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1. Introduction. We shall continue our discussion of fixed point free in-

volutions which was begun in [2]. We denote by S" the antipodal involution

on the n-sphere. For any fixed point free involution on a space X the co-index

was defined to be the least integer n for which there is an equivariant map X -* S".

We abbreviate this invariant to co-ind X. In this terminology the classical Borsuk

theorem states that co-ind S" = n. There are also numerous results (for references,

see [2]) which among other things relate co-index to the homology of the quotient

space X/T. The main purpose of the present note is the computation of the co-

index in several examples in which homotopy, rather than homology, consider-

ations are of primary importance. It should be mentioned that A. S. Svarc has

also recently studied the application of homotopy theory to equivariant maps

[5]; there is a considerable overlap between his work and our previous paper [2].

We consider as in our previous paper the space P(S") of paths on S" which

join a given point x to its antipode A(x) = — x together with the natural invol-

ution of P(S"). It is shown that co-ind P(S") = n for n ^ 1, 2, 4 or 8. Next we

consider the space V(S") of unit tangent vectors to S", with its involution (the

antipodal map on each fibre), and show that co-ind V(S") = n for n # 1, 3, or 7

and co-ind V(S") = n — 1 for n = 1, 3 or 7. We also compute the co-index of

involutions on low dimensional projective spaces. The arguments rely on sus-

pension and Hopf invariant theorems, using particularly the results of J. F.

Adams [1] on maps of Hopf invariant one.

2. The space of paths P(S"). We choose a base point xeS" and we let P(S")

denote the space of all paths in S" which join x to its antipode — x. A fixed point

free involution on P(S") is given by T(p)(t) = -p(l - t), where p(t) is a point in

P(S"). In this section we show

(2.1) Theorem. For n # 1, 2, 4 or 8, co-ind P(S") = n.

We showed this for n > 1 and odd in [2, p. 425] and we conjectured this result

as the general case. We see first that co-ind P(S") = n by defining an equivariant

map m : P(S") -► S" as m(p(t)) = p(l/2) e S".

Now we suppose there is an equivariant map mx : P(S") -> Sn_1. We define an
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equivarient imbedding map e:Sn_1 -» P(S") as follows. We regard S" as the sus-

pension of S"-1 with vertices x and — x. Let/:S"-1 x J -► S" be the natural map

with/(Sn_1 x 0) = x,/(S"_1 x 1) = -x. To each yeS"-1 we assign the path

p(t) =f(y,t). This is seen to be equivariant if we note that antipodal involution

on S" is induced by/from the involution (y,t)->( — y, 1 - f)-

The composite map m1e:S"_1->Sn_1 is an equivariant map of the antipodal

involution into itself, thus it has odd degree. In particular (m^)*: H^(S"~l; Z2)

a HJ[S"~l;Z2). Now we have assumed n ^ 3, thus we may apply the Whitehead'

theorem to conclude (m^)^. :Ttk(S"~1) a 7rl(S''-1)modC, the class of finite groups

with odd order. In particular then the kernel of e* :Ttk(Sn~1)-*nk(P(Sn)) is a finite

subgroup of odd order.

Now consider a map <p : PiS") -» fi(S") given as follows. Choose a great circle

arc 0 which joins — x to x and define <p(p) to be the composite path g • p, which

is a loop based at x. The composition

nk(S"-l)^nk(P(Sn)) 5 nk(Çl(Sn)) a 7tk+i(Sn)

is exactly the Freudenthal suspension homomorphism S : 7tk(S"_1) -» Ttk+1(S").

The kernel of e* is just the kernel of S. Now G. W. Whitehead has characterized

the kernel of S : 7t2n_3(S"~1)^n2B_2(S") [6]. Namely Ker 2 is generated by

the bracket [i,/], where i is the identity map of S"_1. For n odd, [^i,i] has Hopf

invariant 2, and is thus of infinite order. This contradicts the assertion that ker(e^)

is finite. For n even, 2[i,i] = 0, and [/,/] = 0 if and only if ^„^(S") contains an

element of Hopf invariant 1. Thus by Adams' theorem [1], ker(e*) ^ Z2, n even

and n =£ 2, A or 8. This contradicts the assertion that ker(e+) has odd order.

The proof of (2.1) is now complete.

We have already shown results of the following type for n odd [2, p. 434].

It was also shown that 2n - 2 is the lowest dimension for which the following

examples exist.

(2.2) For n # 1, 2, 4 or 8 iAere is a fixed point free involution X on a compact

space and an inessential equivariant map m:X->Sn, dim X = 2n — 2 and

co-ind X = n.

We simply make a few revisions in the proof of (2.1). There is the imbedding

e :Sn_1 -> P(S") and the element [i,i] 6 7t2„_3(S',~1) with <?«,([i,i]) = 0. There is a

compact X c PiS") with S"~1cz X such that under the homomorphism induced

by 7 : S"_1 <= X,j^({i,i]) = 0. Such an X can be made invariant. Suppose that such

an X could be equivariantly mapped into S"_1. The proof of (2.1) reveals that

ker 7+eC, and ker 7# <= kere*. A contradiction results, and co-ind X=n. Now

X can be mapped by an inessential equivariant map into S", since X <= P(S")

The argument that X can be selected to satisfy the above, and also be of dimension

2n — 2 is tedious and we shall omit it.

The cases n = 1, 2, 4, 8 remain open. For n = 1 there is an equivariant map
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P(S1) -» S°. For n = 2 it is at least true that every compact invariant subset of P(S2)

can be equivariantly mapped into S1 [2, p. 424]. We conjecture a like result for

n = 4, 8.

3. The tangent bundle V(S"). Let V(S") denote the unit tangent sphere bundle

to S". Let (A,V(S")) be the fibre preserving fixed point free involution which,

on each fibre, reduces to the antipodal involution. Clearly (A,V(S")) st (T,V„+X 2),

where Vn+X2 is the Stiefel manifold of orthonormal 2-frames in Rn+1 and

T(vx,v2) = (v2,vx).

(3.1) Theorem. If n # 1, 3, 7, co-ind V(Sn) = n, while if n = 1, 3 or 7, co-

nd V(S") = n - 1.

We see that S""1 is equivariantly imbedded in V(Sn) as a fibre. It follows that

n — 1 = co-ind F(S"). There is also an equivariant map m : V(S") -* S". If we take

P.+1.2 - ^(S"), then there is the map m given by m(Fi,F2) - (Pi - ^2)/1| ̂ i ~V2\\.

Furthermore, for n = 1, 3, 7 there is an equivariant map V(Sn)->S"~l since

in these cases S" is parallelizable. It remains to show that if n # 1, 3 or 7 then

there is no equivariant map V(S") -» S"_1.

Suppose there is such a map g : V(S") -> S"~l. Let i : S""1 -* V(S") be the in-

clusion map of a fibre. By the Borsuk theorem, the map g i : S"-1 -►S"-1

has odd degree. Putting it loosely, g is of odd degree on each fibre of V(S"). We

shall now use a construction of Milnor and Spanier [3] to show the following

and hence yield (3.1).

(3.2) Suppose there exists a map g : V(S") -* S"~l,n odd, which is of odd degree

on each fibre; then n = 1, 3 or 7.

We shall give in some detail the argument outlined for a similar purpose by

Milnor and Spanier [3]. In S" x S" we consider a closed tubular neighborhood

N of the diagonal A e S" x S", with boundary JV and interior JV°. Now Ñ is an

(n — l)-sphere bundle over the diagonal A which is equivalent to the tangent

sphere bundle V(S"). By hypothesis there is a map g : JV-» S"-1 which is of odd

degree on each fibre Fx of Ñ. It is well known that the inclusion Fx<= Ñ induces

an isomorphism H"~\Ñ;Z2) sa H"~\FX;Z2). We see thus that g* :H"~1(S"~l;Z2)

m H"~l(Ñ;Z2). We now consider the closed n-cell D" with boundary Sn_1. On

each of the n-cell fibres F'x of JV -> A we may extend g : Fx -> S"-1 to a mapping

F'x -> D\ In this manner we obtain an extension G : JV -> D" of g : JV-* S"~x. The

commutative diagram

H"-\S"'i;Z2) * rTW.S""1; Z2)

«   ¿ a* I   G*

H"~\Ñ;Z2) % H\N,Ñ;Z2)

shows that G* :H"(JV,JV;Z2) » H\Dn,Sn~l;Z2).
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We next consider a map S" x S" -» S" given as follows. We think of S" as ob-

tained from D" by collapsing S"~* to a point. There is a composite map N^>D"->S"

which maps Ñ onto the point aeS. We simply extend to a map H : S" x S" -* S"

which maps S" x S" — N onto a. Now we have the diagram

Hn(S",a;Z2)   5   H"(N,Ñ;Z2) et Hn(Sn x Sn,S" x S" - N°;Z2)

I* i
/f(S";Z2)     "'   i/"(S"xS";Z2).

We have seen that H*, which is essentially G*, is an isomorphism. If

y e H"(S";Z2) is the generator, then H*(y) is the nonzero element oflm(H"(N,Ñ;Z2)

-» Í7"(S" x S";Z2)). That is H*(y) = y ® 1 + 1 ® y.

If now 9erY"(Sn;Z) is a generator of this integral cohomology group, then

H*(y) = c(f® 1) + d(l ® y), with c,d odd numbers. Thus H:S" x S"-* S"

is of type (c,d) in the sense of Hopf. In particular 7r2n+1(S"+1) contains

an element of Hopf invariant 1, so by Adams' result n = 1, 3 or 7. This completes

the proof of (3.2) and of (3.1).

4. Involutions on projective space. We consider a fixed point free involution

T : P" -* P" on real projective n-space (n odd by necessity). Let n : S" -* P" denote

the 2-fold covering. Now f is covered by a map T :Sn^S" with nT = fit, thus

T2 covers f2 = 1, hence T2 = ±1. Note that Thas no fixed points either. The

case T2 = 1 is impossible in fact, for if T2 = 1, then (T,Sn) is an involution without

fixed points and there must be a point xeS" with T(x) = — x (see (4.0) following),

and it(x) would then be a fixed point of (f,Pn). That is, every involution without

fixed points on P" is covered by a T:S"^S" with T2 = -1. We restrict our

attention to fixed point free involutions on P" which are covered by an orthogonal

map T :S"^S" with period 4. We shall call such involutions on P" orthogonal.

Any two fixed point free orthogonal involutions 7,¡:Pn->P" are equivalent

in the sense that there is a homeomorphism A :P"-> P" with hft = f2h. It is

in fact seen by the representation theory for the group Z4 that the T¡ which cover

f¡ are equivalent via an orthogonal map A : S" -> S" which must carry antipodal

pairs into antipodal pairs, and thus inducing the equivalence A between fy and f2.

(4.0) If T:S"^S" is a fixed point free involution, there exists xeS" with

T(x) = — x.

Proof. Suppose the conclusion is false. For every x e S", let 0(x) be the mid-

point of the shortest geodesic arc joining x to Tx ; that is, 0(x) = (x + T(x))/1| x + Tx ||.

Then 0(x) = g(Tx), and also g is homotopic to the identity. Since 0(x) = g(Tx)

we may factor g as S"^* S"/T^ S", where p is the orbit map. Now p*:Hn(S";Z2)

->Hn(S"/T;Z2) is trivial. Hence g =fp is of even degree, and we have a contra-

diction. That is, Tx = —x for some x.

(4.1) For every fixed point free orthogonal involution P3, co-ind P3 = 2. For
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every equivariant map m:P3 ~>S2 the composite mn:S3-* S2 has odd Hopf

invariant.

To display an equivariant map of P3 into S2 we consider the particular map

of period 4, T : S3 -* S3 given in complex co-ordinates by T(ZX,Z2) = (-Z2,ZX).

We consider S2 as the Gauss sphere and we think of the antipodal map on S2

as A(Z) = -1/2. There is the usual Hopf map f:S3^S 2 given by f(Zx,Z2)

= Zi/Z2 and/T= Af, hence/(-x) = f(x) on S3 and/induces an equivariant

map m:Pi^S2. Thus co-ind P> ^ 2. Now P3 is connected and Hl(P3;Z) = 0,

thus co-indz P 3 2: 2. This refers to the integral co-index of [2]. Since co-indz

_ co-ind, it follows that co-ind P3 = 2.

Since co-indz P3 = co-indzS2 = 2 it follows that for every equivariant map

m:P3-* S2, m* : H2(S2 ;Z) -* H2(P3 ;Z) is nontrivial [2], that is an epimorphism.

It follows that m*:H2(S2;Z2) s H2(P3;Z2).

We now consider the composite map mn : S3 -► S2, and we shall apply Steen-

rod's characterization of the Hopf invariant [4]. Let M denote the mapping

cylinder of mn, and let M/S1 be the space obtained from M by shrinking its face

S3 to a point. Now let y be the generator of H2(M/S3;Z2) ~ Z2, and note that

H\M/S3;Z2)^Z2 also. As Steenrod points out, mn:S3-*S2 has odd Hopf

invariant if and only if Sq2(y) = y U y =¿ 0. Now we shall compute.

Let MX,M2 respectively denote the mapping cylinders of n:S3->P3 and

m :P3 -* S2 respectively. Let M = Mx UM2 denote their union identified along

their common face P3. It is readily seen that M/S3 and M/S3 have the same

homotopy type, so that we may consider M/S3. Moreover

M/S3 = Mx/S3 U M2, (M1/S3)nM2 = P3.

Note that Mx/S3 = P4 and P3 c Mx/S3 as P3 is usually contained in P4. We

now take the Mayer-Vietoris sequence of M/S3

H2(M/S3;Z2) - H2(P4;Z2) + H2(S2;Z2)   fV?   H2(P3)

| Sq2 1 Sq2

H\M/S3;Z2) Í» H4(P4;Z2) + //4(S2;Z2) -► H\P3;Z)

where i* is induced by inclusion. Both i* and m* are isomorphisms. Let a^ a2

respectively be the nonzero elements of H2(P*;Z2) and r72(S2;Z2) so that

i*(<xx) + m*(a2) = 0. Hence h(y) = ax + a2 and

hSq2(y) = Sq2at + Sq2a2 = Sq2ax # 0.

Thus Sq2(y) # 0 and m7¡: :S3 ^ S2 has odd Hopf invariant.

(4.2) For every orthogonal fixed point free involution P5, co-ind P5 = 4,

and every equivariant map m :P5 ->S* is essential.

First there is no equivariant map m:P5 -> S2, for if there were we would consider

mn : Ss -> S2 and note that m : P3 -» S2 is equivariant so by (4.1) mji: S3-»S2has
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odd Hopf invariant. This is impossible since mjf.S* -> S2 is inessential. Hence

co-ind P5 = 3.

Next we assert that there is an equivariant map m : P5 -> S4. It is sufficient to

find f:S5^S*~ with fT = Af. We consider S5 as the join S3 ° S1 and iT,S5)

as the join of (T,S3) with z -» iz. We take (A,SA) as the join of the antipodal

involutions (A,S2) and (A,Sl). There is already a map/j :S3->S2 with/tr = /l/i

and there is the map /2 : S1 ->■ S1 given by /2(z) = z2. The join fx ° f2:S5 -* S4

is the desired map.

Finally we must show there is no equivariant map m :P5 -» S3. Suppose there

is a map/:S5 -* S3 v/ithfT = Af. We shall first show that we may as well sup-

pose /(S3) c S2. The map/:S3-vS3 is certainly inessential, so by the Hopf

classification theorem m :P3 -+ S3 is also inessential since H3(P3 ;Z) -> H3(S3 ;Z)

is a monomorphism (of degree 2). Hence both m :P3->S3 and the equivariant

map mt :P3-+S2 <= S3 constructed in (4.1) are both inessential in S3 and are

homotopic. But just as in [2] it follows that m,m1 :P3^S3 are equivariantly

homotopic. Since m can be equivariantly extended over P5 it follows that mt

also admits an equivariant extension. Thus we may as well say m(P3) c S2 and

f(S3) c S2.

By (4.1) the map/: S3 -* S2 has odd Hopf invariant. We now use the particular

model T:SS->S5 with T2 = -1 which is given by T(Z1,Z2,Z3) = iiZuiZ2, iZ3).

Let D4 be the closed 4-cell {(Z1(Z2,r) :r ^ 0}, and let D2 be {(ZuZ2,ir) :r = Q}.

Let S4 denote the union D4UD4. We claim that /:S4 ->• S3 represents in 7t4(S3)

the suspension of the element n3(S2) given by f:S3->S2. Since /: S3 -» S2 has

odd Hopf invariant it follows that f:S*^>S3 is essential. On the other hand

f\ S4 can be extended to /: D5 -* S3, where D5 is the 5-cell {(Z1,Z2,Z3), Re(Z3) ^0,

Im Z3 = 0}. From this contradiction (4.2) follows.

We need the following consequence of 7t4(S3) at Z2, which we leave to the

reader. The consequence is that/ : Z)4-> S3 is homotopic via h„ relative to dD*=S3,

to a map ht of D4 into the upper hemisphere of S3 (or to a map of D\ into the

lower hemisphere). Next we note that T(D\) = D2, and recall that/T = ,4/. Then

AhtT~x :£>4-+S3 is a homotopy, relative to the boundary 3D2 = S3, with

Ah0T~l =h0 =f\D2 and with^AiT"1 having values in the lower hemisphere

of S3 (or in the upper hemisphere). The homotopy, A, on D\, AhtT_1 on D2,

gives a homotopy of f:S*->S3 to the suspension of/:S3->S2. The theorem

follows. That every equivariant map P5 -» S4 is essential follows from the stability

theorem of [2, p. 424].

We are unable to compute co-ind p2"+1 for n = 3. In particular, it is an open

question as to whether co-ind P7 = 4 or co-ind P7 = 5. In commenting on our

faulty argument in the original manuscript that co-ind P7 = 4, the referee has

pointed out that if there is an equivariant map S7 -♦ S4 then it represents an

element of order two in 7r7(S4). He conjectures co-indP7 = 5.
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5. An addendum. In this section we consider in more detail the technique

in (4.1) involving Steenrod squares. The aim is to obtain information concerning

which maps S" -» Sk can be factored through P".

(5.1) If n^3 mod 4, then for every essential map f :S"-> S"~l there is

a pair of antipodal points on S" which is mapped into a pair of antipodal points

ofS"'1 byf.
Suppose on the contrary/(x) and/(—x) are never antipodal. Define g : S" -* S" ~l

so that g(x) is the midpoint of the minor arc of the great circle joining f(x) and

/(—x). Then a is a homotopic to/, g is also essential and g(x)=g(-x) for all xeS"

That is g = gn, where n : S" -> P" is the covering map and g :P"-> S"~l.

As in (4.1), consider the mapping cylinder M of g, as well as the cylinder Mx

of n and M2 of g. Let M denote the union Mx U M2 joined along their common

face. We then have M/S" = Mx¡SnU M2, Mx/S" = pn+1, and Mayer-Vietoris

sequence

...^H""1(JW/S',;Z2)^fl",-I(P"+1;Z2) + /iB-1(S',"1;Z2)    '!î»*H"_,(P"; Z2)

i Sq2 I Sq2
...^Hn+1(A}/S";Z2)^H"+l(Pn+x;Z2) + Hn+1(S"-l;Z2)... .

Let yeHn~l(M/S";Z2) be the generator of this cohomology group. Since a is

essential, Sq2(y)^0. Since h' is a monomorphism, h'(Sq2(y))^0 and Sq2(h,(y)) ^=0.

In particular n(y) has a nonzero component in if-1(P"+1;Z2), butn(y) is in the

kernel of i* + g*, so h(y) must also have a nonzero component in Hn~1(S"'l;Z2).

In particular it follows that g* : H"_1(S"" \Z2) -» H"~i(Pn;Z2)is nontrivial. Exam-

ination of Sq1 shows n must then be odd. Since Sq2 :H"~1(Pn+1;Z2) -*

Hn+1(P"+1;Z2) is nontrivial, so n = 3, 7, 11,.... The result (5.1) follows.

We note the following addition to (4.2). Let f:P5->S* be an equivariant map.

We have seen that/ is always essential; however it follows from (5.1) that the

composition f = fn:S5->SA is always inessential.

References

1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2)

72 (1960), 20-104.

2. P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull.

Amer. Math. Soc. 66 (1960), 416-441.

3. John Milnor and Edwin Spanier, Two remarks on fiber homotopy type, Pacific J. Math.

10 (1960), 585-590.

4. N. E. Steenrod, Cohomology invariants of mappings, Ann. of Math. (2) 50 (1949), 954-988.

5. A. S. Svarc, Some notions connected with that of the genus of a fibre space, Dokl. Akad.

Nauk. SSSR 136 (1961), 72-74.

6. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. (2) 51 (1950),

192-237.

University of Virginia,

Charlottesville, Virginia


