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1. Introduction. Let G be a connected algebraic group, V a variety. G is

said to operate regularly on V if we are given an everywhere defined rational

map g x v -* g(v) of Gx V-> V such that

(1) 0i(02OO) = 9i9Av)   for any   gi,g2eG, veV,

(2) e(v) = v      for any       veV.

Denote by k an algebraically closed field, by A2 the affine plane over k, by Gmthe

multiplicative group of the universal domain.

Our purpose in this paper is to study by elementary means the regular opera-

tion of Gm on A2. We shall denote by a a regular operation of Gm on A2 which

is not the identity on A2, a: GmxA2 -*■ A2, and by <r(f) the restriction of this map

given by <r(i): t x A2-+A2, where teGm.

We recall that an algebraic torus is the direct product of a finite number of

multiplicative groups.

2. Change of coordinates in A2. Let (x,y) be a system of coordinates for A2.

Then if

\y   = 9(x,y), \y = g(x,y),

where f,gek[x,y], /', g' ek[x',y'~\, the system (x',y') will also be an allowable

system of coordinates for A2. (Considered in one coordinate system the map

(x,y)-»(x',y') is an entire Cremona-transformation.)

3. Semi-invariant polynomials. Let a regular operation of Gm on A2 be given

by o(t): (t,x,y)-*(x*,y*) where teGm, (x,y) is a coordinate system for A2, and

x*,y*ek[x,y,t,t~1].

If/e fe[x,y]; we define X,f, the i-translate off, by

(3.1) XJ(x,y) = f(x*,y*).

We say that / is a semi-invariant polynomial (abbreviated in the sequel as s.i.p.)

of weight s if \f= tsf, where s is an integer. If s = 0, / is said to be an invariant

polynomial.
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Lemma 1. Let fek\x,y]   and   suppose that ¿,f=pf, with pek\x,y,t,t~ï].

Then p = ts, s an integer.

Proof.   Indeed A,-i(A,/)=/. Therefore p(x,y,í_1,í)A/-1p(x,y,í,r1) = 1,   so

that p is independent of x and v, and the result follows.

Lemma 2. (a)   Any factor of an s.i.p. is an s.i.p.

(b)  Every semi-invariant rational function is the quotient of two s.i.p.

Proof,   (a) Let fy,f2,••-,/„ be the irreducible factors of a semi-invariant poly-

nomial; then A,(/i •••/„) =Khhfr~kL = t'h "•/„•
Therefore

(3.2) A,/= KM"1)  Ylfj
¡•1

where I is a subset of 1,2, •••,n, p(í,í_1)6fe[í,í-1]. Taking t= 1 in (3.2) it fol-

lows that XJi = p^r^f.

(b)   Let !t(f/g)=ff/g; then (Xtf)g =t'f(X,g). Since / and  g are  relatively
prime, the result follows by a standard divisibility argument.

Corollary A.   All polynomials ofk\x,y] which are semi-invariant under a

are products of irreducible s.i.p.

Proposition 1. Every polynomial of fc[x,v] is a sum of s.i.p.

Proof.   Let fe k\x,y], since A,/efc[x,y,i,f-1] we have

(3.3) X,f = f(fo + tfy + ... + tnf„) = t"Í t'f
¡=o

where, for all i, f¡ e fc[x,>>] and n ^ 0.

Since o is a regular operation of Gm on A2, the following conditions are satisfied :

(1) o-(l) is the identity on A2,

(2) o(ttx) = o(t)o(tx).

From (3.4) it follows that

(3.5) (tty)' i í'íU = *;  ¿ íÍ(A./().
i=0 i=0

Identifying corresponding coefficients of t\+" in the two members of (3.5) we get

(3.6) KU - t"+if.

Therefore all the/¡, i = l,••-,«, in (3.5) are s.i.p. To finish the proof, take i=l

in (3.3).

Corollary B. Among the irreducible s.i.p. there are certainly two poly-

nomials with independent linear terms.
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Proof.   Apply Proposition 1 and Corollary A to x,y e k[x,y~}.

4. Invariant functions. Among the rational functions on A2 some are in-

variant under o\ In the next few lemmas we investigate the connexions between

those functions and the s.i.p.

Lemma 3. The field of rational functions on A2 which are invariant under

a is a simple extension of k.

Proof. Consider the variety W of orbits (see [3]) corresponding to the oper-

ation of Gm on A2. Wis of dimension one. Its function-field k(W) is by Liiroth's

theorem (see [4]) a simple extension of k. On the other hand k(W) is exactly

the subfield of k(x,y) containing those functions of k(x,y) which are invariant

under o. Q.E.D.

If o is such that all s.i.p. are of positive weight we have k(W) = k(f/g), where

/ and g ave s.i.p. of the same weight (see [2, p. 84]). In the sequel k(W) will de-

note the subfield of k(x,y) formed by the functions on A2 invariant under a.

Lemma 4. Let a be such that all s.i.p. are of positive weight and let f/g,

(fand g relatively prime) be a generator for k(W). Consider an element p=f+pg,

pek. Then all the irreducible factors of p are equal.

Proof. If f/g is a generator for k(W), then so is/ + pg/g. Therefore it suffices

to prove that all the irreducible factors of/ are equal. Suppose that f=fxf2,

where fx is irreducible and/2 contains no factors equal to fx. Since the weights

off, g,fx are all positive f"g~b will be an invariant function for some well chosen

a and b. Then fxag~b ek(flf2g~í) i.e., since k is algebraically closed

ÎI     cf[((Jif2/g)+ad
— = —- with c, a¡, bj e k,

gb     t[(Wtfi/g) + b¡)
¡-i

or

(4.1) /? n c/r/i+M) = <#• n c/r/a+a#).
7=1 ¡=1

(if e is negative, we make the obvious change needed in order to get a polynomial

identity).

Now/" divides the right-hand member of (4.1). Since fxJfg and fxJff2, it fol-

lows by standard divisibility arguments that/2 = 1.

Lemma 5. Let a regular operation of Gm on A2 be such that all s.i.p. are of

positive weight. Let px,p2 and p3 be three irreducible s.i.p. of weights a>x, a>2

and co3 respectively, such that px,p2,p$$k.
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Then they satisfy a relation of the type

(4.2) cyp" + c2p{ = pi

where <x(Oy = ßco2, (<x,ß) = 1; c¡,c2ek.

Proof. Let d be the g.c.d. of (Oy and co2. Then coy = ßd and co2 = ad. Consider

<p = p\p2~ß) • <b is invariant under o, so that, iffg ~1 is a generator of k(W) we have

p\p2~ß) ek(fg~l). Therefore

eft if/9 - ad
P'Pi~n - -^r-with c, at, bsek,

u (f/9 -bj)
j = i

or
n m

(4.3) p\ n a - m - cp^e n (/- «*),
7=1 f-1

(if £ is negative, we multiply both members of (4.3) by g ~e, in order to get a poly-

nomial identity).

Using Lemma 4 we then have, by standard divisibility arguments,

(4.4) pï = dyf+d2g, pß2 = d3f+dAg,       dy,d2,d3,d4ek,

whence we can choose as generator for k(W) the element ptp2~ß). We now repeat

this argument with the invariant function p2,3P3~'°2\ taking pxp2~ß) as a generator

for k(W). The relation which we then get instead of (4.4) is

Pi = CtPÏ  + c2pß2,        Cy,c2ek,

where y is another positive number.

5. Invariant polynomials. Among the functions invariant under a there may,

or may not, be polynomials. The two following lemmas treat both possibilities,

and lead up to the main theorem.

Lemma 6. // there exist nonconstant polynomials invariant under a there

is at most one irreducible s.i.p. of positive weight and similarly at most one

irreducible s.i.p. of negative weight.

Proof. Let / be an invariant polynomial of the lowest degree, /£ k, and let

k(W)= k(g/h), where g and n are relatively prime polynomials. Then

cf[(g/h-ai)     ch'f\(g-aih)
f = -i=i-= —^-with c,a¡,bjek

ilig/h-bj) f[(3-bjh)

for some suitable e. It follows that some g— b¡h is a constant, and therefore

that k(W)= k(h) = k(f).
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Suppose now that px and p2 are different irreducible s.i.p. of positive weight.

Then for an appropriate choice of a and b, a > 0, b > 0, <p = paxp2~b) is invariant

under a. Therefore plp2bek(fi). We then get a polynomial identity

m m

v\ne/-cj)=dpb2 n(/-d¡) with rf.c;>4e*•
;=i ¡=i

As px and p2 are both irreducible it then follows that p" e k(f), p2 b e k(f), which

is a contradiction. The proof is similar for pt and p2 both of negative weight.

Lemma 7. Lei <r be such that there are no nonconstant invariant polynomials.

Then after a suitable change of coordinates (a translation) all s.i.p. will be

polynomials without constant terms.

Proof.   If there are no invariant polynomials the s.i.p. are either all of positive

or all of negative weight. It is no loss of generality to take all weights positive.

Let o(t) be given by

x* = f[/o + tfi + - + f/J,
(5.1)

V*  = tß[g0 + tgi + - + tmgml

By (3.6)/¡ is an s.i.p. of weight (a + i). Since, by assumption, all s.i.p. are of posi-

tive weight we may suppose a = ß = 0 in (5.1). On the other hand/0 and g0 are

then reduced to constants, since there are no invariant polynomials. Hence (5.1)

becomes

(5 2) x* = a + tfi(x,y) +.■■+ ffn(x,y),

y* = b + tgi(x,y)+- + tmgm(x,y),

where m > 0, n > 0, a, b e k.

After the change of coordinates

(5.3) X = x-a, Y = y-b,

we get

(5 4) x* = tf*x(x, y) + - + ty:(x, Y),

Y* = tg*(X,Y)+ ... + tmg*m(X,Y),

where f*(X,Y) = f(X + a, Y + b), gJ(X,Y) = gj(X + a, Y + b). In this new

system of coordinates no s.i.p. of positive weight can have a constant term,

since all powers of t in the right-hand members of (5.4) are positive.

Proposition 2. Let a be a regular operation of Gm on A2. Then the set of

all polynomials of k[x,y] semi-invariant under a is generated over k by two

of its elements.

Proof.   We distinguish two cases:
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(A) There are no invariant polynomials. Then all weights may be taken

positive. By Lemma 7 we may suppose that all s.i.p. have no constant terms.

We know (by Corollary B) that among the s.i.p. there are at least two pt and p2,

with independent linear terms. Since all s.i.p. have no constant term, pt and p2

are irreducible. Denote by coi, and a>2 the weights of pt andp2 respectively. Let

p3 of weight co3 he any other irreducible s.i.p. By Lemma 5 there exists a relation

of the type:

(5.5) py3 = Cyp'y + c2pß2, cy,c2,ek,

where ocd = œ2, ßd = coy, (<x,ß) = 1. Then ya>3 = aßd. Let a ^ ß. The polynomials

Py and p2 have independent linear terms—so that p3 will have among its terms

of lowest degree a term of the type c3xiyt with ô + e = a, c3 e k. Therefore a = py.

Hence œ3 = pßd=pcoy. Applying Lemma 5 again, this time to p3, pt and p2,

we get

(5.6) c5p3 + cbp\  = p\, c5,c6ek.

So that p3 is a polynomial in pt and p2.

(B) There exist invariant polynomials. By Lemma 6 there are at most two

irreducible s.i.p., one of negative and one of positive weight. To conclude the

proof it remains to show that they generate over k all the invariant polynomials.

Let py and p2 be these two irreducible polynomials of weights coy and co2 respec-

tively, û)!>0, ca2<0.Let/bea generator for k(W). Then py'^p^1 e k(f). The

desired result follows by a divisibility argument, using the same methods as in

Lemmas 4 and 5.

6. Main theorems.

Proposition 3. Any regular operation of Gm on A2 can, after a suitable

change of coordinates, be reduced to the form

(6.1) (t,x,y,) -> (t"x,fy)

with u and v integers.

Proof.   Let o be given by (i,x,y) ->(x*,y*) where

x* = t' îfÀ
(6.2) i=0

y* = t> Î g/,
j = 0

with mH,nH,/¡, g¡efc[x,y].

By Proposition 1 the /, and g¡ are s.i.p. By Proposition 2 all s.i.p. are poly-

nomials in two irreducible s.i.p., say Xand Y. Then/, g¡e k\X,Y~\ and X, Ye k[x,y\.
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On the other hand x = Z/¡, y = ¿Zgj, so that x and y are polynomials in X and

Y, say x = P(X,Y), y = Q(X,Y). Therefore we have the relations

(6~ \x = P(X,Y),        p = X(x,y),

K    } \y = Q(X,Y),        \Y = Y(x,y),

which define an allowable change of coordinates in A2. In terms of the (X, In-

coordinate system a is then given by

(6.4) (t,X,Y) -> (tX, ?Y)

since X and Y are s.i.p.

Proposition 4. If Gm operates regularly on A2 there is always a fixed point.

Proof. This is an obvious corollary of the previous proposition. Note that

Gm can operate on A2 in such a way that there exists a curve of fixed points,

but that in this case there is a fixed point adherent to every orbit.

7. Algebraic torus. The next two propositions concern the action of an

algebraic torus on A2.

Proposition 5. // an algebraic torus operates regularly on A2 there al-

ways exists a fixed point.

Proof. Consider the algebraic torus G^x G{2) and let ox and a2 respectively be

the regular operations of G(1) and Gi2) on A2. Since G^ and G*,2) commute, the

set of orbits corresponding to ax is globally invariant under a2, and so is the

set of fixed points of ox. Therefore, if o¡ has only one fixed point, it is also a

fixed point for o¡, i # j. If on the other hand both o"i and o2 have curves of fixed

points, the curve of fixed points of ax is either a curve of fixed points for a2,

or an orbit of o2. In either case it has at least one fixed point. This proves that

ax and a2 have a common fixed point. The proposition then follows by induction.

Proposition 6. Let an algebraic torus G^ x G{2) x ■■■ x G%* operate regul-

arly on A2. Then after an appropriate change of coordinates this operation can

be described by

(7.1) (sx,s2, -,sr,x,y) -  ( xi] s\", yll ^ V
\      i=l 7=1 /

where «¡eG^, i = 1,2, •••,/, and the <x¡ and ßj are integers.

Proof. Let a regular operation of Gm x Gm on A2 be given by

(7.2) (s,t,x,y) - (x*,y*)

with x*,y* 6 fc[x,y,s,s-1,i,f-1].

In particular (7.2) defines by restriction two regular operations of Gm on A2

which we denote by

(7.3) ax: (s,x,y) ->• (xx,yx),
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(7.4) o2: (t,x,y)-*(x2,y2).

Suppose that the coordinate system is chosen so that o2 is of the form

(7.5) o2: (t,x,y) -* (t'x/y).

Obviously in some allowable coordinate system ox is of the form

(7.6) t (s,x',y') -» (s?x',ssy')

and in this coordinate system the orbits have as equation

(7.7) x'5 + py" = 0

if we suppose that yö > 0. Let the change of coordinates from (x',y') to (x,y) be

given by

(7.8) x'=f(x,y), y'=g(x,y), f,gek[x,y].

Then in the (x,y)-coordinate system the equation of the orbits (7.7) is

(7.9) f + pgi = 0.

These orbits have to be globally invariant under o2, so that fs/gy is a

semi-invariant function for a2. By Lemma 2, fs and gv are then s.i.p., which

means that both/and g are s.i.p. for cr2, that is, in the (x',y')-coordinate system

x' and y' are s.i.p. for o2. This proves that in the (x',y')-coordinate system both

Oy and er2 are reduced to the canonical form of Proposition 3. The proof is sim-

ilar if yô z% 0. Our proposition follows by induction.
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