
SUMS OF FOUR SQUARES IN A QUADRATIC RINGO)

BY

HARVEY COHN AND GORDON PALL

1. Introduction. Let d be a nonsquare integer of the form 4fc +j (k integral,

j = 0 or 1). Let Z be the ring of rational integers, Rd the ring of numbers £ = x0

+ XyW, where o) = (j + ^Jd)/2, x0 and Xy ranging over Z.

In §2 we will transform the problem of solving

<r = Ç2o + ti + ti + lil Ko, -.is m RJ,

where a = s0 + Syco is a given number in i?d, into the problem of representing

the norm Na = s2, + js0Sy — fes2 by the form

Fd = t2 + dt\ + dt\ + dt\ (t0, ■■-, t3 in Z);

with the nontrivial restriction on t0 that b = (Ta — 2t0)/d shall be a nonnegative

integer, Ta denoting the trace 2s0 +jsy of a. This transformation of the problem

uses a recent theorem of Pall and Taussky (see [12]) on the number of represen-

tations of a binary quadratic form as a sum of four squares of linear forms.

Relatively little is known of the theory of reduction of quadratic forms over

Rd, as compared with Z. As an example, it seems to be true that d = 5 and 8 are

the only positive ring discriminants for which the form Hd = S,2 + ••• + ¿;2 is in a

genus of one class; but such results may be hard to prove, by available methods.

Hence our transformation of the problem is advantageous. The restriction on the

values of t0 is no handicap in the study of qualitative questions, concerning the

mere representability as a sum of four squares in Rd. Hence we are able to obtain

quite complete results of a qualitatative kind in Part I (cf. Niven [7]). Certain

conjectures made by Cohn on the basis of machine calculations (see [1]) are

confirmed. We might have simplified some details of proof if we had restricted

Rd to be maximal, as some writers do. Such restrictions are unnatural : thus it is

as significant that a totally positive number s0 + Sy(— 3)1/2 (with Sy necessarily

even) is a sum of four squares of numbers x0 + Xy(— 3)1/2 as the similar fact

for s0 + Syco, co = i(l + (- 3)1/2).

Among the simplest consequences of Part I is that the only values d for which

every a satisfying the obviously necessary conditions is a sum of four squares in

Rd are d = 5,S, and 12, and the negative d's not divisible by 16. At the referee's

suggestion we examined the remaining d's as regards sums of five or more squares,
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and found that if d < 0 and 161 d, five squares will suffice; while if d > 12 there

are numbers not sums of any numbers of squares. Of interest is that for positive

d = 1 (mod 8) there exist numbers of arbitrarily large norms, which satisfy the

obviously necessary conditions and yet are not sums of four squares in Rd.

Our treatment is entirely elementary. In Part II we develop an algorithm whereby

in certain cases our transformation of the problem permits derivation of formulae

for the number of representations of a as a sum of four squares. We carry this

through for d = 5, 8, and as far as possible for 12. These cases had been treated

previously, using Hubert modular functions of two complex variables, by Götzky

for d = 5 [5; 13], and by Cohn for d = 8 [2] and for some cases when d = 12

[2 ; 3] (making use of Theorem 7, Corollary 2 and (70a) below). Of interest is that,

although when d is not a square the weighted number of representations of n by

the genus of Fd is not a factorable function of n, it becomes factorable when n is

confined to the multiplicative subgroup of norms s2, + js0sx — ks2 of discriminant

d. The algorithm here developed is being applied to forms in two or four variables

by one of our students. For the literature in fields, not rings, see [4a].

Notations. Lower case Latin letters denote rational integers; Greek letters

elements of Rd if not stated otherwise. In Part I, the symbols d, k, j, co, Rd, Z have

the meanings in the introductory paragraph. Throughout, a = s0 + sxco; the norm

JVct = Sq +js0sx — ks2; the trace Ta = 2s0 +jsx; r4(n) is the number of repre-

sentations of n as a sum of four squares in Zd; r4(a,d) the number of represen-

tations of a as a sum of four squares in Rd. In Part I, O and £ designate odd or

even numbers, which may change from one place to another; L similarly denotes

"any" integer of the form 4A(8n + 7), h nonnegative, h and n integral.

Part I

2. The Pall-Taussky formula and its transformation to our problem. For given

s0, sx we wish to solve the equation

(1) s0 + sxco = (a0 + b0co)2 + ■■■ +(a3 + b3co)2

in integers a0,b0,---,a3,b3. Since co is irrational and co2=jco + k, the solution

is equivalent to expressing s0 in all ways as a + /ei» in nonnegative integers a

and b, and finding the integers a¡, b, such that

(2) a = Ia2,    b=lbf,    sx-jb = 2'Laibi.

Here the summation index i goes from 0 to 3. Now (2) amounts to expressing

a binary quadratic form as a sum of four squares of linear forms with integral

coefficients :

(3) ax2 + (sx- jb)xy + by2 = S (a,x + b,y)2.

The Pall-Taussky formula is for the number of such expressions of a binary
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quadratic form, and is in our present notations as follows. Necessarily, Sy — jb is

even. Let e denote the g.c.d. (a,(sy - jb)/2,b), le the g.c.d. (a,Sy — jb,b), so that

/ is 1 or 2. Then the Pall-Taussky formula is

(4) I   r4(/ft),
('1,(2,(3)

where ft = (ty,t2,t3,e), and one term of the sum occurs for each ordered triple

ty,t2,t3 of integers satisfying

(5) ab-(sy-jb)2/4 = t2+t22+t2.

Accordingly, r4(a, d) will be obtained from (4) by summing (4) over b, or,

what is the same thing,

(6) u(a,d) =      I      r4(lh),
(6,(1,(2,(3)

where b ranges over all nonnegative integers (b > 0 if s0 < 0; b = st (mod 2) if d

is odd), and for each such b, the t, range over integers satisfying

(5 ') (S0 - kb)b - (Sy - jb)2/4 = t\ + t\ + t2.

The product of the left member of (5') by d = 4fe + ;' simplifies to TVtr - t-,

where t0 = (Ta — db)/2. Hence (5') can be replaced by

(7) Na = to + dt\ + dtj + dt\,

where f0 is to be restricted so that (Ta — 2t0)/d is a nonnegative integer b. Auto-

matically, b has the parity of sx if d is odd. It is not hard to deduce from (7),

written in the form

(7') (Ta)2 - (2t0)2 = d(s2y + 4i2 + 4i2 + 4i2),

and the fact that b ^ 0, and that Qb Ï: 0, where

(8) Qb = {TVcr - ((Ta - db)/2)2}/d,

that if d is positive, then the solvability of (1) requires that

(9) TVflr ^ 0 and Ta ^ 0.

In other words, a must be totally positive, a fact otherwise evident. Total positive-

ness of a, and Sy even if d is even, are the "trivially necessary" conditions for

solvability of (1) when d is positive.

Further, if d is positive and (9) holds, then for any integer f0 satisfying (7) and

2/0 = Ta (mod d), the integer b determined by b = (T<x - 2t0)/d is always non-

negative ; for, Qb ̂  0 if and only if

(10) (T<t - 2(7V<j)1/2)/J ̂ b = (Ta + 2(No)1/2)/d,

where, since (Ta)2 = 4TVcr + ds2, the left member is nonnegative. Thus when d is
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positive, b is confined to a finite interval of length 4(No)1/2/d.   But   if   d < 0,

g6^0if and only if o^ (Ta- 2(No)1/2)/d,   an   interval   of   infinite   length.

This advantage to d negative is somewhat compensated by the fact that, as (7')

shows, changing t0 to — t0 then changes the sign of b.

Our basic result will be used so often that we state it as a theorem:

Theorem 1. Let a have sx even if d is even. Then (1) is solvable if and only if

there exists a nonnegative integer b for which Qb is a nonnegative integer not of

the form L.

The condition 2t0 = Ta (mod d) is satisfied for all integral solutions t0, — ,i3

of (7) in certain cases, and for exactly half the solutions in certain others :

Theorem 2. // d or \d is a prime, then if (9) holds, and sx is even whend

is even, (1) is solvable if and only if Na is represented by Fd.

Proof. For any solution of (7),

(Ta)2 = (2í0)2 (mod d) if d is odd,        si = t2, (mod d) if d is even.

Hence if d is an odd prime, 2f0 = Ta (mod d) holds for both signs of i0 if d | Na,

by choice of that sign otherwise. If d = 4p (p prime), we need t0 = s0 (mod 2p);

this holds automatically if p | s0, by choice of sign of i0 otherwise.

3. The universal discriminants. A discriminant d is called universal if (1) is

solvable for every a satisfying the obviously necessary conditions, (9) if d > 0,

2\sx if 21d. For field discriminants, some restrictions on d were known quite

early but there probably is no exact reference prior to 1928 [5].

Lemma 1. d is not universal if d is divisible by 16 or d > 12.

Proof.   It will be convenient, when d = 4k, to set

k = 2uk',k'    odd, u^O;   Na = 2ws, s odd, w^O;

s0 = 2 s2, s2     odd, p|0;    sx   = 2g   s3,    s3 odd, g 5; 0;

the last two if s0Si # 0, otherwise we can take v or g arbitrarily large.

To obtain a number a for which (1) is unsolvable, when 161 d, we can take

g = 0, and t> = %(u + 2) (> 1) or v = ¿(u + 3) (> 2) according as u is even or odd.

Then t0/2" = s2- 2"+1~vk'b is odd for every integer b, and Na = 22vs\ - ds\.

Hence Na — t\ has the excluded form dL for every integer b.

If d is positive take a — s0 + (2 - j)co, where s0 is the positive integer deter-

mined by the inequalities

(2s0 - 1) 2 < d < (2s0 + l)2 (d odd),   (s0 - l)2 < 4fc < s2 (d even).

Then 2s0 + 1 <2 + dU2, s0 < 1 + (4fc)1/2 respectively,  and hence (cf. (10))
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(Tff+2(7Vff)1/2)/d<(2 + d1/2+(4+4d1/2)1/2)/i/or(2+4fe1/2+2(l+4fe1/2)1/2)/d<l,

provided d > 12. Hence (1) is unsolvable for this a if d > 12.

Lemma 2. If d > 12, the number s0 + (2 —j)co defined above is not a sum of

five, or indeed any number of, squares of elements of Rd.

Proof. We will suppose ; = 1, the proof for j = 0, starting with the inequality

0 < s0 — 2fe1/2 < 1, being similar. We have

0 < s0 + co < 1, where œ = (1 - d1/2)/2.

Hence if s0 + œ is a sum of squares Za2, all the terms satisfy 0 z% a2 < 1, and

hence for any nonzero term a2, ä2> 1. Since s0 + œ is not a sum of four

squares, at least five of the terms a2 are not zero, and being less than 1 each of

these terms is irrational. If one of these, say a2, is (t + u^J d)/2, then ¿t2 =

(i - w -Jd)/2, and a2- a2= — u^Jd _: J d (since <x2> a2). Subtracting from

s0 + co = Zee2, we have J d ^ 5 ̂ / d, a contradiction.

Theorem 3. d is universal if and only if d is 5, 8, or 12, or negative but not

divisible by 16. If d > 12 there exists a totally positive number s0 + (2 —j)co

which is not a sum of squares ; if d < 0 and 161 d, every number (with st even) is

a sum of five squares.

Since as noted after (10) the interval for b is infinite, the proof for d < 0 is an

immediate deduction from Theorems 4, 5, 6, along with observation (for the last

part of Theorem 3) that either a or a — 1 will not satisfy (13). We assume d > 0.

By Lemma 1, d can only be 5, 8, or 12, and by Theorem 2 it suffices to show that

Fd represents all positive norms s2, + 7's0Si — fes2 (sy even if d = 8 or 12).

If d = 5 no norm is double an odd. It therefore suffices to treat odd norms of

the forms 5q + 0, 4, or 16, with q = 8fe + 7; note 5q — 25, q — 5 / L; 5q + 4 — 9,

q - 1 ,¿ L; 5<ï + 16 - 1, g + 3 ^ L. If d = 8, note first that F2 represents all

positive integers: thus, 2n + 0,1, n = 4*(8fe + 7); 2n - 4, n - 2 # L; 2n + 1 - 9,

n - 4 / L if ft = 0,1 ; 2n + 1 - 25, n - 12 # L if ft ̂  2. Hence F8 represents all

even norms. There remain only odd norms 8n + 1, n = 4Ä(8fe + 7); 8n + 1 — 9,

« - 1 ± L if « = 0,1 ; 8ft + 1 - 25, n - 3 ¥= L if ft = 2. Let d = 12. First, F12

represents all even norms, since F3 represents all positive 3« + 0, 1 ; for if n =

4A(8fc + 7), use 3w -9, « - 3 ^ L if ft ̂  1 ; 3n - 36, n - 12 # L if ft = 0; 3n + 1 - 4,

« - 1 ̂  L if /i = 0,1 ; 3« + 1 - 16, m - 5 # L if ft = 2. For odd norms 12n + 1,

if n = 4*(8fe + 7), 12n + 1 - 25, n - 2 ¿ L.
Previous proofs of universality for d = 5 and 8 used modular functions; for

d = 12, there is a previous proof [2; 3] only if a is even or 7V<r large.

4. Further analysis of Theorem 1. Assume a to satisfy the necessary conditions

(9), and sx even if d is even.
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If d > 0 the interval (10) contains at least q integers b (with the parity of sx

if d is odd) if

(12) Na ^ q2d2/4 (d odd),   JV<r ^ q2d2/l6 (d even).

If it can be shown that Qb^ L for at least one of every q (or 2q, if d is odd)

consecutive integers b, then it will follow that (1) is solvable if d < 0, and when

(12) holds if d > 0.

Theorem 4 will give the cases in which Qb has the form L for every integer b, so

that (1) is surely not solvable. In all other cases Theorems 5 and 6 will prove the

existence of an integer q (which we have tried to make best possible in each case)

with the aforestated property. Hence in these other cases (1) is solvable if d < 0,

or (12) holds and d > 0.

4a. Cases in which Qb = L for every b.

Theorem 4. Let d, sx be even. Then Qb has the excluded form L for every

integer b in the following cases:

(13) w < 2v,w < 2u; w >2v,u^.v; w = 2v,u — v > y;

which occur only if 32 \ d, 161 d, 1281 d respectively. Here we use the notations in

(11), and also if w = 2v, s — s\ = k'2ym, m odd, y S; 0, with the convention

when sQ, sx or s — si vanishes, that v, g, or y is "large."'''

Proof.   We can write

(14) 2ws = 22^-2"+2+29s^k',   c = 2"s2-2u+1k'b,

and have that Qb is not of the form L if and only if

(15) 2ws - c2 is not of the form 2"k'L.

Case (130. w = u + 2 + 2g by (14), s = 22"~ws^ - k'sj. Hence if 2» - w à 3,

s= -k' mod 8 and 2W+3 | c2 for every b. If 2c - w = 1 or 2, s = 22"~w - k' mod 8,

2~ V = 22p_w (mod 8) for all b. Case (132). By (14), u+ 2+ 2g = 2v, u is even,

c = 2V with c' = s2-2u+1-"k'b odd; 2ws = 22v(s\ - k's\), 2w-2vs - c'2 =

- fc'fmod g). Case(133). w = 2v < u + 2 + 2g, s - s2 = - 2u+2+29"2l,k'si Hence

y = u mod 2, m = 7 mod 8. Thus (15) is again demonstrated, since m + 2—v

^ y + 3 and

(16) s - 2-2wc2 = k'2y{m + 2u+2-"-ys2b - 22u+2-2"-yk'b2}.

If (13.) holds, 2u - 1 ̂  u + 2, u ^ 3. If (132) holds, 2u ̂  2» ̂  u + 2, u ^ 2. If

(133) holds, m - v > y ^ 1 and y = u + 2 + 2g — 2v; hence « ^ 5.

4b. Sufficient conditions for solvability of (1) when d is odd.

Theorem 5.   Let d be odd. Then (1) is solvable when (12j) holds, with
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q = 2,        //Na is odd; or if Na =. 0, d = 5 (mod 8);

(17) q = 4,        if No = 4, d = 5 (mod 8);

g = 2[w/2], i/7V<7 = 2ws, s odd ,w > 0, d = 1 (mod 8).

Proof. The numbers B = (To — db)/2 form an arithmetic progression with

odd common difference d, so that each residue class mod 2" occurs once in 2"

consecutive terms. We must assure the existence of a B for which Na — B2 is

not of the form dL.

(i) If Na is odd we have q = 2. For if Na = 3, Na - O2 = 2; if TVcr = 1,

No — E2 = I (mod 4). (0, £ designate odd and even numbers respectively.)

(ii) If d = 1 (mod 8) and Na = 2ws (w, s odd), we can take q = 2(w_1)/2, and

in general not less. For,

2ws - (2(w"1)/20)2 = 2w"1(4n + 1), 2ws - (2(W~1)/2F)2 = 2wO.

But if 0 z% c < (w - l)/2, 2ws - (2C0)2 = 22c(8n - 1) has the excluded form dL.

(iii) If d = 1 (mod 8) and Na = 22/+2s (s odd, /^ 0), we can take q = 2f+1.

For, Na - (2sO)2 = 22/(8« + 3).

(iv) If ii = 5 (mod 8) it is elementary that 2 cannot divide Na to an odd expo-

nent. If Na = 4 (mod 8), TVcr - O2 has the excluded form dL. But one of 4(4n + 1)

- (2£)2 = 4(4n + 1), 4(4n + 3) - (20)2 = 4(4« + 2) applies; hence q = 4.

(v) If d = 5 (mod 8) and 8 | TV<r, TVcr - O2 = 8« + 7 # dL; hence g = 2.

4c.   Note on discriminants of the form   8n + 1.

Theorem 5'. // d is positive and = 1 (mod 8) there exist totally positive a of

arbitrarily large norms for which (1) is not solvable.

This is suggested by (17) since q increases with the power of 2 in TVcr, but of

course this is no proof. To prove the theorem notice first that if t0, ■•■,t3 are

integers for which Fd is divisible by 8, then i0, •••, t3 are even. Hence if Fd fails to

represent one even norm n, it does not represent the infinitely many 4kn. It re-

mains then only to prove the following lemma.

Lemma. // d ^ 17, d = 1 (mod 8), then there exists between 1 and d an even

nonsquare integer of the form x2 + x + (1 — d)/A.

Proof.   The condition 0<x2 + x + (l — d)/4 < dis satisfied if

(- 1 + dm)/2 < x < (- 1 + (5d)l/2)/2,

the even squares between 0 and d are (2z)2 where 1 ^ z < ci1/2/2; and

((5d)m - dU2)/2 - 1 > d1/2/2 if d ^ 41.

We can use 22 + 2 - 4 for d = 17, and 42 + 4 - 8 for d = 33.

We will examine d = 17 in detail. By Theorem 2 we have only to study the norms
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represented by FX1. By the foregoing we can confine our first attention to norms

not divisible by 8; and by Theorem 5, q = 1 or 2 for such norms, so that we can

assume Na ^ 289. A norm Sq + s0sx — 4s2 is an integer of the form 17n + x2

(x = 0,1, — ,8), and cannot be divisible to an odd exponent by any prime p such

that (171 p) = — 1 ; the last applies in particular to p = 3, 5, and 7. In f 17 we can

take (0 = x provided n is represented by t\ + t\ + t\. We have therefore left to

examine n = — 1 with x = 5, 6, 7, 8; n = — 2 with x = 6, 7, 8; n = —3 with x = 8;

and n = 1 and 15. It will be found that all the numbers 17 • 7 + x2 and 17 • 15 + x2

are divisible to an odd exponent by 3, 5, or 7, except for 128, not represented by

£17; 144 and 256, obviously represented; 200 = 82 + 17• 8, 263 = 72+17-11,

288 = 42 + 17 • 16, 271 = 132 + 17-6. Two numbers 15 and 30, obtained for

n = — 2 or — 3, are also eliminated. We have thus left to consider only the numbers

(18) 22z+1, 13, 19, and 47,

it being noted that 52, 76, and 188 are represented by f 17. The last two statements

of the following theorem can be verified without difficulty.

Theorem 5". If d = 17, the only totally positive numbers a for which (1) is

not solvable are those whose norms are listed in (18). Those of norms

22z+1(z ^ 3) can be expressed as a sum of five squares in R17. Those of norms

2,8,32,13,19, and 47 cannot be expressed as the sum of any number of squares.

4d. Sufficient conditions for solvability of (1) when d is even. The cases remain-

ing from Theorem 4 can be formulated as w^2u, u<v, w#2i>; and

w = 2v, u — v ^ y. Hence they can be reformulated thus: w ^ 2w, u < v; and

w = 2v, 0 ^ u — v ^ y. It will be noted in the following theorem that q is un-

bounded with the power of 2 in Na when the odd part of d has the form 8n 4- 1.

In all other cases there is a constant c such that (cf.(12)) (1) is solvable if Na

^cd2, a being totally positive ands! even. The largest such c, given by q = 5, is

25/16. The notations of Theorem 4 are still used in Theorem 6.

Theorem 6.   Assume d even, sx even. We can take q as follows:

Io. If w = 2u + 2/(/^ 0) and u<v, then q = 2 except that

q = 2f~2 if u is even, k' — 1 (mod 8),/> 2; q = 4 iff= 1, u even,

s  =  — k' = 1 (mod 4), or iff= 2, u even, k' = 5 (mod 8).

2°. Ifw = 2u + 1 + 2/(/^ 0) and u<v, then q = 2 except that

q = 2/_1 i/Jc'sl (mod 8), u evenj^ 1;

q = 1 if k' = 1 + 2s or 5 (mod 8), u even,f¿. 1.

3°. If 0 ^ u — v ^ y, w = 2v, s — s2 = k'2ym (hence m = l mod 8,y — u even), then

q = 2 if u — v = y; or u — v <y — I, v odd, u > v; or u — v = y — l, y>l;

q — 3ifu = v and y — 1 ; or u — v < y — 1 and v is even ;

q = 5 if v is odd, u = v and y > 1.
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Proof. In 1° and 2°, c = 2U+V, where c' = 2"~u_1s - k'b runs over an arith-

metic progression with odd common difference fe'. We are to choose b so that

2»s-22u+2c'2ï2uk'L.

If w = 2u or 2u + 1 this becomes

(19) s-22u+2-wc'2#2u-,,,fe'L.

Since w < 2v, w = u + 2 + 2g, so that u — w is even. Also,

s = - k'sj + 22""ws2i = - fc' or -fc' + 22"-w (mod 8).

Hence (19) holds only by choice of parity of c', whence q = 2.

If w = 2u + 2/, / ^ 1, we must secure

22'-2s-c'2#2-"fc'L.

Consider/= 1. One of c' odd or even will serve (hence q = 2) if u is odd; or

u is even, s s 3 (mod 4); or u is even, s = fc' = 1 (mod 4). But if u is even and

s = — fe' = 1 (mod 4), we take q = 4, using s — (2n)2 (n odd or even).

Consider /> 1. We can use c' = 2/-20 if u is odd or fc' #5 (mod 8); 2f~10

if u is even and s = 3 (mod 4); 2/_1£ if u is odd or s = k' = 1 (mod 4); 2rO

(0 á r ¿/- 3) if u is odd or fe' # 1 (mod 8). Hence 4 = 2 if u is odd; or/= 2,

fc' ̂ 5 (mod 8); or fc' = 3 (mod 4); or m even, k' = 5 (mod 8),/> 2. But g = 2/_2

if u is even, k' = 1 (mod 8),/> 2; q = 4 if u is even, fc' = 5 (mod 8),/= 2.

If w = 2« + 2/+ 1 (/^ 1), we must secure 22/_1s - c'2 # 2""fc'L. We can use

c' = 2/_10 if « is odd or fc' #2s - 1 (mod 8); c' = 2/_1£ if u is even; c' = 2rO

(0 S r ÚÍ — 2) if fc' # 1 (mod 8) or u is odd. Hence q = 1 if u is even and fc' =

l + 2s or 5 (mod 8); q = 2 if u is odd or fc' = 1 - 2s (mod 8); q = 2/_1 if fc' = 1

(mod 8), u even.

Consider w = 2v, u = t>. Then w < m + 2 + 2g and y = u + 2 + 2g - 2v,

m = l (mod 8). We can use (16), with now u — v z^y. If m — v = y, b odd will

serve, hence q = 2. If u — v = y — 1, 7 +2b — 2yfc'o2 is not of the form L if b

is odd, unless y = 1 ; and in the last case, b = 2 and one of b = 1, 3 (mod 4) will do,

so that q = 3. If u — v < y — I, then for all values of b, 2"+2_"|s — c2, where

cb = s2 — 2u+l~"k'b. We can suppose then that for a certain b, Qb is of the form

L, and hence s - c2 = fc'2z(8n + 7), z = u (mod 2), m + 2 - v ^ z. Then, trying

b + 1, we consider

s _ (Cfc _ 2u+1-,,k')2 = fc'2"-,'+2{2z-,'+B-2(8« + 7) + c„ - 2"-"fc'}.

Thus Q6+ ! is not of the form L if v is odd and u> v; hence 4 = 2. If v is even,

tj = 3, since s — (cb — 2"+l~"2k')2 is not of the excluded form, being equal to

fc,2U-«+3|22-u+0-3(8n + 7) + c¡j_2u-P+i k,}       ifz>u-v + 2,

k'2u~v+2 {8« + 7 + 2cb - 2"-v+2 fc'} if z = u - v + 2.
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Finally, if v is odd and u = v, q = 5 is obtainable, as we can use

s-(cb- 2u~u+i4k')2 = 8fc'(8n + 7 + 2cb - 8k') if z = 3,

=  16fc'(2z_4(8n + 7) + cb - 4k')   if z > 4.

4e. Lists for some discriminants, of all totally positive numbers x, with sx even if

d is even, for which (1) is not solvable. These lists form a small part of the

unpublished output of [1]; the proof that the lists are complete is easily

given using the foregoing theorems. By Theorem 2 it suffices to list the

norms when d or id is a prime. In other cases, noting that cr and o92 behave

alike (0 denoting a unit in Rd), we list one a from each such equivalence class.

Notice the example, when d = 24, of two numbers (1 and 5 + 2co) of the same

norm, one of which is, the other not, a sum of four squares. In view of the theorem

[6; 7] that if a is not a sum of five or fewer squares, then a cannot be expressed

as a sum of any number of squares, it is interesting to give the cases in the following

lists in which cr is a sum of five squares: norm 92 when d = 13; norms 281 and

284 when d = 40; norms 308 (both 22 + 4co and 88 + 26co) and 317 when d = 44.

The largest observed ratio Na: d2 for which a was not a sum of four squares was

for a = 74 + 26co with d = 29, where Na/d2 was 2668/841.

d =   13: norms 3, 12, 23, 92.  d = 24: 5 + 2co of norm 1, 6 + 2co of norm 12.

d =   28: norms 8 and 21.  d = 44: norms 5, 20, 37, 56, 77, 308, 317.

d = 40: 7 + 2(o, 8 + 2co, 9 + 2co, 10 + 2co, 18 + 2co, 21 + 4co, of respective

norms 9, 24, 41, 60, 284, and 281.

Part II

Formulae for the number of solutions of (1) when d = 5, 8, 12.

5. Formulae for the number of representations of n = JV<t by Fd. Since the

discriminant of Fd is not a square, the weighted number of representations of a

positive integer n by the genus of Fd is not a factorable function of n. It is inte-

resting then that this weighted number of representations becomes factorable,

in the cases d = 5, 8, 12 (and perhaps more generally), if n is restricted to the set

of numbers represented by the principal binary form of discriminant d. (These

numbers, of course, from a multiplicative semigroup.)

If d = 5, JVcr can be given the notation

(20) n = Sq + s0sx - s2 = 22"5"m; u, v = 0 ; m = 1 or 9 (mod 10).

A classical formula [4] for the number of representations of 2"5bm by £5 is k2k5km,

where

(21) k2 = (2fl+1-(-l)a5)/3,   k5 = 56 + (-l)a(m|5),   km =   H (q'\5)q.
m = qq'

Notice that ks depends on the factors other than 5 in n, so that the formula is not

factorable. But if n is a norm (as in (20)), the formula reduces to 2g(22tt5"m),
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where g(n) is the factorable function defined for every positive integer n as follows:

(22) #(1) = 1, g(nyn2) = g(ny)g(n2) if (n1;ft2) = 1;

(23) g(22u) = |22"+'- 5|/3, g(22u+l) = 0, g(S") = (5" + l)/2,

(24) g(m)=   Z (q'\5)q.

If d = 8, TVcr can be given the notation

(25) h = Sq - 8s2 = 2"m, where u = 0, m = 1 (mod 8), or u ^ 2, m = +1 (mod 8).

The formula [4] for the number of representations of n by F8 reduces when n is a

norm to 2g(n), where #(«) can be defined for all positive integers n by (22) and

(26) g(2u) = 2"-1 - 1 if u ^ 1; 3(m) =   Z (2|«')«.

If d = 12, the genus of F12 consists of two classes, that of F12 and that of

(27) Fy2 = 4i02+ 3(3<i + 3r22+ 3if - 2í2í3 - 213^ - 2í,í2).

Since F!2 and F\2 have the same number of unimodular automorphs, classical

methods yields a formula not unlike that for F5, for Fy(n) + F2(n), where Fy(n)

and F2(n) denote the number of representations of n by F12 and F'[2 respectively.

If ft is a norm and positive, we can write

n = So - 12s2 = 2"3"m, where » = 0 or u ^ 2, v ̂  0, and

m =  1 (mod 12) if « + d is even, m = — 1 (mod 12) if u + y is odd.

It can be shown for n a positive norm that Fy(n) + F2(ri) = 2#(ft), where g(n) is

the factorable function defined for all positive integers n (whether norms or not)

by (22) and

(29) 3(2") = 12 "- 2 I (u ̂  0), 0(3") = (3" + l)/2,

(30) g(m)=l  (2\q')q.
m = qq'

In §10 we will prove

Theorem 7. Fy(n) = F2(n) if n is even, or if n is divisible to an odd exponent

by 3 or by any prime p such that p = — 1 (mod 12).

By a familiar argument in elementary number theory, if g(n) is a factorable

function, and g'(n) is the factorable function defined by g'(p") = g(p") — g(p"~2)

if a S: 2, g'(p") = g(pa) if a = 0 or 1, then g(n) = Xg'(n/q2), summed over the

square factors q2 of n. From this remark readily follows

Theorem 8.   If D is a divisor of n, the number of solutions of

(31) ft = i2 + d(t\ + t\ + t\), (t0, ty, t2, t3,D) = h',
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is 2gDlh.(n/h'2) ifd = 5 or 8; but gm.(n/h'2) if d = 12 andFx(n/h'2) = F2(n/h'2).

Here gk(n) is the "simultaneously factorable''' function defined for positive

integers n, and factors k of n as follows. If n = nxn2 with (nx, n2) = 1, we can

write k = kxk2, where kx divides ni and k2 divides n2, and require that

(32) 9k{n) = gki(ni)gkï(n2),

ifn = paandk = pb(0 = b = a),

(33) then gk(n) = g(p°) if a = 0 or 1, or b = 0,

9k(n) = 9(pl - 9(p"~2) ifa = 2andb>0.

6. Discussion of h and / when d = 5. To obtain r4(a, 5) by (6), we must,

for each solution t0, — ,/3 of (7) for which b = (2s0 + sx — 2i0)/5 is an integer,

construct rA(l h) and evaluate the sum of the numbers r4(/ «). Here « =

Oí» h> h> e)> where e = (s0,(si — b)/2,b); and / = 2 if the power of 2 in o — sx

does not exceed that in (s0,b), otherwise / = 1. Since r4(2/i) = r4(h) when h is

even, the value of / need only be considered when h is odd.

Inserting the components of e, and noting by (7) that the g.c.d. of s0, sx, tlt t2, t3

must divide i0, we have

(íi. Í2. t3,s0,(2s0 + «i - 2í0)/5, (s0 - 2sx - í0)/5)

(íi, h> h> so> «i» («o - 2si - »o)/5)

(tojh,t2,t3,s0,sx,(s0 — 2Sj — ío)/5),

(t0, tx, t2, t3,s0,Si,(2s0 + Si- 2t0)/5).

We must determine whether h = h' or h'/5, where

(35) h'= (ío.íi.ía.ís.So.Si).

Evidently, n = n' if either (i0, ilt i2, i3) is prime to 5, or v < 2 (in (20)), since in

the last case D = (s0,sx) is prime to 5. Hence, if 5 y denotes the power of 5 in

('o> *i> h> h)> we can suppose v = 2, y > 0, that is 0 < 2y — v.

If y < v/2, then 5y+1 \ t0. Notice from

(2s0 + sx)2 - 5s2 = 22u+25"m

that if v is even, 5"||(2s0 + sx)2 and 5"|s2; and if v is odd, 5"+1 |(2s0 + sx)2 and

5""11| s2x. Hence if y < v/2, 5y+i \ (2s0 + sx - 2t0), and so h = h'.

But if y = v/2 > 0, then (2s0 + sx)2 - (2t0)2 is divisible by 52,+ 1, hence one

of 2s0 + sx + 2t0 and 2s0 + sx - 2t0 is divisible by 5y+1, the other by 5y (but not

by 5y+i, since S^Moes not divide i0). Hence

(36) n = n' for one sign of t0, h = h'/S for the other.

(34)

h =

If m = 0, / = 1. For s0 or b is odd.
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If u = 1, then s0,Sy,t0,ty,t2,t3 must be even, and it is immaterial whether

/ is 1 or 2. If u ^ 2 and i0, •••, t3 are odd, then / = 2, since s0 = Sy = 0, b = 2

(mod 4).

7. The formula for rja, 5). We can now reformulate (6) in terms of h'

rather than h. If ft' is any divisor of D = (s0, s,), then the condition that

(t0,ty,t2,t3,s0,Sy) = h' means, on setting t, = h'u¡, that «„,■•■,n3 are solutions

of (31), with « replaced by n/h'2 and k = D/h'. Let Ç(g) denote the sum of the

divisors of q. Now rA(lh) is the product of the numbers £(pr) (pr ranging over the

prime-powers in ft), times 8 or 24 according as Ih is odd or even. To compensate

for the case of (36) we can use in place of Ç(5r) (where 5r||«') the factor

(((5') + i;(5'-l))/2. Thus:

(37) r4(a,5) = 8s   Z gmin/h'2^n(h'\
h' | D

where e = 1 if » = 0, e = 2 if t> > 0; and ipn(h') is the factorable function defined

as follows:

^(2«) = lifr = 0;

= 3 if r>0;

(38) ^„(50 = («50 + C(5r" '))/2,   if v (£ 2) is even and r = v/2;

= £(5r) otherwise;

\pn(pr) = C(pr), for all odd primes different from 5.

For any prime p, let p" denote the power of p in D = (s0, st), and let p2a+b denote

the power of p in n = Na. Then by the multiplicative properties of gk(q) and

\pn(h'), rA[a, 5)/(8e) is the product for all p of

(39) cp=Ígpa-r(p2°+»-2')rpn(p').
r=0

The evaluation of cp is straightforward, and gives the following results: If p is

an odd prime different from 5, and w = (51 p),

„a + 6+1        ,„*+l       „a+l        1

(40) cp = P--Zl_.E_^±.
p p — w p — 1

If p — 5, then v = 2a + b, and, in all cases,

(41) £c5 = (5"+1-l)/4.

If p = 2, then a = w and b = 0, and, in all cases,

(42) c2 = 1 if u = 0,   c2 = 22u+) - 5 if m > 0.

8. Discussion of ft and / when d = 8. We use the notations in (25)-(26).

Note that b = (s0 — t0)/4 is integral only by choice of sign of t0 if u = 0, and is

always integral if w > 0. Also, e = (s0, s3, b), and « = (f1; f2, t3, e), hence
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(43) h = (t0, tx, t2, t3, s0, s3, (s0 - t0)/4).

We choose h' = (tQ,tx,t2,t3,s0,s3). To construct a formula similar to (37), we

must try to define ■//„(«') in connection with r4(lh) in such a manner that it com-

pensates for the cases where h' and Ih have different parities.

A curious situation appears when u = 2. Then t0 = s0 = 2 (mod 4). If m = 1

(mod 8), s3 is even, í1,í2,í3 are even: hence h' is double-odd, while h is odd or

double-odd according to the sign of t0 ; but I = 1 since s2 contains no higher

power of 2 than s3. If m = — 1 (mod 8), s3 is odd, and h = h' (both odd); since

(s0 — f0)/4 changes parity with the sign of t0, / alternates between 1 and 2 with

that sign. In both cases the exponent of 2 in h ' is unique for all solutions of (7).

To keep i¡/n(h') factorable we can define \¡/n(2r) = 1 (r = 0) when u = 2, and can

compensate both for the present phenomenon and for the need to make b integral,

by defining

(44) e = 1 if n is odd;  e = 4 if n = 4 (mod 8), e = 2 if n = 0 (mod 8).

We will prove for u > 2 that h' = Ih (mod 2). First let 231| Na. Then s3 is odd,

hence n and h' are odd. Also / = 2 leads to a contradiction: then (s0 — f0)/4 is

even, hence since 4 divides s0 and t0,

8(if + t\ + t2) = so - i2, - 8s3 = - 8 (mod 64).

Second, if 161 Na, then either s0 = f0 = 0 or 4 (mod 8), hence h and /t' are even;

or s0 = f0 + 4 = 0 or 4 (mod 8), hence ± 2 = s2 + t2 + t2 + if (mod 8), hence

h and «' are odd and / = 1.

9. The formula for r4(cr, 8).   In much the same way as in §1, we have

(45) r4(M) = 8eI   gDlh{n/h'2)^n(h') = Uc2  \\ c„,
h'\D p odd

where D = (s0, s3), n = JVcr, e is defined in (44), i¡/„ is the factorable function such

that \¡/„(pr) = C(p0 for odd primes p, ^„(T) = 1 if 8^ n, and

(46) *An(2r) = 1 or 3 according as r = 0 or r > 0, if 8 | n.

The evaluation of the factors cp is straightforward: cp is given by (40) with

w = (21 p) if p is any odd prime, and ec2 has the value

(47) lifu = 0;   4 if m = 2;   6(2U_2 - 1) if u > 2.

10. Discussion of h and / when d = 12. We use (28), e = (s0,s3,j), where

f= (s0 -t0)/6, le = (s0,2s3,j),

(48) h = (h',j), where/i' = (t0,-,t3,s0,s3).

The integrality of j depends on the sign of f0 if (n,3) = 1.

We prove for n odd that h = h' and / = 1. For, since s0 is odd, h' and « are

odd, and / = 1. If (n,3)=l, s0, «', and h are prime to 3, hence h = h'. If 31 n,
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we assume (cf. Theorem 7) that v is odd. Let 3*||(r0, ■•■,t3). Then 2b + 1 ^ v,

3b\(s0,s3),3b+í\s0,32b+í\t2Q,3b+l\t0,3»\j,h = h'.

Case n even. We can set s0 = 2s2, t0 = 2íq , and have j = (s2 - t'¿ )/3,

(49) 2u-230m = s2 - 3s2 = t'¿2 + 3(í2 + t\ + í2).

Denote by 2", 3" the powers of 2 and 3 in (f0, tu t2, t3). If 2°_11| fj, then u = 2a,

s2 = 2a_13*s4, s3 = 2a~13bs5, and si - 3s2 is odd. If 2"| í¿', w = 2a + 2, s2 = 2"3i's4,

s3 = 2a3,'s5. Also, v ̂  2b; and if v = 2b, (s4,3) = 1.

We prove that h and ft' contain the same power of 2. Indeed, if s5 is odd, the

power of 2 in s3 divides both s2 and r'0 . If s5 is even, then if 2"| t'¿, 2° \j; and if

2"-11| t'¿ , 3j = 2fl_1(odd) - 2fl_1(odd) = 0 (mod 2").

We prove next that h is odd and / = 2 if and only if

(50) s2even,    s3 odd,    (í0,í,,í2,í3) odd.

For if ft is odd, s3 or (fi,f2,f3) is odd. By (49), s3 even and ; even imply that

41 (*i. t2, t3). Hence if ft is odd and s3 is even, j is odd and / = 1. Thus, if ft is odd

and I = 2, then j must be even ; also, s2 must be even, since otherwise (49) implies

t\ + t\ + i2 = — 1 (mod 8). Finally, notice that if s2 is even and s3 is odd, then

j is even (hence / = 2) if and only if (ty, t2, t3) is odd.

We prove finally that ft = ft' except that when v is even and positive, and

3"/2 \(t0,ty,t2,t3), tnen h = h' for one sign of r0, ft = ft'/3 for the other. First,

if v = 0, ft' is prime to 3, hence ft = h'. If v > 0, (49) can be divided by the powers

of 2 and 3 dividing (í'ó, ty, t2, t3), and gives

(51) s4 — t'02 = 3 times an integer.

If here v > 2b, then 3 [ (s4, t'0) and h = «'. But if v = 2b, (s4,3) = 1, hence only

one of s4 + i0 and s4 — t'0 is divisible by 3, and « = «' or ft'/3 correspondingly.

11. Proof of Theorem 7; evaluation of r4(<r, 12) in certain cases. To compensate

for the final result of §10 is easy: simply define

^„(3*) = C(3") if2b<t>orb = 0,

(52) = (C(3*) + C(3b_1))/2 if2b = u>0.

If p > 3, we let xpjjf) = £(pft). And if p = 2, we let \pn(2b) = 1 if b = 0, ^„(2*) = 3

if b > 0. This does not represent the needs of the case u = 2 (cf. (50)), but this

case will be handled separately below.

We proceed with the proof of Theorem 7, and refer to the paragraph of (27).

Lemma 1.   7/n = 4a, q integral, then Fx(n) = F2(n).

Proof.    Aq = ty2 + 12(ij2 + t\ + t\)  reduces  to   a = íq2 + 3(t\ + f| + f2).   In

(27), 3r2 +-2íjí2-= (t2 + t3- ty)2 + ■■■ + (ty + t2- t3)2. Now 4 divides

a sum of three squares only if they are even. Finally,
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t2 + t3 — tx — 2xx, •••,tx + t2 — t3 — 2x3,

gives t. = x2 + x3, •••, t3 = Xi + x2, and replaces \F"X2 by tl + 3(x2 + x2 + x3).

Besides multiples of 4, £12 and F"X2 represent only odd numbers of the form

4q + 1. Consider now the equation

(53) 4q + l = f2 + 3(t2 + t\ + t\).

Lemma 2. There is a one-to-one association between the solutions of (53)

with t'¿ respectively odd and even, and the representations of 4q + 1 by FX2

and F"x2.

Proof. Ift'¿ is odd, tx t2,t3 are even. If t0 is even, then tx,t2,t3 are odd and

integers Uj can be chosen so that u2 + u3 — ux = tx, ■••,ux + u2 — u3 = t3.

Some comments will now be made on the cases Na odd or quadruple-odd.

In formulae (54)-(57), a will designate a number s0 + 2s3co with s0 odd; a',

one with s0 divisible by 4 and s3 odd; a", one with s0 double-odd, s3 even. The

odd part of the divisor (s0, s3) will be assumed to be the same for all three. If we

wish, we can take a" = 2a, a' = 29a, where 0 is the unit 2 + 31/2 ; Na = k, Na'

= No"=4k,k = 4q + l.

Let D = (s0,s3), k = 4q + 1, and for any divisor; of D, let FtJ(k/j2) denote the

number of solutions of (53) with t'¿ = i (mod 2), (2f'0, tx, t2, t3, D) = j.

Since Na = k is odd, the factors of D are odd, / = 1, and hence

(54) r4(a, 12) = 4e I Fx j(k/j2) • ̂ ()),

with e = 1 or 2 according as k is or is not prime to 3.

Consider now a'. In deriving (50) we noticed that h' is odd, and that / = 2

if í'ó is even (corresponding, we now recognize, to a representation of k by F"x2),

and / = 1 if f0' is odd (corresponding to a representation of k by F'X2). Accor-

dingly,

(55) r4(a', 12) = 4e I {3£, j(k/j2) + F0J(k/j2)} ■ >pn(j).
J\D

In the case of a", h' odd means that (tx,t2,t3) is odd, corresponding to a

representation of k by £'i2. And n' even means tx, t2, t3 even, corresponding to a

representation of k by £12. Hence:

(56) r4(a", 12) = 4e I {£, Jk/j2) + 3£0,/k/;2)}«j).

Since k is odd, a simplifying expression for F,j(k/j2) is not in general avail-

able. However, since as noted following (28), F2(n) + F\(n) = 2g(n), we have

Foj(k/j2) + FXJ(k/j2) = 2gD/j(k/j2), and hence
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{r4f>', 12) + 2r4(er, 12)}/3 = r4(<j", 12) - 2r4(<r, 12)

= 4e lAFo.Ák/j^ + FyJk/j2)}^)
(57) JI "'

= 8£ Z gDIJ(k/j2)iPk(j)
J\D

= 8e TI Cp>
podd

where cp is given by (40) with w = (3 | p) if p > 3, and c3 = (3"+1 - l)/2 if 3" || fc.

From (57) also follows that r4(a', 12) + r4(a", 12) = 32e\\cp.

Let G,(ri) denote the number of solutions of

(58) n = 3xq + x2 + x2 + x|, x0 = i (mod 2),

(i = 1,2). Clearly F((3n) = G,(n) for any integer «.

Lemma 3.   Ifn = 5 (mod 6), G2(n) = Gy(n).

Proof. In (58), two of xx,x2,x3 are prime to 3, hence exactly half the solutions

satisfy   3 | Xj + x2 + x3. The self-inverse substitution

(59) y0 = (xy + x2 + x3)/3, yt = x0 + (2x! - x2 - x3)/3, •••, •••,

under which 3x2 + Zx2 = 3yo + Zy2, carries x0 into y0 of the opposite parity.

Lemma 4.   If n is odd, and <p(n) denotes the number of solutions of

(60) n = yl + y\ + 2y2 + 2y2y3 + 2y2,

then

(61) 0,(3«) + 3F,(n) = 2<Kft)     (i = 1,2),

hence

F2(9«) + 3F2(ft) = Fx(9ft) + 3F!(n).

Proof. In 3n = 3xq + x2 + x2 + x|, either x3 = ± Xy = ± x2 (mod 3) for

exactly one of the four combinations of signs, or 3 divides (x1;x2,x3). The dis-

cussion for Xy = — x2 =. x3 will be typical. Then x0 = u0, Xy = ut, x2 = 3u2 — Uy,

x3 = 3«3 + Uy, 3n = 3uq + 3m2 + 9u2 — 6uyU2 + 9u3 + óu^, or

n = Uq + (uy — u2 — u3)2 + 2m2 + 2u2u3 + 2u3.

Thus G((3ft) = F,(n) + 4{(b,(n) - F,(n)} (i = 1,2), where <p,(n) denotes the number

of solutions of (60) with y0 = i (mod 2). But since n is odd, y0 is odd or even

equally often in (60), 2(b,(n) = <b(n).

Corollary. F2(fc) = Fy(k) if fc = 3hm (m = S mod 6, « > 0), hence if k is a

norm divisible by 3 to an odd exponent.
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Proof. If n = 2 (mod 3), Lemma 3 shows that £2(3n) = £i(3n), and hence

by (61), £2(32h+1n) = £1(32',+1n) (n s 5 mod 6, h = 0). Also, by (61), since

£2(n)= £.(/.) = 0 if n = 2 (mod 3), also £2(32*+2n) = £.(32*+2n) if n = 5

(mod 6) and h = 0.

Lemma 5. Let p denote an odd prime such that (3|p) = l. There are

p — (— 1 |p) matrices R of determinant v (mod p) which satisfy R'ER = — 37

(mod p), where

(62)
»     /I     0\     ,      /l     0\        Jn        t   j   • j      Ia     b\

In     it' In     .\, and R can be designated as I , I,

and where v denotes a fixed solution of v2 = 3(mod p). Consider the p — (—l \p)

formulae

(63) x0 = ax2 + bx3, xx = cx2 + dx3 (mod p).

Trivially, if x2 = x3 = 0, (63) gives the null solution x0 = xx = x2 = x3 = 0 of

(64) Xo + 3x\ + 3x\ + 3x| = 0 (mod p).

As x2, x3 range over the p2 — 1 pairs not 0, 0, the p — (— 11 p) formulae (63)

give distinct solutions of (64). Every solution of (64) is so given if p = 3 (mod 4).

But if p = 1 (mod 4), t/iere are exactly 2(p2 — 1) additional non-null solutions

of (64) which satisfy

(63') x0 = uuxu x2 = ux3 (mod p), where u2 = — 1 (mod p).

Proof. First notice that (63) and (63 ') do provide solutions of (64). For example,

R'ER = —31 (mod p) expands into

(65) a2+3c2= -3,b2+3d2= -3, ab + 3cd = 0 (mod p).

Notice also that |i?|2 = 3 (mod p), so that |R| = v or — v (mod p). Also, if

| £ | = v, then multiplying the third member of (65) by a or b, and using all of

(65), we see that

(65') a = — dv, b = cv (mod p).

Now it is well known that (64) has exactly 1 + (p + 1) (p2 — 1) solutions. The

lemma then asserts that if I is a non-null column vector {x2,x3}, and Rx, R2 are

distinct solutions of R'ER = —31 with the same determinant v, then Rxx and

R2X are distinct vectors. This follows from the fact that | Rx — R2 \ ^ 0. To prove

the last fact, notice first that R'ER = —31 has at least one solution (solve b2

+ 3d2 = - 3 and use (65')), and that if R is one solution then every solution is

given by RV, where V ranges over the solutions of V2V=I (mod p). Now the last

congruence has exactly the 2{p — (— 11 p)} solutions
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(66) (_J     *)and(^     __*), where y2 + z2 = 1.

For (66i) evidently | F- J | = y2 - 2y + 1 + z2 = 2 - 2y ^ 0 unless F = 7.

Hence also | RV — R | =¿0 unless V = I. (On the other hand it is seen using the

same machinery that if the determinants of Rx and .R2 are different, then Rx — R2

is always singular, and that therefore no new solutions are obtained by using

— v in place of v\)

All solutions of (64) are thus accounted for if p = 3 (mod 4). But if p = 1

(mod 4), we are short 2(p2 — 1) solutions in using (63). These are provided by

the 4(p — 1) solutions satisfying (63') with exactly one of the pairs x0, xt and

x2,x3 null; and the 2(p — l)2 solutions satisfying (63') with neither pair null.

There is no overlapping with the solutions satisfying (63), since (63) and (63')

together imply that x0 = xt = x2 = x3 = 0. The lemma follows.

Consider now the equation

(67) pn = Xq + 3(x\ + x2 + x\).

We assume (63), the treatment of (63') being similar. We can thus set

(68) x0 = py0 + ay2 + by3, Xy = pyt + cy2 + dy3, x2 = y2, x3 = y3,

and so have p — ( — 11 p) substitutions each of determinant p2. For each of these

the resulting form in y0, ■■■, y3 may be designated as pg*. Thus g* is integral, has

determinant 33(p2)2/p4 = 33, and has first coefficient p.

Now there are two genera of determinant 33 which have the same ordinal

structure as regards the primes 2 and 3 as/= x2, + 3x\ + 3x| + 3x3. One is that

off, and the other is that of

(69) /' = 2z2 + 2z0z1 + 2z\ + 3z\ + 3z\.

Clearly, g* belongs to the genus of/or/' according as p = 1 or 2 (mod 3): in

other words, since (31 p) = 1, according as p = 1 or — 1 (mod 12). Both genera

are known to consist of one class.

Consider the case p = 12a — 1. Then there exists a linear transformation of

integral matrix T = (t,j) (i,j = 0, •••,3) and determinant p2 which replaces / by

pf. Hence

2p = 'oo + 3*io + 3í2o + 3i30 •

If f00 could be odd, (2p - íq0)/3 would be congruent to 7 (mod 8) and could not

be a sum of three squares. Hence r00 and, likewise, i01 are even. Both <02 and i03

cannot be even since [ T | is odd; also, both cannot be odd, since

3p = t202 + 3(t2X2 + t222 + t232), 3p = t203 + 3(t\3 + t\3 + i23),

then requires that íi2,í22,<32,í13,Í23,i33 are even, and this contradicts
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0 = t02t03 + 3(t12t13 + t22t23 + hlhÙ-

Hence f02 # t03 (mod 2).

It follows that in x0 = <0ozo + 'oiZi + '0222 + 'o3z3> x0 is congruent (mod 2)

to a definite one of z2 and z3. Hence, the number of representations of an odd

number by/' with z2 odd being half the total number/'(n), we have, if n is odd

and p = - 1 (mod 12),

F,(pn) = F,(n/p) + (p + l){l/'(n) - F,(n/p)}, (i = 1,2),

or

(70) F,(pn) + pFin/p) = |(p + 1) ■ /'OO, (i = 1,2).

Corollary 1. If (n,p) = 1 and p = - 1 (mod 12), Fx(pn) = F2(pn). Also,
Fx(p2h+1n) = F2(p2h+1n).

This completes the proof of Theorem 7.

Corollary 2. //JVor is odd and is divisible by 3 or by some prime p = l2q — l

to an odd exponent, then r4(a, 12) is given by the same final expression 86fjcp

as in (57).

Among other deductions that can be easily made from (70), along with the

formula for £i(n) + F2(n) is the value of Fx(p2h ). In particular,

(70a) Fx(p2) = (p2 + l)/2.

Consider next the case where 2" |[ JV<r = s2, — 12s2, u (= 3) odd. Then

ç    _9(«-D/2„      .    _ 7(l.-3)/2
Sq — Z A2, S3 — L S5,

s2 — 3s\ = 2 (mod 4), hence s2 and ss are odd. Hence /i' can be divisible at most by

2(u_3)/2. Accordingly,

nn r¿?,d) = 4e I  gDihin/h'2)\¡/n(h')
V'1^ h\D

= 4ec2\\cp,
where

(u-3)/2

(72) c2  =    jIa2(«-3)/2-i(2'-2i)-</'„(2i)

= 6(2""2 - 1), (u odd, m ̂  3).

Finally, let 2"|| s2 — 12sf, u even, « = 4. Write D" = (s2,s3), where s2 = s0/2.

Then2("/2)_1 \\D", and if we define h" = (t0,-,t3,s2,s3), evidently h" and h'

are alike even or odd. Hence
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r4(a,d) = 4e   Z     g,y,An/h"2) ■ «ft")
h" | D"

= 4ec2\\cp,

where cp is of course the same as before, and c2 is found to have the same final

formula as in (72), with u even, u ^ 4.
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