THE ACTION OF AN ALGEBRAIC TORUS ON THE AFFINE PLANE

BY A. GUTWIRTH(1)

1. Introduction. Let G be a connected algebraic group, V a variety. G is said to operate regularly on V if we are given an everywhere defined rational map $g \times v \to g(v)$ of $G \times V \to V$ such that

(1)
$$g_1(g_2(v)) = g_1g_2(v)$$
 for any $g_1, g_2 \in G$, $v \in V$,

(2)
$$e(v) = v$$
 for any $v \in V$.

Denote by k an algebraically closed field, by A^2 the affine plane over k, by G_m the multiplicative group of the universal domain.

Our purpose in this paper is to study by elementary means the regular operation of G_m on A^2 . We shall denote by σ a regular operation of G_m on A^2 which is not the identity on A^2 , $\sigma: G_m \times A^2 \to A^2$, and by $\sigma(t)$ the restriction of this map given by $\sigma(t): t \times A^2 \to A^2$, where $t \in G_m$.

We recall that an algebraic torus is the direct product of a finite number of multiplicative groups.

2. Change of coordinates in A^2 . Let (x,y) be a system of coordinates for A^2 . Then if

(2.1)
$$\begin{cases} x' = f(x,y), \\ y' = g(x,y), \end{cases} \text{ and } \begin{cases} x = f'(x',y'), \\ y = g'(x',y'), \end{cases}$$

where $f, g \in k[x,y]$, $f', g' \in k[x',y']$, the system (x',y') will also be an allowable system of coordinates for A^2 . (Considered in one coordinate system the map $(x,y) \rightarrow (x',y')$ is an entire Cremona-transformation.)

3. Semi-invariant polynomials. Let a regular operation of G_m on A^2 be given by $\sigma(t)$: $(t,x,y) \to (x^*,y^*)$ where $t \in G_m$, (x,y) is a coordinate system for A^2 , and $x^*,y^* \in k[x,y,t,t^{-1}]$.

If $f \in k[x,y]$; we define $\lambda_t f$, the t-translate of f, by

(3.1)
$$\lambda_t f(x,y) = f(x^*,y^*).$$

We say that f is a semi-invariant polynomial (abbreviated in the sequel as s.i.p.) of weight s if $\lambda_t f = t^s f$, where s is an integer. If s = 0, f is said to be an invariant polynomial.

Received by the editors November 16, 1961.

⁽¹⁾ This work was supported by the NSF, under contract No. NSFG 9657.

LEMMA 1. Let $f \in k[x,y]$ and suppose that $\lambda_t f = pf$, with $p \in k[x,y,t,t^{-1}]$. Then $p = t^s$, s an integer.

Proof. Indeed $\lambda_{t-1}(\lambda_t f) = f$. Therefore $p(x,y,t^{-1},t)\lambda_{t-1}p(x,y,t,t^{-1}) = 1$, so that p is independent of x and y, and the result follows.

LEMMA 2. (a) Any factor of an s.i.p. is an s.i.p.

(b) Every semi-invariant rational function is the quotient of two s.i.p.

Proof. (a) Let f_1, f_2, \dots, f_n be the irreducible factors of a semi-invariant polynomial; then $\lambda_t(f_1 \dots f_n) = \lambda_t f_1 \lambda_t f_2 \dots \lambda_t f_n = t^s f_1 \dots f_n$.

Therefore

(3.2)
$$\lambda_t f_i = p(t, t^{-1}) \prod_{i \in I} f_i$$

where I is a subset of $1,2,\dots,n$, $p(t,t^{-1}) \in k[t,t^{-1}]$. Taking t=1 in (3.2) it follows that $\lambda_t f_i = p(t,t^{-1})f_i$.

(b) Let $\lambda_t(f/g) = t^{\alpha}f/g$; then $(\lambda_t f)g = t^{\alpha}f(\lambda_t g)$. Since f and g are relatively prime, the result follows by a standard divisibility argument.

COROLLARY A. All polynomials of k[x,y] which are semi-invariant under σ are products of irreducible s.i.p.

PROPOSITION 1. Every polynomial of k[x,y] is a sum of s.i.p.

Proof. Let $f \in k[x,y]$, since $\lambda_t f \in k[x,y,t,t^{-1}]$ we have

(3.3)
$$\lambda_t f = t^{\alpha} (f_0 + t f_1 + \dots + t^n f_n) = t^{\alpha} \sum_{i=0}^n t^i f_i$$

where, for all $i, f_i \in k[x,y]$ and $n \ge 0$.

Since σ is a regular operation of G_m on A^2 , the following conditions are satisfied:

(3.4) (1)
$$\sigma(1)$$
 is the identity on A^2 , (2) $\sigma(tt_1) = \sigma(t)\sigma(t_1)$.

From (3.4) it follows that

(3.5)
$$(tt_1)^{\alpha} \sum_{i=0}^{n} t^i t_1^i f_i = t_1^{\alpha} \sum_{i=0}^{n} t_1^i (\lambda f_i).$$

Identifying corresponding coefficients of $t_1^{i+\alpha}$ in the two members of (3.5) we get

$$\lambda_t f_i = t^{\alpha + i} f_i.$$

Therefore all the f_i , $i=1,\dots,n$, in (3.5) are s.i.p. To finish the proof, take t=1 in (3.3).

COROLLARY B. Among the irreducible s.i.p. there are certainly two polynomials with independent linear terms.

Proof. Apply Proposition 1 and Corollary A to $x,y \in k[x,y]$.

- 4. Invariant functions. Among the rational functions on A^2 some are invariant under σ . In the next few lemmas we investigate the connexions between those functions and the s.i.p.
- LEMMA 3. The field of rational functions on A^2 which are invariant under σ is a simple extension of k.
- **Proof.** Consider the variety W of orbits (see [3]) corresponding to the operation of G_m on A^2 . W is of dimension one. Its function-field k(W) is by Lüroth's theorem (see [4]) a simple extension of k. On the other hand k(W) is exactly the subfield of k(x,y) containing those functions of k(x,y) which are invariant under σ . Q.E.D.

If σ is such that all s.i.p. are of positive weight we have k(W) = k(f/g), where f and g are s.i.p. of the same weight (see [2, p. 84]). In the sequel k(W) will denote the subfield of k(x,y) formed by the functions on A^2 invariant under σ .

- LEMMA 4. Let σ be such that all s.i.p. are of positive weight and let f/g, (f and g relatively prime) be a generator for k(W). Consider an element $p=f+\mu g$, $\mu \in k$. Then all the irreducible factors of p are equal.
- **Proof.** If f/g is a generator for k(W), then so is $f + \mu g/g$. Therefore it suffices to prove that all the irreducible factors of f are equal. Suppose that $f = f_1^{\alpha} f_2$, where f_1 is irreducible and f_2 contains no factors equal to f_1 . Since the weights of f, g, f_1 are all positive $f_1^{\alpha} g^{-b}$ will be an invariant function for some well chosen f and f. Then $f_1^{\alpha} g^{-b} \in k(f_1^{\alpha} f_2 g^{-1})$ i.e., since f is algebraically closed

$$\frac{f_1^a}{g^b} = \frac{c \prod_{i=1}^n ((f_1^a f_2/g) + a_i)}{\prod_{j=1}^m ((f_1^a f_2/g) + b_j)} \text{ with } c, \ a_i, \ b_j \in k,$$

or

(4.1)
$$f_1^a \prod_{j=1}^m (f_1^a f_2 + b_j g) = c g^{\epsilon} \prod_{i=1}^n (f_1^a f_2 + a_i g),$$

(if ε is negative, we make the obvious change needed in order to get a polynomial identity).

Now f_1^a divides the right-hand member of (4.1). Since $f_1 \not \mid g$ and $f_1 \not \mid f_2$, it follows by standard divisibility arguments that $f_2 = 1$.

LEMMA 5. Let a regular operation of G_m on A^2 be such that all s.i.p. are of positive weight. Let p_1, p_2 and p_3 be three irreducible s.i.p. of weights ω_1, ω_2 and ω_3 respectively, such that $p_1, p_2, p_3 \notin k$.

Then they satisfy a relation of the type

$$(4.2) c_1 p_1^{\alpha} + c_2 p_2^{\beta} = p_3^{\gamma}$$

where $\alpha\omega_1 = \beta\omega_2$, $(\alpha,\beta) = 1$; $c_1,c_2 \in k$.

Proof. Let d be the g.c.d. of ω_1 and ω_2 . Then $\omega_1 = \beta d$ and $\omega_2 = \alpha d$. Consider $\phi = p_1^{\alpha} p_2^{(-\beta)} \cdot \phi$ is invariant under σ , so that, if fg^{-1} is a generator of k(W) we have $p_1^{\alpha} p_2^{(-\beta)} \in k(fg^{-1})$. Therefore

$$p_1^{\alpha} p_2^{(-\beta)} = \frac{c \prod_{i=1}^{m} (f/g - a_i)}{\prod_{j=1}^{n} (f/g - b_j)} \text{ with } c, a_i, b_j \in k,$$

or

(4.3)
$$p_1^{\alpha} \prod_{i=1}^{n} (f - b_j g) = c p_2^{\beta} g^{\epsilon} \prod_{i=1}^{m} (f - a_i g),$$

(if ε is negative, we multiply both members of (4.3) by $g^{-\varepsilon}$, in order to get a polynomial identity).

Using Lemma 4 we then have, by standard divisibility arguments,

$$(4.4) p_1^{\alpha} = d_1 f + d_2 g, \ p_2^{\beta} = d_3 f + d_4 g, \qquad d_1, d_2, d_3, d_4 \in k,$$

whence we can choose as generator for k(W) the element $p_1^{\alpha}p_2^{(-\beta)}$. We now repeat this argument with the invariant function $p_2^{\omega_3}p_3^{(-\omega_2)}$, taking $p_1^{\alpha}p_2^{(-\beta)}$ as a generator for k(W). The relation which we then get instead of (4.4) is

$$p_3^{\gamma} = c_1 p_1^{\alpha} + c_2 p_2^{\beta}, \qquad c_1, c_2 \in k,$$

where γ is another positive number.

5. Invariant polynomials. Among the functions invariant under σ there may, or may not, be polynomials. The two following lemmas treat both possibilities, and lead up to the main theorem.

LEMMA 6. If there exist nonconstant polynomials invariant under σ there is at most one irreducible s.i.p. of positive weight and similarly at most one irreducible s.i.p. of negative weight.

Proof. Let f be an invariant polynomial of the lowest degree, $f \notin k$, and let k(W) = k(g/h), where g and h are relatively prime polynomials. Then

$$f = \frac{c \prod_{i=1}^{n} (g/h - a_i)}{\prod_{j=1}^{m} (g/h - b_j)} = \frac{ch^{\epsilon} \prod_{i=1}^{n} (g - a_i h)}{\prod_{j=1}^{m} (g - b_j h)} \text{ with } c, a_i, b_j \in k$$

for some suitable ε . It follows that some $g - b_j h$ is a constant, and therefore that k(W) = k(h) = k(f).

Suppose now that p_1 and p_2 are different irreducible s.i.p. of positive weight. Then for an appropriate choice of a and b, a > 0, b > 0, $\phi = p_1^a p_2^{(-b)}$ is invariant under σ . Therefore $p_1^a p_2^{-b} \in k(f_1)$. We then get a polynomial identity

$$p_1^a \prod_{i=1}^m (f-c_i) = dp_2^b \prod_{i=1}^m (f-d_i)$$
 with $d, c_j, d_i \in k$.

As p_1 and p_2 are both irreducible it then follows that $p_1^a \in k(f)$, $p_2^{-b} \in k(f)$, which is a contradiction. The proof is similar for p_1 and p_2 both of negative weight.

LEMMA 7. Let σ be such that there are no nonconstant invariant polynomials. Then after a suitable change of coordinates (a translation) all s.i.p. will be polynomials without constant terms.

Proof. If there are no invariant polynomials the s.i.p. are either all of positive or all of negative weight. It is no loss of generality to take all weights positive. Let $\sigma(t)$ be given by

$$x^* = t^a [f_0 + tf_1 + \dots + t^n f_n],$$

$$y^* = t^\beta [g_0 + tg_1 + \dots + t^m g_m].$$

By (3.6) f_i is an s.i.p. of weight $(\alpha + i)$. Since, by assumption, all s.i.p. are of positive weight we may suppose $\alpha = \beta = 0$ in (5.1). On the other hand f_0 and g_0 are then reduced to constants, since there are no invariant polynomials. Hence (5.1) becomes

(5.2)
$$x^* = a + tf_1(x,y) + \dots + t^n f_n(x,y),$$
$$y^* = b + tg_1(x,y) + \dots + t^m g_m(x,y),$$

where m > 0, n > 0, $a, b \in k$.

After the change of coordinates

(5.3)
$$X = x - a, Y = y - b,$$
 we get

(5.4)
$$X^* = tf_1^*(X,Y) + \dots + t^n f_n^*(X,Y),$$
$$Y^* = tg_1^*(X,Y) + \dots + t^m g_m^*(X,Y),$$

where $f_i^*(X,Y) = f_i(X + a, Y + b)$, $g_j^*(X,Y) = g_j(X + a, Y + b)$. In this new system of coordinates no s.i.p. of positive weight can have a constant term, since all powers of t in the right-hand members of (5.4) are positive.

PROPOSITION 2. Let σ be a regular operation of G_m on A^2 . Then the set of all polynomials of k[x,y] semi-invariant under σ is generated over k by two of its elements.

Proof. We distinguish two cases:

(A) There are no invariant polynomials. Then all weights may be taken positive. By Lemma 7 we may suppose that all s.i.p. have no constant terms. We know (by Corollary B) that among the s.i.p. there are at least two p_1 and p_2 , with independent linear terms. Since all s.i.p. have no constant term, p_1 and p_2 are irreducible. Denote by ω_1 , and ω_2 the weights of p_1 and p_2 respectively. Let p_3 of weight ω_3 be any other irreducible s.i.p. By Lemma 5 there exists a relation of the type:

$$(5.5) p_3^{\gamma} = c_1 p_1^{\alpha} + c_2 p_2^{\beta}, c_1, c_2 \in k,$$

where $\alpha d = \omega_2$, $\beta d = \omega_1$, $(\alpha, \beta) = 1$. Then $\gamma \omega_3 = \alpha \beta d$. Let $\alpha \leq \beta$. The polynomials p_1 and p_2 have independent linear terms—so that p_3^{γ} will have among its terms of lowest degree a term of the type $c_3 x^{\delta} y^{\epsilon}$ with $\delta + \varepsilon = \alpha$, $c_3 \in k$. Therefore $\alpha = \mu \gamma$. Hence $\omega_3 = \mu \beta d = \mu \omega_1$. Applying Lemma 5 again, this time to p_3 , p_1 and p_2 , we get

$$(5.6) c_5 p_3 + c_6 p_1^{\mu} = p_2^{\epsilon}, c_5, c_6 \in k.$$

So that p_3 is a polynomial in p_1 and p_2 .

(B) There exist invariant polynomials. By Lemma 6 there are at most two irreducible s.i.p., one of negative and one of positive weight. To conclude the proof it remains to show that they generate over k all the invariant polynomials. Let p_1 and p_2 be these two irreducible polynomials of weights ω_1 and ω_2 respectively, $\omega_1 > 0$, $\omega_2 < 0$. Let f be a generator for k(W). Then $p_1^{(-\omega_2)}p_2^{\omega_1} \in k(f)$. The desired result follows by a divisibility argument, using the same methods as in Lemmas 4 and 5.

6. Main theorems.

PROPOSITION 3. Any regular operation of G_m on A^2 can, after a suitable change of coordinates, be reduced to the form

$$(6.1) (t,x,y,) \rightarrow (t^{\mu}x,t^{\nu}y)$$

with μ and ν integers.

Proof. Let σ be given by $(t,x,y) \rightarrow (x^*,y^*)$ where

(6.2)
$$x^* = t^{\alpha} \sum_{i=0}^{n} f_i t^i,$$
$$y^* = t^{\beta} \sum_{i=0}^{m} g_i t^i,$$

with $m \ge 0$, $n \ge 0$, f_i , $g_j \in k[x,y]$.

By Proposition 1 the f_i and g_j are s.i.p. By Proposition 2 all s.i.p. are polynomials in two irreducible s.i.p., say X and Y. Then f_i , $g_j \in k[X,Y]$ and $X, Y \in k[x,y]$.

On the other hand $x = \sum f_i$, $y = \sum g_j$, so that x and y are polynomials in X and Y, say x = P(X,Y), y = Q(X,Y). Therefore we have the relations

(6.3)
$$\begin{cases} x = P(X,Y), & \{X = X(x,y), \\ y = Q(X,Y), & Y = Y(x,y), \end{cases}$$

which define an allowable change of coordinates in A^2 . In terms of the (X, Y)coordinate system σ is then given by

$$(6.4) (t,X,Y) \rightarrow (t^{\mu}X, t^{\nu}Y)$$

since X and Y are s.i.p.

PROPOSITION 4. If G_m operates regularly on A^2 there is always a fixed point.

Proof. This is an obvious corollary of the previous proposition. Note that G_m can operate on A^2 in such a way that there exists a curve of fixed points, but that in this case there is a fixed point adherent to every orbit.

7. Algebraic torus. The next two propositions concern the action of an algebraic torus on A^2 .

PROPOSITION 5. If an algebraic torus operates regularly on A^2 there always exists a fixed point.

Proof. Consider the algebraic torus $G_m^{(1)} \times G_m^{(2)}$ and let σ_1 and σ_2 respectively be the regular operations of $G_m^{(1)}$ and $G_m^{(2)}$ on A^2 . Since $G_m^{(1)}$ and $G_m^{(2)}$ commute, the set of orbits corresponding to σ_1 is globally invariant under σ_2 , and so is the set of fixed points of σ_1 . Therefore, if σ_i has only one fixed point, it is also a fixed point for σ_j , $i \neq j$. If on the other hand both σ_1 and σ_2 have curves of fixed points, the curve of fixed points of σ_1 is either a curve of fixed points for σ_2 , or an orbit of σ_2 . In either case it has at least one fixed point. This proves that σ_1 and σ_2 have a common fixed point. The proposition then follows by induction.

PROPOSITION 6. Let an algebraic torus $G_m^{(1)} \times G_m^{(2)} \times \cdots \times G_m^{(r)}$ operate regularly on A^2 . Then after an appropriate change of coordinates this operation can be described by

$$(7.1) (s_1, s_2, \dots, s_r, x, y) \rightarrow \left(x \prod_{i=1}^r s_i^{\alpha_i}, y \prod_{i=1}^r s_j^{\beta_j} \right),$$

where $s_i \in G_m^{(i)}$, $i = 1, 2, \dots, l$, and the α_i and β_j are integers.

Proof. Let a regular operation of $G_m \times G_m$ on A^2 be given by

$$(7.2) (s,t,x,y) \to (x^*,y^*)$$

with $x^*, y^* \in k[x, y, s, s^{-1}, t, t^{-1}]$.

In particular (7.2) defines by restriction two regular operations of G_m on A^2 which we denote by

(7.3)
$$\sigma_1: (s,x,y) \to (x_1,y_1),$$

(7.4)
$$\sigma_2: (t, x, y) \to (x_2, y_2).$$

Suppose that the coordinate system is chosen so that σ_2 is of the form

(7.5)
$$\sigma_2 \colon (t, x, y) \to (t^{\alpha} x, t^{\beta} y).$$

Obviously in some allowable coordinate system σ_1 is of the form

$$(7.6) \qquad (s,x',y') \rightarrow (s^{\gamma}x',s^{\delta}y')$$

and in this coordinate system the orbits have as equation

$$(7.7) x'^{\delta} + \mu y'^{\gamma} = 0$$

if we suppose that $\gamma \delta > 0$. Let the change of coordinates from (x',y') to (x,y) be given by

(7.8)
$$x' = f(x,y), y' = g(x,y), f, g \in k[x,y].$$

Then in the (x,y)-coordinate system the equation of the orbits (7.7) is

$$f^{\delta} + \mu g^{\gamma} = 0.$$

These orbits have to be globally invariant under σ_2 , so that f^{δ}/g^{γ} is a semi-invariant function for σ_2 . By Lemma 2, f^{δ} and g^{γ} are then s.i.p., which means that both f and g are s.i.p. for σ_2 , that is, in the (x',y')-coordinate system x' and y' are s.i.p. for σ_2 . This proves that in the (x',y')-coordinate system both σ_1 and σ_2 are reduced to the canonical form of Proposition 3. The proof is similar if $\gamma\delta \leq 0$. Our proposition follows by induction.

REFERENCES

- 1. A. Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton Univ. Press, Princeton, N.J., 1960.
 - 2. C. Chevalley, Théorie des groupes de Lie. II, Hermann, Paris, 1951.
 - 3. M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443.
- 4. P. Samuel, Some remarks on Lüroth's theorem, Mem. Coll. Sci. Univ. Kyoto Ser. A 27 (1953), 223-224.

TECHNION,

HAIFA, ISRAEL