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0. Introduction. If A is a module over a ring R, the module Homj;(/l,R) = A*

is usually called the dual of A. The elements of A can be considered as homo-

morphisms from A* to R so that there is a natural map

A-*A**

of A into its second dual. Following the terminology introduced by Bass [2]

we shall say that A is torsionless if a is a monomorphism, reflexive if o is an

isomorphism. We shall also refer to Ima as the torsionless factor of A. It is

easy to see that this is also A/A0 where A0 is the intersection of kernels of the

elements of A*.

In this paper we plan to continue the study initiated in [5] relating some of

the concepts mentioned above with the functor Ext^(A,R). Since it will only

appear in this form in the present paper we shall henceforth adopt the notation

E"(A) = Ext"R(A,R). Also, in this paper we shall make the standing assumptions

that the ring is both left and right Noetherian and all modules under considera-

tion are finitely generated. The reason behind the latter assumption is to insure

that projective modules are reflexive and that the duals of projective modules

are projective; see [2].

In §1 we relate double dual embeddings with the torsionless factors of modules

A such that EX(A) = 0. The proof of this result arose out of Theorem 1.4 of

[5] in which it is shown that the first dual A* is a direct summand of the "third"

dual A***. In §2 we introduce the concept of D-class n and show that the dual

of a module of D-class n appears as the nth kernel in a projective resolution.

It is then clear that properties of the ring which are phased in terms of the sort

of kernels appearing in projective resolutions can also be described in terms of

modules of D-class n (and their duals).

In §3, we show that, modulo a special condition, a module T„ is of D-class n

if and only if E\Tn) = 0 for 1 g i ^ n - 1.

Under Applications, §4, we relate properties of modules of D-class n to the

global dimension, left finitistic dimension and left injective dimension of the ring.

Received by the editors April 16, 1961 and, in revised form, January 8, 1962.

(!) Research supported in part by the United States Air Force Office of Scientific Research

and in part by National Science Foundation contract NSF-G 11098.

330



ON FINITELY GENERATED MODULES 331

Most of these applications take the form of generalizations of theorems of [2;

5]. §5, Odds and ends, consists of some results which are easily proved by the

methods of the paper.

1. W-moduIes and double dual embeddings. The following definitions will faci-

litate our exposition:

Definition.  A will be called a W-module if E1(A) = 0.

Definition. A monomorphism X** -* F* will be called a double dual embed-

ding (D.D.E.) if it is the dual of an epimorphism F -» X*, X* a dual.

The following theorem gives the the relation between double dual embeddings

and the torsion factors of W-modules.

p*
Theorem 1.1.   If Q** -* F* is a D.D.E. with F projective then F*/lmp* is

the torsionless factor of a W-module. Conversely, if T is the torsionless factor

of a W-module then there exists a projective module F such that 0->y-»F-> T

-» 0 is exact and X ->F is a D.D.E.

Proof. Consider the exact sequence

0->T*->F->o*->0

where
p*

0^.Q**->F*_>r_>0

is also exact. Fis defined to be F*/Imp* and it turns out that Kerp = F*; this

is really the argument in Bass' paper [2]. Choose in Q** a submodule Q such that

q z+ Q** is the natural embedding. This gives rise to the following commutative

diagram with exact rows and columns:

0

t
p* '

0 -> Q** -* F* -» T -* 0

tff   *    II tö
i    p*ff m i

0->g   —>F* ->F'-> 0

t
0

where T' is F/Im(p*cr) and 9 is the natural map of F/Im(p*a) onto F/Imp* = T.

Now dualize the entire diagram to obtain the following diagram:

0

i p**

o -> r*-> f -»    g***

0 -+T'*-» F-> Q* -y E\T') -* 0.
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Note that the map o* is an epimorphism and that Imp = Imp** = (2* em-

bedded naturally in Q*** [5]. It follows therefore that o*p** is an epimorphism

and consequently T is a W-module. The "Five lemma" implies that 0* is an

isomorphism, and, in this way, T can be considered as the torsionless factor of

T with T' a lf-module.

To prove the converse statement, consider Tas the torsionless factor of T' with

F^T') = 0. Select F, projective mapping onto T and construct the following

commutative diagram with exact rows and columns:

0

j P      t
0 -» X -> F      -+     T -* 0

t   k   II tö
0 ->g -»• F     -»     T'-> 0

t
0

where p = 0p.

In the following we shall establish that X U F is a D.D.E. First form duals

to obtain the diagram:

p*
0 -* T*  -* F*-> F*/Imp* -* 0

lö*   . II
0 -> T'* -> F* -» Ö*      -*     0.

Exactness of the bottom row comes from the hypothesis E1^') = 0. Also 0*

is an isomorphism by hypothesis. Since Imp* = Imp* we have the following iso-

morphisms, F*/Imp* = F*/Imp* = Q*. Thus we see that F*/Imp* is a dual

iQ*) and it follows from [2] that the dual of the epimorphism F* -»• F*/Imp*

is the monomorphism X -> F. The latter is therefore a D.D.E.

The above proof yields several corollaries.

c*
Corollary 1.2. // Q** -*■ F*  is a D.D.E. with F projective and Q** reflexive

then F*/lmp* is a torsionless W-module. Conversely,  if T is a torsionless W-

module, 0 -> X -*F -» T-* 0 exact with F projective then X -* F is a D.D.E.

Proof. Recall that in the proof of the theorem we selected a module Q in Q**

so that Q->(2** was the natural embedding of Q in its double dual. In the corol-

lary we can let Q = Q** and the resulting diagram has only one row instead

of two. In this case the W-module T' coincides with its torsionless factor Tand

the first part of the corollary follows.

The converse part of the corollary follows from the proof of the corresponding

part of the theorem using the fact that T is its own torsionless factor.

In [2], Bass showed how to inject any torsionless module into a projective

module by using the following construction. Let T be torsionless and let T*

be its dual. Find a projective F mapping onto T*, F ~* T* and dualize to obtain
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the D.D.E. T** -» F*. Since T is torsionless the natural mapping of T into T**

is a monomorphism which together with p* gives an embedding of T into F*.

We shall call such an embedding of a torsionless module a standard embedding.

Notice that the above construction makes up part of the diagrams used in the

proof of Theorem 1.1 above. By arguing from these diagrams we get another

corollary.

Corollary 1.3. The exact sequence 0-» T¿* F is a standard embedding of the

torsionless module T in the projective F if and only if F/lmj is a  W-module.

We remark at this point that not all embeddings of torsionless modules in

projectives are standard embeddings. For example, if P ^* F is an embedding

of a projective P in the projective F the embedding will be standard if and only

if the embedding splits. If the embedding does not split then F/lmj has dimension

one and modules of dimension one are never ly-modules [4, p. 123]. Of course

if the embedding splits it will be standard.

2. D-classes. In his paper Bass proved the following extremely useful theorem

connecting arbitrary finitely generated modules and duals.

Shifting theorem. Let A be finitely generated, B torsionless C* a dual.

If any one of the modules A, B or C* is given the other two exist and are con-

nected by the exact sequence

0->C*->F->B-*0->B-*F'->,4->0

where F and F' are projective.

We would like to extend this theorem (and some of its numerous corollaries)

by shifting through projective modules even farther back. That is, we wish to

examine the structure of the modules D such that 0->-D*->F"->C*-*0 is

exact with F" projective. While we are at it we might just as well shift back n steps.

The investigation will be facilitated by the following definition.

Definition. We shall say that the torsionless module Tn is of D-class n if it

can be fitted into an exact diagram of the form

0 -, T^y       -+    Fn.y   -*    Tn   -    0

t

(1) ...    "•    f„-2       -    T.-l       -    0

0    -* Tf* -* ...
t

0 _> Tf*  -+ Fy -> T2   -> 0

where each F¡ is projective, the horizontal monomorphisms are D.D.E.'s and the
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vertical maps are all natural embeddings of the T¡ in their second duals T**.

We shall say that any torsionless module is of £)-class 1.

The following theorem establishes a connection between (left) modules of

D-class n and the kernels in a projective resolution of a (right) module.

Theorem 2.1.   If there exists a collection of exact sequences

(1*) 0 -> T,iy -» Ft -> Tf-* 0,      lgign-1

with each F¡ projective then T„ can be selected of D-class n. Conversely, if

Tn is a module of D-class n then T* can be embedded in a collection of the

form (1*).

Proof. As at the beginning of the proof of Theorem 1.1, the sequence

O^Tity^Fi-^T^O induces the sequence 0-» T**-*F*-* T¡+1 -► 0 where

the monomorphism is clearly a D.D.E. Now we can obtain a diagram of the

form (1) by stringing these sequences together with the natural vertical maps

j: _► j;**. Thus T„ can be chosen to be of D-class n.

Conversely, dualizing a sequence of the form 0-> T¡**-> F¡^> Tl+1 ->0 gives

rise to a sequence of the form 0 -+ T*+ y -> Ff -* T***. But since we are assuming

that the injection in the first sequence is a D.D.E., the map from F* to j;***

in the second sequence is the second dual of an epimorphism of F* onto T*.

Because projectives are reflexive that second dual will coincide with the original

map, and we obtain the sequence 0-> T¡* y ->F¡*-> T¡*->0. That is, if T„ is a

module of D-class n, T* can be embedded in a diagram of the form (1*).

It should be noted that every module involved in the definition of D-classes

and in the proof of Theorem 2.1 is torsionless. The whole thing can be rephrased

in nontorsionless terms and a corresponding theorem can be proved. For the

sake of completeness, we indicate briefly how this can be done.

Definition. Tn' will be of D'-class n if it can be fitted into an exact diagram of

the form

0     -+      Tn_,  -+     F„.,   -+    T'„^ 0

t
f„_2 -+ r;., -> o

d')
0    -► T2    -►

t

0 -►    Ty    -* Fy -  T'2    -► 0

where each T\ is a IT-module for 2 ^ i ^ n and all the vertical maps are the

mappings of the T'¡ on the torsionless factors T¡. We shall allow any module to

be of D'-class 1.
The theorem that would go with the above definition would read like Theorem

2.1 with D' and T'„ replacing D and T„. That one can jump back and forth
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between the diagrams (1) and (1') is the content of Theorem 1.1. Moreover that

theorem also shows that a module is of D-class n if and only if it is the torsion-

less factor of a module of D '-class n. Note that the modules of D '-class 2 are the

W-modules.

3. Ext of modules of D-class n. If one can find a torsionless module T„ with

the property that £'(TB) = 0 for 1 ̂  i ^ n - 1 then it is easy to see that the mod-

ule is of D class n. For if

0^r1^F1->F2->...FB_1^TB->0

is part of a projective resolution for T„ with F¡ projective then a repeated appli-

cation of Corollary 1.2 yields the diagram

0    -*     rn**1-^Fn_1^T„->0

t

(2) ...       F„_2^T„**1->0

t
o-^r1**->F1->r2**->o

where the T/**are the appropriate kernels.

In this section we investigate a condition which will insure that all modules

T„ of D-class n have the property that £'(T„) = 0 for 1 g i ^ n - 1. That is we shall

try to collapse the diagram (1) what is really an exact sequence (2).

At this point the exposition is facilitated by the concept of grade, defined by

Rees [6] for commutative Noetherian rings.

Definition. The module M has grade r if £'(M) = 0 for i ^ r - 1 and E'(M)

/ 0. The module S has reduced grade r if £'(S) =0 for 1 ̂  i ^ r — 1 and
Er(S) # 0.

Note that torsionless modules always have grade 0 (since £°(T)# 0) but the

reduced grade of a torsionless module may be large. In fact our goal in this section

is to prove (under certain conditions) that if T„ is of D-class n then the reduced

grade of T„ is greater than or equal to n — 1.

Theorem 3.1. If R has the property that for all r and for all finitely generated

right modules M the grade of Er(M) is greater than r — 1 then every left mod-

ule of D-class n has reduced grade greater than n — 1.

Proof. Since for n = 1 there is nothing to prove, we begin an induction at

n = 2. In this case the hypothesis implies that £°(£2(M)) = 0 for all finitely ge-

nerated right modules M. Now by Corollary 1.5 of [5] we know that the duals of

all left modules are reflexive. But then T** is reflexive for each left module T and

we can conclude from Corollary 1.2 that every left module T of D-class n(n _ 2)

is a W-module. In particular if F2 is of D-class 2 thin EX(T2) = 0 and the reduced

grade of T2 is greater than 1.
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Assume now that the theorem has been established for integers less than n and

that n is greater than 2. Since T„_ y in the diagram (1) is of D-class n — 1 we have

E\Tn-y) = 0 for 1 ̂ j z% n - 2. To finish the proof we shall show that EjiTn-y)

= EJiT**y) for 1 ^ j< ̂  n — 2. This will be sufficient for we see that the equation

E\T**y ) = EJ+1iT„) holds for all j ^ 1. Also we know that E\Tn) = 0 from the

first part of the proof.

If we examine the diagrams (1) and (1*) and apply the duality theorem of [5]

we obtain the short exact sequence

(3) 0^T„-y^T™y-+E1iTÏ-2)^0.

Also, from the sequence (1*) we get the isomorphism E\T*^2) = En~2iT*).

By an application of Bass' Shifting Theorem we can raise the superscript by two

to obtain E"iM) = E"~2iT*y) for a suitable right module M. If we put this into the

sequence (3) we have the short exact sequence

(3') 0->T„_1^T*_*1^Fn(M)^0.

Now apply EJ to this sequence and use the hypothesis that E\E\M)) = 0 for

Oz%jz%n— 1. From the exact sequence of homology we obtain the desired

isomorphisms E\Tn-y) =E\T**y) holding for l^'|«-2. This completes the

proof of the theorem. We remark that the proof of the theorem did not use the

full force of the hypothesis "all r" but uses instead the hypothesis "all r up to and

including n."

The rather strange hypothesis "grade E\M) greater than r - 1" in the pre-

ceding theorem brings up the question of which rings have this condition. H. Bass

has constructed a proof of the fact that for a commutative Noetherian ring R

this condition is equivalent to the condition that Rp has finite injective dimen-

sion over itself for every prime p where Rp is the localization of R at p. The proof

of this can be based on the results of [3]. We know of no analogous theorem for

noncommutative rings.

4. Applications. In this section we relate modules of D-class n to various

invariants of the ring. Among these invariants are the global dimension, left

(and right) finitistic dimension and the left (and right) injective dimension of the

ring as a module over itself. Recall that the global dimension of R, gl-dim-R, is

defined to be the supremum of the projective dimensions of all the R-modules

Auslander showed [1], that for the rings we consider this can be computed by

taking the supremum of the dimensions of the cyclic left R-modules. The left

finitistic dimension of R, IfPDiR), is the supremum of the projective dimensions

of the finitely generated left modules of finite projective dimension. See Bass'

paper [2] for a number of relations between these and other dimensions.

The following theorem connects a property of modules of D-class n with the

global dimension of the ring.
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Theorem 4.1. For the rings R under consideration the following are equi-

valent for integers n ^ 1:

(a) gl.dim. (R)=n4- 1.

(b) Duals of modules of D-class n are projective.

Proof. Combining Bass' Shifting Theorem with Theorem 2.1 we see that if

T* is the dual of a right module of D-class n then T* appears as the kernel in the

nth projective module of a projective resolution of some left R-module A. And,

conversely, given a projective resolution of some left R-module A the nth kernel

is the dual of a right module of D-class n. Thus (a) and (b) are equivalent.

We remark that we mean by the nth module in a projective resolution, the one

with subscript n. The subscripts start at zero. This is the usual notation, but it is

a poor way to count.

In the above argument, we did not need to distinguish between left and right

because of Auslander's result mentioned above. In the next theorem, we do have

to make such a distinction since the left and right finitistic dimensions need not

be the same. The following theorem can be considered as a generalization of

Theorem 5.3 of [2].

Theorem. 4.2. For the rings under consideration the following are equivalent

for n 2: 1 :

(a) lfPD(R) Í n.
(b) The only right modules of D-class n with projective duals are the projec-

tives.

Proof. For n = 1 this is exactly Bass' Theorem. Assume condition (a) and let

T„ be of D-class n with T* projective. By the proof of Theorem 4.1, T* is the

kernel in the nth projective module of a projective resolution of some left module

A, and A is therefore of finite projective dimension. By the assumption (a) we see

that the sequence 0-» T*-*F„-y -* Tnly ->0 is exact and splits. But then the

dual sequence 0 -» T**y -* F*_ y -* T„ -> 0 used in showing T„ to be of D-class

n also splits, and T„ is projective.

Conversely, assume condition (b) and let A be a left module of projective di-

mension less than or equal to n + 1 for n g 2. We will show that its dimension is

actually less than n + 1. If F is the nth projective in a projective resolution of A,

we have the sequence 0 -» T„*-> F -> T„* y where T„ is of D-class and T*is projec-

tive. By (b) we conclude that T„ is projective and the sequence 0 -» T„** -> F* -*Tn

-* 0 used in exhibiting the D-class of T splits. Thus we see that T„** is projective.

But T„*_! is a direct summand of T*** so both of these are projective. That is,

the projective dimensions of A is less than n +1. This concludes the proof of the

theorem.

In [5] we showed that the difference between a torsionless module and its

second dual is a module of the form E1(B). We were able to use this to connect
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the vanishing of E1(B) and [El(B)~\* with reflexiveness. The following theorem

can be thought of as an extension of Corollary 1.3 of [5].

Theorem 4.3. For the rings R under consideration the following are equi-

valent for n _ 1:

(a) The left modules of D-class n are reflexive.

(b) E"(B) = Ofor all torsionless right modules B.

(c) En+1(C) = Ofor all right modules C.

(d) The right injective dimension of the ring is less than or equal to n.

Proof. For n = 1 this is exactly Corollary 1.3 of [5]. Also the equivalence of

(b), (c), and (d) for all n ^ 1 follows from Bass' Shifting Theorem. It is therefore

sufficient to show the equivalence of (a) and (b) for n ^ 2.

If T„ is of D-class n then we are assured of the two sequences

0-* T„*_*, -> F* -» T„   ->   0,

0-T„*   ->F  -*T¿Lx-4 0.

Under these circumstances the conclusion of Theorem 1.1 of [5] holds and we

obtain the additional exact sequence

0 -+ T„ -* r**-+ E\T*- x) -► 0.

Since T„ was of D-class n, T?- x can be thought of as a kernel in a projective

resolution of a torsionless module B. By using the exact sequence of homology

on £'( •) we see that EX(T*-X) — £"(B). Thus we arrive at the exact sequence

(*) 0 -* Tn - T„* *-> E"(B) -y 0.

The above construction can be reversed in the sense that we could have started

with the torsionless right module B and worked backwards to get a left module

of D-class n. It is clear now that the sequence (*) gives the equivalence of (a)

and (b).

We know from [5] that we can hang stars on the sequence (*) to get the follow-

ing exact split sequence,

(**) 0 -> [£"(B)]* -* T***-y T* -y 0.

From this sequence we get immediately the following corollary.

Corollary 4.4. For the rings under consideration the following are equivalent

for n ^ 1 :
(a) [£„(B)]* = Ofor all torsionless right modules B.

(b) T*is reflexive for all left modules T„ of D-class n.

5. Odds and ends. We include the following because the methods of proof

appear to be related to the preceding results.
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Theorem 5.1. For the rings under consideration the following conditions

are equivalent:

(a) All left W-modules are torsionless.

(b) All right torsionless modules are W-modules.

(c) All torsionless left modules are reflexive.

(d) The right injective dimension of the ring is less than or equal to one.

Proof. We showed the equivalence of (b), (c) and (d) in Corollary 1.3 of [5].

In the following we shall establish the equivalence of (a) and (b).

Let A be a torsionless right module. From Theorem 1.1 of [5] there is a torsion-

less left module B such that 0 -> B -+ ß**-> E\A) -> 0 is exact. By the proof of

Theorem 1.1 we can embed this sequence in an exact diagram

0

E\A) 0

t t
0->B**->  F  -> M -y 0

t || t
0->B    ->F->M'->0

t t

0 E\A)

t
0

where E1iM') = 0, M is the torsionless factor of M', and F is projective.

If condition (a) holds, we have M = M' and B = B**so that E\A) = 0. Then

(a) implies (b). By Theorem 1.1 we could have started with the left lf-module M'

and formed the above diagram with A torsionless right module. Assuming con-

dition (b) E\A) = 0 and it follows that M' is its own torsionless factor. This

completes the proof of the theorem.

The following may be well known, but we include it for laughs. It seems to be

related to Theorem 4.1.

Theorem 5.2. For the rings R under consideration the following are equi-

valent:

(a) All W modules are projective.

(b) gl.dim.(R) ál.

Proof. If (b) holds then R has only modules of dimensions zero and one. If A

has dimension one then by [4, p. 123] EliA) # 0 and (a) follows:

Now assume (a). Let B be a torsionless module, we shall show that B is projec-

tive. By Corollary 1.3, we can embed B in a projective so that the factor is a W-

module. But then the embedding splits and B is therefore projective.
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In [5] we showed that if B*= 0 then B = E1(A) for a suitable A of dimension

one (or zero if B is projective). Some of our above arguments show that we can

find modules of the form E[(A) in another way.

Theorem 5.3. If M' is a W-module then the kernel of the map of M' on its

torsionless factor is E1 (A) for some torsionless A. Conversely, for every tor-

sionless A there is a W-module M' such that El(A) is the kernel of the map of

M' on its torsionless factor.

Proof. The proof consists of examining the big diagram used in the proof of

Theorem 5.1 and the fact that the diagram can be constructed starting either with

the right module A of with the left W-module M'.

It should be noted that in the above theorem M' and A are modules of the

opposite hand.
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