w(az)];o€ B then 8(wa),,,(wb),, —
4w[(ab)w]y,, — 2a[w(wb),/,] — 2b[w(wa),,,] is in B. Now P(w,w,az,z) =0
implies 2w’a = —2D%(a) + 2w(wa),,,. Since a,w? and D(a) are in B, so also
is w(wa),,,. Hence 8(wa), ,(wb),,, is in B.

CoroLLARY. If ae @ and be B then [(wa),;,b],, = [w(ab)]y,,.

Proof. We can write a = a’ + a”z where a’ and a” are in B. Since [(a"z)w],,,
= [(a ”bz)W]l/z = 0 we have [(Wa)l/zb]l/z = [(Wa I)]/zb]llz = [“’(a,b)]llz
= [w(ab)]y/2-

We now define ® to be the set of all g € A,(1/2) such that (gc),, is in B.

THEOREM 5. U/(1/2) is the direct sum of the two subspaces (WB),,, and 6.
Moreover (®a)y;; = ®, [®(az)]y;; € WB)y,2, and [(WB)y,x(az)]y,; = G, for
all aeB.

Proof. If g is any element of A, (1/2), let (gc);o =a + a’z where a and a’
are in B. Since [(a'w)y,,c];0 = a’z we have {[g—(a’'w)y;5]c}10 = a,[g—(a’w)y,,]
€ ® and g is equal to the sum of an element of ® and an element of (WB),,,. If h
lies in both (wB),,, and ® then (hc);, lies in Bz and B. Hence (hc);o = 0.
But [(wa),,,c];o = az. Therefore if h = (wa),,, then a = (wa),;, =0 and h=0.
Hence %,(1/2) is the direct sum of G and (wB),,,.

Since D(c?) =2c, the A, (1/2)-components of the terms obtained from
P(c,c,w,g) = 0 with g € ® yield the relation

8[(cw)1,2(c9)10]1s2 = {2c[W(cg)10]y/2 + W(c?g) 10 + 2w[c(cg)10l}1)2
+ {2w[e(cg)1/2]i0 + 69(c2)}y)s-
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Using this relation, Theorem 4 and the property that (cg);o € B it is easily seen
that [g(cz)]y,, is in (WB),,,. Therefore [g(cz)y,5¢]10€2B. But

[g(CZ)x/zc]to = [(901)1/201 - (900)1/201 - (gco)l/zco + (9‘31)1/2‘30]10
= [(1/4)(cig) — (1/4)(c3g) — (1/2) (ge)oco + (1/2)(gco)se]i
= —(1/4)(c*9)10 2 + (1/2)(c2)(cg)10-

Therefore since (cg),, is an element of B we also have (c2g),, is an element of B.
Similarly [(cg)1,2¢)10 = (1/4)(c%g)10 + (1/2)c(cg),o is in B. Therefore (cg),,,
is in . We now examine the N (1/2)-components of the terms resulting from
P(a,,c,,w,g) = 0. With the help of (3) and (4) we get

) [2(a1w)o(c19)1/2 + 2(a;3w)1/2(c19)0 + 2(c1W)1/2(a19)0 + 2(c1W)o(a19)1/2]1)2
= {wl(asc)9lo + gl(ascr)wlo}y)a-
Interchanging the subscripts 1 and 0 we obtain
[2(aow)1(cog)1/2 + 2@oW)1/2(cog)s + 2(coW)1/2(a09)s + 2cow)1(a08)1/2]1/2
= {wl(a0co)g]s + 9l(aoco)li}s/2-

But
{9[(‘1000)”’]1}1/2 = {Zg[ao(cow),,z + co(aow)l/z]l}x/z
= {2g[ao(c,w)i;2)i + glas(cow)ili}is2
= {glci(aow)1] + gai}i)2-
Therefore

[2(apw)y(cog)1/2 + 2(agw)y2(cog)s + 2(cow)i/2(aog)s + 2(cow)1(a09)1/2]1/2
= {glci(aow)s] + wl(aoco)g]s + [a191})2-
Again consider only the U,(1/2)-components of the terms of P(ao,c;,w,g9) = 0.
This relation together with (2), (3) and (4) gives us
(10) [2(aow)y/2(c19)0 + 2(aoW)i(c19)1/2 + 2(aog)s(c1W)yiz + 2(c;w)o(@09)1/2)1/2
= {[ag(ciw)olg + glci(aow)i] + wlao(c19)0] + wler(aog)11}1/a-
Interchanging the subscripts 0 and 1 in (10) we obtain

a1 [2(a;w)y;2(cog)1 + 2(aw)o(cog)1/2 + 2a19)o(cow)y)2 + 2(cow)1(@19)1/211/2
= {[a(cow)]g + glcol@aw)o] + wla(c;9)1] + wlco(a19)0]}1/2-

We now subtract the sum of identities (10) and (11) from the sum of the identities
(8) and (9) and use the facts that (a,w), ;> = (aoW)y2, (c;W)o = —fand (cow); = e.

We have {2[(az)w]o[(c2)g]1)2 + (a09) — 2(a,9) — gl(arc)wlo+ gleolaiw)ol} /2
is in (WB),,,. Therefore
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{=2D(a)[(c2)g )12 + (aog) — 2(a,9) — 2g[(a,c,w)y)2]o
= 2g[ci(a1w)1)2)0 + 2g[as(cow)s/2]o}1)2
= {=2D(a)[(c2)g]1/2 + (a0g) — 2a19) — 2g[a,(c;w)y,2]0
= glag(cswlo] + 2g[as(ciw)y/2]o}y)2
= {-2D(@)[(c2)g]s/2 + (a09) — 2a19) + gao}i)2
= {-2D(a)[(c2)g)y/> — Aaz)g}y/

is in B. Since [(cz)g];,, € (WB),,, we have [(az)g];, € (WB),,,. To show that
(9a);/,€® for aec B we consider

[(@a)1/2¢]i0 = [(9a1)1)2¢1 + (9@0)1/2¢1 + (9ay)y)2¢0 + (9ay)1/2¢0)10
= [2(gag)y/2¢; + [9(az)]y,2¢1 + 2(gay)y/2¢0 — [g(az)]x/zco]xo
= [(ger0a0 + (gco)iay + g(az)y(c2)]io

=(9¢0)10a + {[9(a2)]1/2(c2)}10-
Since (gc); € B sois (gc);oa. Also since [g(az)]y,, € (wB),,, we have

{[9(07)]1/2(02)}10 €B.
Hence [(ga)y,2¢]10€ B and (ga)y;, €®. Finally if we take a, b and h in B
we have {[(way),2(b2)]112h1}0 = {[(Wao)sj2b1li;2hy — [(Wao)is2bolij2hi}e
= {[(Wbl)aO]I/Zhl - (1/4)(Wh1)oaobo}o = {[(Wbo)ao]uzhl — (1/4)(why)eaobo}o
= (1/4)(why)oboag — (1/4)(why)obeae = 0. Similarly {[(wao) (bz)]1/2h0}1 =0. By
taking h = c we can see that the (wB),,, component of [(wa),,,(bz)],,, is O.
Hence [(wa),,,(b2)],,, is in G.

THEOREM 6. [(WB),,2(Bz)];/2 = 0.

Proof. Let a be a nilpotent element of A, (1). There exists a Ae § such that
d = a + Ac has the property that (dow), is a nonsingular element b, of A,(1).Then
[d(2b,™'W),,2];y = by~ '(dw), = e. If we let b be the unique element of B whose
‘1[,(1)-component is b, we have by the isomorphism established in Theorem 2 that
[d(b™*W)y2]10 = b~ 'D(d)z = z. For these elements d e € and (wb™ ")/, € A(1/2)
we get aB < € such that B + Bz =C and where B has the properties described
for B in Theorems 2-5. Let t+szeBz where t and se®B. We have
[(wb™*)y2(t +52)];,2 = 0. Therefore (wb™'£);, + [(Wb™")y,2(s2)],> = 0. Since
[(wb™"),,2(s2)]1/2€ ® we must have (wb™'f);;, =0 and b™' t=0. Therefore
t =0 and Bz =Bz. If Bz is a proper subset of Bz then B is a proper subset of B.
But this would imply that B + Bz is a proper subset of € which is a contradiction.
Therefore we must have Bz =Bz and [(wb ™), 12(B2)];/2 = 0. Now let S be the
subset of B of all elements s such that [(ws),;,(Bz)],,, =0. Let x,y €B. There-
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lation P(y,x,w,z) = 0 yields [(wx)(y2)],,> + [(Wy)(x2)];,» =0. Let te B, sand
s’ € ©. Then we get {[w(ss')]1,2(t2)} 1,2 = — {(W1)1,2(s5'2)} = O from P(tw,s,5'z) = 0.
Hence S is a subalgebra of B. If we let b_, = o + n where b is as described
above and n is a nilpotent element of B and a € §, then ne S and hence every
power of n is in €. But b is the sum of a multiple of the identity and a linear
combination of powers of n. Hence b = A + D(a)e S and the derivative of every
element of B is in S. Now aeB implies a = D(ca) — cD(a). Since D(ca),
¢ =(1/2) D(c*) and D(a) are in S we have B < G and [(wB),,,(B2)];,, = 0.

At this point we have obtained partial results on the multiplications of 2.
However, the chief remaining gap in the characterization of 9 lies with the
products involving elements of . To facilitate the determination of these pro-
ducts we shall introduce some symbols Q,, ¢,, k,, f;, and h, on B into B for
every g e® by letting

(12) [g(bz)]l/z = [ng(b)]1/2 s
(13) (gb)1o = h,(b) + k,(b)z,
14) [g(wb)1/2]10 = £,(b) + ¢,(b)z

for every be B. In our subscripts we abbreviate (ga),,, to ga.
From (2) and (3) and the definition of ® we have

{[(90)1/2(b2)]1/2¢}s = {[(9a)1)2b1]1/2¢0}1 — {[(94)1/2b0]1/2¢0}1

= {2[(9a1)1/2b1]1/2¢0 + [(WQH(a))1)2b1]1/2¢0
= 2[(ga1)1/2b0]1/2¢0 — [(WQ,(a))y/2b1]172¢0}1

= (1/2)(gco)1a1by + (1/2)5,04(a) —(1/2) b1 Qy(a)
= 2{[(gb0)1/2a1]1/2¢0}1

= (1/2)(gco)ra,by — 2{[(91’1)1/2“1]1/2"0}1
+ 2{[(wQ,(b))1,2a1]1,2¢0}1

= a,Q,(b).

Now [(ga)l/z(bz)]l/z = [Wan(b)]l/z and therefore [(“’an(b))l/zc]lo = Qub)z.
Hence

(15) Q5u(b) = aQy(b).

Consider hp(a) + kp(@)z = [(gb)i2ali0 = [(gb)1j201]e + (gb)1)200]4
= 2[(gbo)1/2a1]0 + [(WQy(B)1j2a1]0 + 2[(gb1)112a0]i — [(WQy(b))1/280]4
= by(ga)o + bi(gao); + Qu(b)[(az)wlio = bhya) + bzk, a) — Q,(b)D(a).
From this relation we obtain

(16) hg(a) = bh(a) — Q,(b)D(a),

a7 kg(a) = bkya).
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We now consider the €-components of the terms of P(a,a,g,z) =0. We have
3ah(a)z + 3ak(a) — Shy(a)z — Sk,(a) = Q,a)D(a)z — ha(az)z - kg(az). If
we equate B-components and Bz-components we have
(18) k,(a*) = 2ak/(a),
(19) h(a®) = 2ah,(a) — 40,(a)D(a)
by using (16) and (17).

We have proved that k, is a derivation for every ge . We shall now prove
that Q, 1s a derivation for every ge®. We have

[WQg(ab)]IIZ = [g(abz)]l/z = [g(ab)l]lll - [g(ab)o]x/z
= [(ga)112b, + (gb1)1)20; — (gao)l/zbo - (gb0)1/2a0]1/2
= [(gal)llzbl + (9bo)1 )20, + (WQg(b))l/zax - (.gao)uzbo
— (gb1)1/2a0 + (WQy(b))1/280]1/2
=[(ga¢)1/2by +(WQy(a)),,2b1 +(gbo)1 20, + (WQy (b)), 24,
—(gay)1/2b0+(WQ,(a))1)260 — (gb))1)200 + (WQy(b);200]4,2
= [(gao)l/zbl = (gby)y200 + (gbo)l/zal —(901)1/21’0
+ w(Q,(a)b)+w(Q,(b)a)],,.
By (4) we have (wQ,(ab)),;, = [w(Q,(a)b + Q,(b)a)],,,. Therefore
(20 Q,(ab) = Q,(a)b + Q,(b)a .
Next, we consider the G-components of the terms of P(g,a.bz,z)=0 to get
4[(ga)b]yye = [3g(ab) + (gb)a],,,. However
[(ga)b]y;: = [2(gao)by + (WQ,(a))b, + 2(ga )by — (WQy(a))bo]y,,
= 2[(gb,)a, + (gbo)as]i)2
= [(gb)ao + (wQ,(b))ag + (gb)a, — (wQ,(b))a,],,,

= [(gb)a],/z.
If we combine the above two relations we have

(1) [(ga)b]l/z = [g(ab)]r/z .

A similar computation using P(w,w,a,z) =0 and P((wa),,,,w,a.z) =0 gives us
(2) w(wa),, = w’a + D*(a)
(23) (wa)?, = w?a* +2aD*(a) — D(a)D(a).

If we consider the (wB),,,-components of the terms of P(z,(aw),;,, w,g) = 0 we
have [wQ,(w?a) + wQ,(D*(a)) + w(ag,(1)) + wo,(a)],,2 = 0. By letting a =1 we get

(24) 8D = —5 0.
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Therefore .

(25) Ba) = 5 a 0,w)) — O,(aw?) — Q,(Da)
From (15) and (25) we have

(26) B4ulb) = ad(b).

We now wish to express h, in terms of Q, and D. We examine the Bz-components
of P(w,g,c,a) =0 and use (21) and (26) to get 3¢ (c)a + 3P, a)c + 3hy(a)
+ 3aD(h,(c)) + 3D(a)h(c) + 3cD(h(a)) — 4h,(D(a)) = 3¢,(1)ca + D(h,(ca)
+ hyla) + hyc)a + hy(c) + hfa)) + 3¢, (ca) — 3h,(D(ca)) — chy(D(a))
+ ¢,(D(a)). We simplify this relation using (25), (16) and the linearized form of
(19) to get —3Q,(DX(@))c + 3h,(a) = —3Q,(D*(ca)) — 0,(c)D*(a) — 3D(Q,(c))D(a)
— 3D(Q,(a)) — 3h,(c)D(a) + 7Q,(D(a)). Since @, and D are derivations we have

(27) 3h,(a)= —3D(Q,(c))D(a) — 3D(Q,(a)) — 3h,(c)D(a) + Qy(D(a)) —4Q,(c)D*(a).
If we let a = ¢ in (27) we get hy(c) = — D(Q,(c)). Therefore (27) simplifies to

(28) 3hy(a) = —3D(Qy(a)) + Q,(D(a)) — 4Q,(c)D*(a).

We substitute the values obtained from (28) in hy(ac) = chy(a) + ah,(c) — 2Q,(a)
—2Q,(c)D(a), a linearized form of (19), to get

(29) Q,(a) = Qy(c)D(a).
If we use this relation in (28) we obtain
(30) hy(a) = —D(Q,(c)D(a) — 2Q,(c)D*(a) .

We now investigate the behaviour of f,. Consider the Bz-components of the
terms of P((wb),/2,9,a,z) =0. We have

(3D 2f(b)a = f5u(b) + fo(ab) — bD(k(a)) — bk(D(a)) — D(a)k,(b)

and when b=1

(32) 2f,(Da = f,(1) + f(a) — D(ky(a)) — k(D(a)).
We define a new mapping T, on B into B for each g by
(33) T(a) + f(Da — fo(1) + D(ky(a)).

This definition together with (32) gives us f(a) = f,(1)a + T(a) + k,(D(a)) and
Ful1) = f,(D)a = T(a) + D(k,(a)). Now £,(b)= —f,(ab) + 2f,(b)a+b(Dk, +k,D)a)
+k,(b)D(@) and fyu(B) = — fpus(D) + 2pu(Db + a(Dk, + k,D)(b) + D(@)k,(b)
by (31) and (32). Substituting the values for f (ab), f,(b), f,.(1) and f,,(1) ex-
pressed in terms of T, in these relations and simplifying we have
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34) T(ab) = T(a)b + T,(b)a

and

(35) feu(b) = f;(Vab + T(b)a — bT(a) + ak,(D(b)) + bD(k,(a)) — k,(a)D(b) .

It follows readily that

(36) T,(b) = aT,(b) — D(b)k(a).

We have already shown that ¢,(a) = Q,(c)[(1/2)aD(w?) — D(w?a) — D*(a)].
We also have that P(g,g,(aw),,,,z) = 0 implies [gd,(a)],,, = 0. If we let a = ¢*
we have ¢,(c*) =0,(c)[—(1/2)c*D(w?) — 3¢*D(w?) — 6]. Since the second factor
on the right-hand side is nonsingular we have [gQ,(c)],,, = 0. Multiplying by cz
and considering the (wB),,,-component we get

37 0,0 = 0.
Similarly we have
(39) Q,(c)k,(a)=0.

Now consider the element w' = [w — wD(Q,(c))];,2 + g of UA,(1/2). We have
(c;w")o = — f. By Theorem 1 and its proof, ¢, —(1/2)(c2w’), is an element a

in @ such that (aw’)z = 1. Also (c2w’)y = —2¢, — 4(Q,(c)). Therefore (aw’)z
= {[c+ Q,(c) — Q()z]w'}z = 1 — 2D(Qy(c)* — 2D(Qy(c))*z — 20,(c)D*(Q,(c))z
+ k(Q,(c)) — 2Q,(c)D2(Q,(c)) + k,(Q,(c))z. Simple properties of derivations and
the fact that Q‘,(c)2 =0 gives us (aw')z = 1 + k,(Q,(c)) + k,(Q,(c))z. Therefore

(40) ka(Qg(c)) =0.
We also have from (35) and (36) that
(41) Ty(Q4(c)) = f,(1)Q,(c) and Ty(b)Qy(c) =0

for every be B.

For w’ and ¢’ = ¢ + Q,(c) — Q,(c)z we have a corresponding B’ and B’z as
described in Theorem 2. To determine these two subspaces we let a + bz be an
element of € with a, b e B and such that the 1/2-component of w'(a + bz) is 0.
We obtain wa — wD(Q,(c)a + ga + wQ,(b)),;, = 0. Therefore a[1 — D(Q,(c))]
= —Q,(c)D(b). Solving for a we have a = — D(b)Q,(c). Since B’ +B'z=C, we can
conclude from the above result that B’ consists of all elements of the form
a — Q,(a)z. We note that the C-component of the element (a — Q,(a)z)w’ must
be an element of B’z by Theorem 3. If we calculate this element we obtain
D(a)z — D(a)D(Q,(c)z + Q(c)D*(a) + kya)z — D(Qy(a))D(Qy(c)) + D(Q,(c))*
*D(a)z.In order for this element to be inB 'z we must have Q,(c)D*(a) + D(Q,(c))*D(a)
= Q4(c)D[D(a) — D(a)D(Q,(c)) + k,(a) + D(Q,(c))*D(a)] by the definition of
B'z. Therefore ’
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(42) Qy(c)D(k,(a)) = k(a)D(Q,(c)) = 0.
We also have
(43) Qy(c)k(b) = 0

for any 1€ ® and any be B since Q,(c)k(b) = k(Q,(c)b)—k(Q,(c))b = k(Q,(c))

= k(Qy(eNb = —ku(Qi(€)) — k(Qy(c))b = —bky(Q(c)) — k(Q,(c))b = 0.
We define ¢’ to be the 1/2-component of

W[ = D(QAD(Q,(e)) + QIDHQe)) — k(Qy(eN] + ¢
for te ®. Then the €-component of (¢ + Q,(c) — Q (c)2)t’ is
(44) —D(Qy(c)) — D(QLeND(Q,(c)) — 2Q(ID*(Qy(c) + k(Q,(c)) + Q(c)D*(Q((c))z
since Q,(c)D*(Q,(c)) + 2D(Q,(eND(Q(c)) + Qy()D*(Q(c)) = 0 and
2D(QDND(QND(Q,(c)) = —QIDHQ(N)D(Q4(c)) = 3Q(c)Q()D*(Q(c)) = O.
Hence ¢’ is in ®’. We now compute D’ and Q,.. We have simply that
@5 D’:a — Q,(a)z - D(a) — D(Q,(c))D(a) + D(Q,(c))*D(a) + k,(a)

= [24(aD*(@) + D(Q,(c))*D(a)] z ,
(46)  Qric+ Q)c) = @)z > Qfc) + Q()D(Q,(c)) — @,(c)D(Qi(c))z.
Therefore
D'Qs:c + Q) — Qy)z — D(Q(c)) + D(Q(c))D(Q4(c))
+ Q()DX(Qy()) — D(Q4(ND(QLC)) + k(Q:(c)) — Qi()D*(Q,(€))z.

By (30) and (44) we have
D(Q/(c)) + D(Q(e)D(Q4(c)) + Q*()D*(Q,(c)) — D(Q)D(Q(c)) + k(Qi(c))

=D(Q,(c)) + D(Q(c)D(Qy(c)) + 2Q:(c)D1(Qy(c)) — k(Qy(c))-
Therefore  Q(c)D*(2,(c)) — D(Q,()D(Q,()) = 2Q(c)D*(Q,(c)) and
7 0()D*(Qy(c)) = —D(Q(c))D(Q,(c))-

Replacing by (ct),,; we have cQ,(c)D*(Q,(c)) = — cD(Q(c))D(Q,4(c)) — Q(c)D(Q,(c))
and therefore

(48) (D)) = .

We now examine the B-components of the terms of P(g,t,a,z) =0 for g,te ®
and a € B. We have

m(1,a) + m(a, 1) = 2m(1, 1)a + 2D(Q(c))D(D(Q,(c))D(a))

49
@ + 2D(Q,(c) D(D(Q,(€))D(a)) + (kok, + kik;)(a)
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where m(a, b) denotes the B-component of (ga),,, (tb)y,,. Since m(a,b) does
depend on g and ¢ also, we will use m, (a, b) for m(a, b) when there is any chance
of confusion. Replacing t by (tb),,, in (49) we obtain

m(1,ab) + m(a, b) = 2m(1, b)a + 2bD(Qy(c))D(D(Q,(c))D(a))

(50) + 2bD(Qy())D(D(Q((€))D(a)) + 2D(Q((c))D(b)D(a)
+ k(b)k(a) + b(k,k, + k,);)(a).
Define
(51)  S,.(a) = m(1,a) — m(1, 1)a — 2D(Q(c))D(D(Q(c))D(a)) — kgk,(a)
for all a e B. If g = ¢ the right-hand side of (51) reduces to identity (49) with g=t.
Therefore S, , is identically zero. A simple linearization gives us
(52) St = —5Siq
Substituting (51) into (50) and letting a=b we have S, (a2) + 2L,L(a2)
+ m(a,a) + k,k(a?) = 28, (a)a + m(1,1)a2 + 4aL,L(a) + 2ak,k(a) where
L, = D(Q,(c))D and L, = D(Q,(c))D are derivations. Interchanging g and ¢ in this
result and subtracting gives us 2S, (a2) + 2L,L(a2)—-2L,L(a?) + (kk,— k,kXa?)
= 4S5, (a)a + 4a(L,L, — L,L))(a) + 2a(k,k, — k.k,)(a). Since both L,L, — L,L,
and kgk, — k;k, are derivations this relation reduces to S, (a2)=2aS, (a).
Hence S, , is a derivation of B into B.
We can now replace (50) by
m(a, b) = m(1,1)ab + aS, (b) — bS, (a) + 2aL,L(b) + 2bL,L (a)
— 2L (a)L,(b) + akk(b) + bkk,(a) — k(a)k(b).

By setting g =1, a =1 and b = Q,(c) in (53) we have

(59) m, (1, 1)Q,(c) = 0.
An examination of the (wB),,-components of the terms of P(g,g,9,z)=0
gives us .
(55) _ 0,c)D(m, ,(1,1)) = 0.
Finally we compute P((ga);,,, (tb)y;2,w,z) =0 to get
(56) ng(a,b) = —aQ,(fi(1)b — T(b) + D(k(b) —) bQ,(fy(1)a — T,(a) + D(k,(a))

where n, (a, b) is the Bz-component of (ga),;*(tb);,. Now P(g,g,(wa);,,,z) =0
Therefore n, (1,1)a + 20,(f,(1)a) + 2Q(T,(a)) =0. From (56) with g =t and
a=>b=1 we have

(57) 0,(Ty(a)) = —Q (a)f(1).

2. In the previous section we expressed the multiplications of U in terms of
constants and derivations. In this section we use these multiplicative properties
to construct a simple power-associative algebra of degree two from an associative
algebra.

(53)
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Let B be an associative, commutative algebra over a field § of characteristic
p > 5. Also assume that B has a single nonzero idempotent 1 that is a unity
quantity.

Let By, ..., B,., be n homomorphic images of the vector space B. We let £
be a sum of these n vector spaces, but not necessarily the vector space direct
sum. We let z8B be a one-dimensional module over B. Clearly zB is a vector
space over § and we form the vector space direct sum A =B + L + zB.We
now extend the multiplication of B to U in such a way that U remains a commu-
tative, power-associative algebra. First we define

(58) (za)(zb) = (zb)(za) = ab,
(59) 1x =x,
(60) zy=0

for every a and b inB, every x in U and every y in L. The element e=(1/2)(1+2)
is an idempotent. We have already defined sufficient multiplicative properties to
determine an idempotent decomposition of . Clearly L < A, (1/2) and
B +Bz < A1) + A(0). The second part of this statement follows by consid-
eration of a + bz =(c+ ¢z) + (d — dz) with 2c=a + b and 2d =a — b. For
each of the vector spaces B; and the corresponding homomorphism of B onto
B; we define (g;b),,, to be the image of b. Since this notation is consistent with
that of the decomposition of U with respect to e we will allow the confusion

of the two notations.
In order to complete our definitions of the multiplications of U we choose

elements b;; and b; of B and derivations D;; and D;on® into B for i,j=0,1,...,n—1
with the following restrictions:

(61) D;;= —Dy, b;;=bj, bo=0
for all values of i and j and
bb; = (b;+ byb;; =0,
biDo(b;) = (b; + bj)Do(b;;) = Dy(b;b) + Dy(b;b) =0,

b;DyD(b) + b;DoD(b) = b;D(b) =0,

(bigj + bjgi)l/Z =0, b;bg;Dg = —b;DoDy;
for all i and j different from 0 and all beB. We now define
(63) (9:9)12b = [g(ab)]y;2 — Do(ab)Dy(b) — 2biaD‘2,(b) + aDy(b)z,
(64) (9:2)1/2(bz) = —[(9:2)1/2b]z + {go[aDo(b)b;1} 125
(65)  (9:@)1/2(g;b)1)2 = abby; + aD;(b) — bD,(a) + aD;D(b) + bD,D (a)

_ D/(b)Dy(a) + 2aL,L(b) + 2bL,L(a) — 2L (b)L(a) |

+ abi{Do[Doj(b) — bo;b — DoDy(b)]}z - bb;Do[Doia) — boia — DoDy(a)]z

(62)
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where L; = Dy(b))D,, i,j=0,...,n—1, and a and b e B. Since we did not restrict
£ to be a direct sum of subspaces it is necessary to assume that our multiplica-
tions in U, as defined above, are well-defined. We place two additional assump-
tions on A. If D is the set of derivations consisting of D; and D;; for all i and j
we assume, in the terminology of Albert [3], that B is D-simple; i.e., there is no
nontrivial ideal I of B such that J is D-admissible. The second assumption is
that for every element g in  there is a tin £ such that gt is not zero.

THEOREM 7. Every commutative, power-associative, simple algebra of de-
gree two over an algebraically closed field § of characteristic p #2,3,5
is an algebra of the type described above.

Proof. We choose a set of elements g,,...,g,_, in ® such that every element
of ® is expressible in the form X.(g,a;), ;2 Where a; € B. We translate the notation
of §1 to the notation of this section by letting & = W (1/2), go =w, Dy =D,
boo = W, boi =f4(1), Doy=T,, D;=k;, b;=Q,(c), b;= m,,q(1,1) and
D;;=S,,,, Where i,j+# 0. Identities (25)-(57) give us the relations (61)—(65).

If 3 is a nontrivial ideal of B that is D-admissible then if aeJ we have
Q4(a), f,u(b), dy(a), B,.b), fy(a)m, (a,b) and n, (a,b)e3J. This is sufficient to
guarantee that J + 3z + (W), + (®3J),,, is a proper ideal of UA. Since this
contradicts the simplicity of 9 we have that B is D-simple.

Let (wa);;, + g be an element of A,(1/2) such that there is no element ¢ in
A,(1/2) such that (wa),,, ¢ + gt # 0. Choosing t to be successively w,(wc),,, and
(we?), ;2 and considering only the B-components of the resulting terms we have
w?a + D*(a) + f(1) = w?ac + cD*(a) — D(a) + f,(1)c + T,(c) = wlac® + c*D*(a)
+ 2a — 2cD(a) + f(1)c* + 2cT,(c) = 0. Eliminating w? from these equations
we have —D(a) + T(c) = 2a — cD(a) + cT,(c) = 0. Hence a = 0 and f,(1) = T,(c)
= 0. If we multiply g by (wb),,, for be B we have f,(b) = ¢,(b) = 0 by our as-
sumption on g. By a previous result we had that Q,(c) was a multiple of ¢,(c3).
Hence Q,(c) = 0. Now f,(b) = T(b) + k,(D(b)) = 0 for all beB. If we substitute
be for b we have cT,(b) + ck(D(b)) + k,(b) = 0. Therefore k,(b) =0. We now
have that Cg = {(ag),/, :a €B}. With this choice of g and for any be B we
have f,,(b) =0 by (35) and @,,(b) =0 since Q. (c) =aQ,(c). Also m,(a,b)
=aS, (b)—bS, (a). But by the assumption on g and (51) we have S, ,=0. There-
fore m, (a,b) =0 for all a and bB. Combining this result with (56) we have
(g9a)y/2t =0 for all aeB and all te A, (1/2). Therefore the ideal generated by
g is {(ag),,, : a € B}. This contradicts the assumption of simplicity of 2. Hence
for each x € A,(1/2) there is an element ¢ in A, (1/2) such that xt % 0.

THEOREM 8. An algebra U over a field § of characteristic p #2,3,5 as
described in identities (58)-(65) is a commutative, power-associative, simple
algebra.
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Proof. It follows readily from the definition of U that B +Bz + (9,B),,,
is a subalgebra of A. We shall show that this subalgebra is power-associative
by examining P(x, y, 5, t) for various values inB + Bz + (9oB), 5. If P(x, y,s,t) =0
for all possible choices of the variables x,y,s and t in B, Bz or (9,B),,, we have
B +Bz + (9,B),,, power-associative. We examine the powers of x = a + g, for
aeB. We have x?>=a’+ byo + (ago)y/2 + 2Do(a)z, x* = a® + 2ab,y, — D3(a)
+5aDy(a)z + Dy(boo)z + [(2a% + boo)goly/2 and x2x? = x3x. The proof of this
result depends on the properties -
a(bz) = (ab)z,

(az)(bz) = ab,
(66) (b2)(g0a)1/2 = —aDy(b),

b(goa)1/2 = [(ab)goli/2 + aDy(b)z,

(904)1/2(g0b)/2 = abbyg+aDj(b) + bDj(a) — Do(a)Do(b).

If de B and if we replace D, by dDy, boo by bood? + 2dD%(d) — Dy(d)? and
go by (god),,, We see that relations similar to those expressed in (66) hold. There-
fore we can conclude that a + (god),,, has a unique fourth power.

Next we investigate the fourth powers of x = az + go. We have x? = a2 + b,
—2Dy(a), x*=a’z + booaz + Do(boo)z — 2D3(a)z + a* + boy — [2Do(a)go]y/2
and x2x? = x3x. Again the only multiplicative properties used were those ex-
pressed in (66). Therefore az + (gob),,, has a unique fourth power for all a and
be B. It is easily seen that B + Bz is associative. Hence a + bz has a unique
fourth power. The assumption on the characteristic and simple linearizations
of these three fourth powers we have obtained give us the result that P(x, y,s,t) = 0
provided that in any evaluation the four values x, y, s, and ¢ are chosen from only
two of the three subspaces B, Bz and (goB),,,. This leaves us those choices of
x,y,s and t for which xe B, ye Bz, se(goB),,, and t is arbitrary. Because
of the linearization process we need only consider P(a,bz,(god), /2> @),
P(a, bz,(god)y/,, bz) and P(a, bz,(god)y,2,(god)y,2). Straightforward computations,
which we omit, show that each of these relations is zero. Therefore B + Bz
+(90B),,, is power-associative.

Now let g = Y(g,a), ;2 Where a;€®B. The index i, or indices i and j, of this
summmation and all subsequent ones will run from 1 to n — 1. Define

b, = zaibi’

D, = ZapD,

boy = Yabo; — XDofa) + LDoDa)),

DOy_ = ZaiDOi - EDi(ai)DO,

by = Xbjaa;+2XaD(a;)+4 Xa;L;L(a;)
- ZDi(ai)Dj(aj)'

(67
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From (62) and (67) we have
b; = byb,, = bDy(b,,) = byDy(b) = D,(b,) = b,DyDy(b) = 0,
(68) b,bo,Do(a) = —b,DyDo,(a),
(gby)1,2 = 0.
From (65) we have (ga),,2(ga),,, = b,, + 2aD2(a) — D(a)* + 4 Xaa,L.a iLia

- 2 ZaiLi(a)aij(a)' Now XaLf(a) = zaiDO(bi)Do(a) = Do(bg)Do(a)
— Yb;Do(a;)Dy(a). Therefore Xa,L(a)a jLj(@) = L(a)2 where L,=Dy(b,)D,. Also

Ya,Lia;Lfa) = LL,a;L(a) — XbDo(a)Doa;L(a)
= L}(a) — XL,b,Do(a)Dy(a) — XbDo(a)Doa;La)
= Lg(a) = ZDo(b)Do(b;)a:Do(a)Do(@) — Lb;Dy(b,)a;Do(a;)Do()
= Li(a).

Therefore

(69) (9a)})> = by, + 2aD}(a) — D(a)* + 4aL’(a) — 2L (a)*.

We also have

b(ga),,, = g(ab)y,, — Do(ab,)Do(b) — 2b,aD}(b) + aD(b)z,
(b2)(9a)1/2 = go(aDo(b)by)y,, — [(ga)y,2b]2

for all @ and b in B.

We now let go = go + g and a’ = a — b,Do(a)z for a €B. We define a deriva-
tion Dy(a’) = [Do(a) + Do(b,)*Do(a) + D(a)]’ andlett = boo + 2bo, — b,Do(boo)z
+ by — 2b,Do(bog)z. Now (Do + Do(b,)?Dy + D,)* = (D + D,)* + 2L% Therefore
a'Di(a’) = a(Dy + D,)*(a) + 2aL%(a) — b,[aDy(a) + aD3D,(a) + Do(a)D}(a)]z
since 3b,DoLi(a) = 3b,Dib,D3(b,)Do(a) = — 3Do(b,)Do(b,)D3(b,)Do(a)
= 2Do(b,)b,D5(b;)Do(a) = 0.Also [(Dg + Do(b,)*Do + D) (a)])* = [(Do+ Dy)@)]?
+ 2Ly(a)*. Therefore [Do(a”)]* = [(Do + D,X@))* + 2L,(a)* — 2b,D}(a)Do(a)z.
We have, using these results, that (goa’), = (goa)?; = booa® + 2aDi(a)
— Do(a)® + 2a’by, + 2aD,Do(a) + 2aDy,D(a) — 2D (a)Do(a) — ab,aDo(boo)z
— 2bgoDo(a)ab,z — 2ab,D(3,(a)z + b,,,a2 + 4aL2,(a) - 2L,(a)2 + 2an(a)
— D,(a)* — 2b,a’Dy(bo,)z — 2ab,bo,Do(a) + 2ab,DoDo(a)z — 2b,aDiD,(a)z
= ta® + 2a'D'*@a’) - D'(a’)* + 2b,bo,aDo(a) + 2b,aDoDo(a) = t(a®)
+ 2a'D'*(a’) — D'(a’)>. Since t = giZ we have '

(71) (90a)1/2 = 9o + 2a'Dg(a) — Do(a')’.
From (68) and (70) we have

(70)
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a'(b’z) = (a’b’)z = (ab)'z,
(a’z)(b'z) = a’b’ = (ab)’,
(b'z)(goa )1/2 = —a’'Dy(b"),

b'(goa")1,2 = [(a'b")goly2 + a'Do(b’)z.

If B’ is the set of all elements of the form a’ where a € B thenB’'+ B’z + (9,B'),,,
is a subalgebra with multiplications similar to those expressed in (66). Hence
we can conclude that this subalgebra is power-associative and that a’ + b’z
+(god"),,, has a unique fourth power foreverya’,b’and d’'e B’. But €=8'+B'z.
Therefore a + bz + (god + gd)y,, has a unique fourth power for every a,b,de B
and every g. If d is nonsingular then d can be absorbed in the coefficients a;
of g; in the expression for g. Hence a + bz + (god),,, + g has a unique fourth
power if d is nonsingular. We can restate this as x = g, + a(a + bz) + f(god),,,
+ yg has a unique fourth power for d a singular element of B,a,be B,
g = X(a:9),/, and «, fe §. The characteristic is sufficiently high so that the at-
tached polynomials of the expression x2x? — x* are all zero [6]. The sum of
those polynomials with a coefficient «’fy* where i + j + k = 4 is of course also
equal to zero. But by replacing o, § and y by 1 in this sum we get y2y* — y* =0
where y = (a + bz + (god),,2 + g). Hence any element of U has a unique fourth
power and U is power-associative.

To complete the proof it remains only to show the simplicity of . Let 3 be
a proper ideal of U with the nonzero element a + bz + t where a,be B and
te L. Since z3 =3I we have az + beJ. Now multiply az + b by g, to get
(ag0)12 + Do(a)z — Do(b) € J. By the above (ago);/» € I. Multiplying this
element by cz we get a €J and therefore b,t, D(a) and D(b)eJ. Let B be the
set of all elements of B that are in J. Clearly, P is a proper ideal of B. Since
PL =3J and (PL),,,L =J it can be easily shown that P is D-admissible. Hence
B = 0 and the only nonzero elements that could be in J are of the form ¢
where te £. But by the assumption.on U there is an x € £ such that gx#0. Since
gxeB + Bz and I N (B + Bz)=0 we must have J=0. Therefore A is simple.

To further characterize the algebra U and its subalgebra B we quote a result
of Harper [5, Theorem 1].

THEOREM 9. Let B be a commutative, associative algebra with unity 1
over an algebraically closed field &, and let B be D-simple relative to a set
of derivations of B over §. Then B = §[1,x,,...,x,] is an algebra with gener-
ators X, ...,x, over & which are independent except for the relations x{ =
= x? = 0 where p is the characteristic of {§.

3. Let p be a prime # 2, 3 5 and let B be the associative commutative al-
gebra of all polynomials X7~ Ja;c!in ¢ with ¢?= 0 and ¢®= 1, the identity of B.
Let € be {(goa);;; :aeB}. Then A =B + Bz + (9,B),,2. Let byo =0 and D,
be ordinary polynomial differentiation; i.e., Do(c) = 1. Assume that u = a + bz

(72)



1962] ON COMMUTATIVE ALGEBRAS OF DEGREE TWO 313

+ (god)y/2, where a,b,deB, is an idempotent of A that is not in €. Then
a’ + b* + 2dD¥(d) — Dy(d)* — 2dDy(b) + 2abz + 2dDy(a)z + 2(gy(da)), /2
= a + bz + (god),,;. Therefore d(2a—1) = 0 and 2ab + 2dDy(a)=>b. If d=0 then
u € €. By our assumptions d # 0 and we must have 2a — 1 is singular. Therefore
we can write a = 1/2 + ¢’ where s is a nonsingular element of B and t = 1. We
have d¢' = 0 and ¢'b + tc¢'~'d = 0. Hence ¢'*'b = 0. Since

(73) a® 4 b* + 2dD¥(d) — Do(d)* — 2dDy(b) = a

it follows that a®c'*! = ac'*2. But this implies that ¢'*! = 2¢'*!. Hence t + 1 = p.
Assume t = p — 1; then ¢® 'b=c""%d. Now if b= X5 'fc' and d = 15 ‘o’
then we must have ay = 0 and f, = a,. From (73) we must also have g2 — a? = 1/4
which is a contradiction. Therefore t + 1> p and a =1/2.

Let x" =a’+ b’z + (god’);,, be an arbitrary element of U. By considering the
product x'u we see that a necessary and sufficient condition that x’ e W, (1) is that

2a'd =d’,
2ba’ + 2Dy(a")d = b’.

The correspondence a’—a’ + 2a’bz + 2Dy(a")dz + 2[go(a’d)]y,; is clearly a
1-1 correspondence between B and W, (1) preserving the vector space operations.
Therefore A,(1) is of dimension p.

If u is a stable idempotent then Albert has shown [3; 4] that A = A1)
+ A, (0)+(WwE")+ G where €' =UA,(1) + A,0) and wE€’ + G = A,(1/2). Albert also
showed that the dimensions of (1), A,0) and w€’ are all equal. Therefore
®=0. A further result of Albert’s is that (1) + A,(0) + wC€’ is associative.
This implies that U is a simple, associative algebra and hence we must have ¢ = 0.
We can conclude that our example contains no stable idempotents.

(74)
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