
EXTREMAL PROBLEMS FOR ANALYTIC FUNCTIONS
WITH POSITIVE REAL PART AND APPLICATIONS

BY

M. S. ROBERTSON

1. Introduction. Let 0> denote the class of regular functions Piz), P(0) = 1,

with positive real part, ReP(z) > 0, in | z | < 1, where

(1.1) Piz) = 1 + PyZ + p2Z2 +  ...  + P„Z" +  - .

Let S denote the class of functions/(z), regular and schlicht in \z\ < 1, normalized

so that/(0) = 0,/'(0) = 1, and where

(1.2) /(z) = z + a2z2 + - + anz" + - .

Let I denote the class of normalized functions Fiz), regular and schlicht in

0 < | z | < 1, with a simple pole at the origin, and where

(1.3) Fiz) = - + a0 + ayz + ■■■ + <x„z" + •••.
z

Also let X* denote the subclass of S consisting of the functions Fiz) which are

starlike with respect to the origin in 0 < | z | < 1.

There are several subclasses of S and X whose definition depends upon a con-

nection between /(z) and Piz), or between P(z) and Piz). Problems associated

with these various classes frequently involve the task of finding the value on

| z | = r < 1  of

(1.4) minimum ReFiPiz),zP'iz))

for a given function Fiu,v), analytic in the plane of v, and in the half-plane

Re m>0. For example, if Fiz), given by (1.3), is a member of S* what is the

radius R * of the largest circle | z | = jR* such that every member of S* is convex

for 0 < | z | <; R*< 1? We shall call R* the radius of convexity for the class 2*.

Then, since

(1 5) ZI^- = - Piz)U.a; F(z) AZJ.

(1.6) -Il+"£»!.*,)     ^
F'iz) \        w      Piz)   '

it follows that R* is the radius of the largest circle | z | = r within which
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(1.7) Re{p(z)-^)>0.

The problem is therefore resolved by the solution of (1.4) for the special case

where

(1.8) F(u,v) = u-vu~1.

The solution of this problem appears in the proof of Theorems 3 and 4 in §5

of this paper where it is shown that R* = 3~1/2=0.577—. It is interesting to note

that the corresponding problem for the class Z has been studied and solved by

Golusin in a series of papers [2;3;4;5;6]; see also Geifer [1]. The radius of

convexity, Rk, for the class Z is given by a root of the equation

(1-9) W) + Ç-l = °> -*< = 0.559-,
where

r1 /i - fcV\1/2
(1.10) E(k)  =   |    .(    i_xi)    dx,

(1.11) K(k) =   f  l(í-x2)(í-k2x2)Y1/2dx.
Jo

For the class 2, the extremal function maps the unit circle on a slit domain D.

Since D is not starlike with respect to the origin we have Rk < R*. But for the

class S the radius of convexity is 2 —31/2 [10], and the extremal function z(l—ez)'2,

| e | = 1, is starlike in | z | < 1.

Another example can be seen in the case where F(z) of (1.3) omits the value

zero and is starlike in the direction of the real axis for |z| < 1. This means that

the real axis cuts the map of|z| = r<lbyw = F(z) in exactly two points for

every r near 1. Then [11]

(1.12) {iïX)}"1  = hv(e~"'z)(cosp + isinpP(z))

where P(z)e0>, sinp ^ 0 and

(1.13) hv(z) = z(l-2zcosv + z2)-1.

Although F(z) need not be schlicht in the unit circle, we may ask what is the largest

value of R such that every such F(z) is schlicht and starlike with respect to the

origin in 0 < | z | ^ 7?.

Since

Re \=^m = Re f       „    }~ ^   .1 + Re '     ^zP^
F(z)    j        '   | l-2c-'>zcosv +e-2l>z2 J        L  | cosp + ¿sinpP(zj

^0,     r t 2 - 31
(1.14) ^ !-./._     2r     ^n      .^,_,i/a

1 + r      1 - r2
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it follows that R ^ 2 — 31/2. In (1.14) we have used the inequality

(1.15) Re i      '"-^'W      UA   r<l.
' \ cosp + ismpP(z) }  - 1 - r2

which will be established in §6 of this paper. We may look upon (1.15) as a par-

ticular case of the more general problem (1.4) where here F(u,v) has the special

form

-i
(1.16) F(u,v) = v(u — icotp)

Equality is attained in (1.14) forz = —ir, v = 0, p = Jt/2, P(z) = (1 — iz) (1 + iz)~\

F(z) = (14- izf-(z - iz2)'1. The value R = 2 - 31/2 is best possible since F'(z),

vanishes on | z | = 2 — 31/2.

Several other examples involving functions F(u, v) might be cited. But we turn

now to the general problem indicated in (1.4). Since P(z) may be represented by

the Herglotz Stieltjes integral formula

C2* 1 + zew
(Li?) p(z) = jo ¿iL-dcm,

where oc(9) is a nondecreasing function in [0,2 ji], normalized so that

(1.18) [ *da(0) = 1,
•'o

we may approximate P(z) by rational functions of the form

1 + ekz
(1.19) p„(z) =ZA T^-r-A**] = i, ogpt = l, Zp, = i.

k = l L ~ Zkz 1

We shall show that the extremal functions for (1.4) are always of the form (1.19)

with n ^ 2 for all functions F(u,v) of the class considered. The specific values

of the parameters pk, ek will depend upon the given F(u,v). Their values are some-

times difficult to compute but will be obtained for the examples (1.8) and (1.16).

The main theorem of this paper is the following:

Theorem 1.   IfF(u,v) is analytic in the v-plane and in the half-plane Re u > 0,

and if P(z) e 0>, then on \ z \ = r < 1

(1.20) min   ReF{P(z),zP'(z)} = min   Re F{P0(z), zP0(z)}

where

,1W       _,,      l + a/l + zei8\   l 1-a /l4-zc-i9\ „
(1.21)     Po(z) = -j- [rz-ir) + — (rr5=5J'z = re'

- 1 = a = 1,   0 ̂  0 g 2ti,   0 S 4> = 27t.



1963] ANALYTIC FUNCTIONS WITH POSITIVE REAL PART 239

A special case of Theorem 1, which we give as Theorem 2, is of some interest

too. The proof follows by the method of variations used in the proof of Theorem 1,

but an independent proof by the method of subordination suffices and is simpler.

Theorem 2. If F(m) is analytic in the half-plane Reu > 0 and if P{z)eS>,

then on | z | = r < 1

(1.22) min ReF(P(z))=   min Re F í\-^].
ps» \z\=r \1  —  Z/

Using Theorem 1 we find for the special case (1.7) the following result given

as Theorem 3.

Theorem 3.   Let Piz)eSP. Then

(1.23) Re{p(z)-^^j^0      for   \z\e3~1'2.

Equality in (1.23) is attained on \z\ = 3_1/2 only for the function

,< ^      n, x      1 + 3_1/2 /l + sz\      1-3~1/2 /l-£z\     ,   ,     ,
(1.24) P0iz)-_.^r__j+-T— [TT^),   |.|-1.

Because of (1.6) Theorem 3 implies the following Theorem 4.

Theorem 4.   Let Fiz)el.*, where

(1.25) Fiz) = - + a0 + ayz + — + a„z" + -,   0<|z|<l.
z '   '

TAen P(z) is convex in | z | ^ R where R > 3-1/2 except for the function

(1.26) F0iz) = z-1(l + ez)1-3_1/2.(l-£z)1 + 3_1/2,    |e| = l,

in which case R = 3"1/2 = 0.577 —.

Applying Theorem 1 to the special case (1.16) we have the theorem

Theorem 5.   Let

(1.27) Fiz) = - + <x0 + a.yz + ••• + aBz" + —
z

Ae regular and starlike in the direction of the real axis (Aui not necessarily

schlicht) and omit the value Ofor 0 < | z | < 1. TAen F(z) is schlicht and starlike

with respect to the origin in 0 < | z | < 2 — 31/2. TAe function Fiz) = (1 + iz)3

• iz — iz2)'1 shows that 2 — 3l/2 cannot be replaced by a larger number.

The proof of Theorem 1 depends upon an application of the variational for-

mula recently obtained by the author [12] for functions of class ¿?:

(1.28) P*iz) = Piz) - p\\ - | z012)Xiz,z0) + oip2),
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where

l'0)     '    l    P(Zof        V  ^0 - Z) +     l P(20) /  Z0(Zo - Z)2

P'(z)     / *V» \        t   P(z) \       ze->°

+ (P(z0))-   \l-z0z)   +   \(P(z0))-       ) (1 - ¿-„z)2'

| z0 | < 1, 0 real and arbitrary, p real and small. Here and throughout the paper ( )~

indicates the complex conjugate. Formula (1.28) was derived [12] from an equi-

valent formula for a starlike univalent function f(z) regular in | z | < 1 due to

Hummel [7].

2. Proof of Theorem 1.   From (1.28) we have

(2.1) zP*'(z) = zP'(z) - p2(l - | z0 |2) zX'(z,z0) + o(p2)

where ( )' denotes differentiation with respect to z. From (1.29) we have

(2.2) X'(z,z0) = n(z,z0)eie + v(z,z0)e-ie

where

»/.■O-■*"(*)      z (zqP'W      A   (z + zo)
ß{Z'Zo) - P(z0)  z0 - z + {   P(z0)    " Vzo(zo - O2

0 -, , / ZqP(z)       \    (z0 + z)

Z)3      '

\ P'(z) (32 - z-0z2)

(2.4)

-     F(z)     /__£__\
v(z,z0) - (P(zq))_   ^ _ _oZj   + (p(zo))_     (1    _   _oz)2

, /     Piz) \(l_+_foz)
+ I (P(Z0))-   +   V  (1 - Z-0Z)3   •

Let F(u,v) satisfy the conditions of Theorem 1. We obviously may assume

F(u,v) not a constant function since Theorem 1 is trivially true otherwise. In

(1.4) we may take z = r > 0. For if P0(z) is an extremal function (the family.^

is compact) for

(2.5) min Re F(P(r), rP'(r)) = Re F(P0(r), rP'0(r))
PeP

then since P(e'ez) e &, we have for any P(z)

(2.6) Re F(P(rew), remP'(rem)) ^ Re F(P0(r), rP¿(r))

by (2.5) where P(e'ez) replaces P(z), and z-r. (2.6) may be written as

(2.7) Re F(P(z), zP'(z)) ^ ReF(P0(r), rP¿(r)) ,       z = rew

From (2.7) it follows that on | z | = r

(2.8) min Re F(P(z), zP'(z)) = Re F(P0(r), rP'0(r)).
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Consequently, in obtaining the value of the expression (1.4) we assume z = r > 0.

We shall need the following lemma.

Lemma 1.    [P'ir)FuiPir),rP'ir)) + FviPir),rP\r)) {rP'ir) + P\r)}]  is a real

number for an extremal function Piz) = P0iz) in (2.8).

Proof.   Since P0(zeifl) e @ for all 0 we have from (2.8)

(2.9) Re FiP0irew), reieP'0ireie)) Z Re FiP0ir), rP'0ir)),

(2.10) min Re FiP'Qiz), zP0iz)) = Re FiP0ir), rP'0ir)).
|z|=,

For z = rew and a minimum in (2.10) at 0 = 0 we have

(2.11) ¿ReF(P0(z),zPo(z))|fl=0 = 0.

Since FiP0, zP'0) is an analytic function of z, the Cauchy-Riemann equations give

(2.12) lm yrFiPoir), rP'oir)) « - \ ¿Re FiPoiz),zP'0iz)) \fm Q = 0,

(2.13) Im [_P¿ir)FuiP0ir), rP0ir)) + FviP0ir), rP0ir)) {rP'¿ (r) + P'0ir)}^ = 0.

The Taylor series for Fiu, v) gives

(2.14) Fia + h, b + k) = Fia, A) + Fuia, b)h + F„ia,b)k + - .

Take

a = Pir), b = rP'ir), h - -p2(l - | z0|2)A(r,z0) + oip2),

fc=-p2(l-|z0|2)r>l'(r,z0) + oip2).

Then

FiP*ir),rP*'ir)) - FiPir), rP\r))
(2.15)

= lFuiP,rP')Xir,z0) + rX'ir,z0)FviP,rP')-] (1 - |z0|2)p2 + oip2)

If Pir) = P0(r), an extremal fonction, then since

ReF(P*,rP*') ^ ReF(P0,rP^)

we have from (2.15)

(2.16) Re IF„ÍP0, rP'o)Xir, z0) + rX\r, z0) FviP0, rP^r))] £ 0

for r fixed, and all 0.

Since Re (e~"w)= Re (ei9w>) we have for all 0 that

(2.17) Re(e'"B) S 0,

where B is the expression defined as
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(2-18) B = [ (ïfeW - l ) ̂ ¿---r) +   ( W - ') ^rj] *-

■   [(nW)-   ,      r2 l(P0(r))~ \ r        1

T [   Po(z0)      1 - rz0 + \   P0(z0)   + V(l - ^o)2J ^ J

f Pg(r)    .      r       /z0P¿,(r)        \ (z0 + r)        ¡z0Po(r)        \(z0+r)1

|P0(z0)       z0-r "*" \ P0(z0)        /zo(zo-'-)2       l Po(zo) j ¿o(zo->-)3J     '

f [(TO)" .      r2 (P¿(r))' (3r-r2z0)      ((P0(r))~     \(1 + rz0)  1

L Po(zo)     (l-™o)       Po(zo)   (1 -rz0)2 + \ P0(z0) +l)(l-rzoy JW   "

Solving the equation B = 0 (which follows from (2.17) for P0(z0) and replacing

z0 by z we obtain the extremal function to be a rational function of the form

(2.19) P0(z) =  S akzk -  Z pV\
o o

where

Z «kzk = (1 - rz)3[(z - r)2(P^Fu + rP'¿Fv) + (z-r)P0Fu + (z2-r2)P0Fv
o

(2.20) + (Z + r)P°F"]

r r(l-rz)2(P¿Fu + f-P¿'F1))-+(l-rz){(P0Fli)-+(3r-r2z)(P¿F0)-}-|
+ (z - r)3

L     + (l+rz)(P0F„)- J

where the constants P0, P¿, P'¿, Fu = Fu(rP0(r), rP0(r)), and Fv are evaluated at

the fixed point r. Similarly,   ,

(2.21) ? ßkZ" = (Z ~ r)(1 " rz) {(1 " rz)2F" " (Z " r)2(F«)-}

+ (z + r)(l - rz)3F„ - (1 + rz)(z - r)3(Fv)~.

We should notice in passing that if F(u,v) is independent of v, then F„ vanishes

identically in (2.20) and (2.21). In this case (z — r)(l — rz) is a factor of the

numerator and denominator of the extremal function P0(z) in (2.19). Thus the

degree of each polynomial is decreased by 2.

From (2.20) we find that <x5 has the value

(2.22) ce5 = -2ir3/m[P^Fu + (P'0 + rP'¿)Fv} = 0

by Lemma 1. Since <x5 = 0 the extremal function P0(z) minimizing Re F(P(r),rP'(r))

over the class & for a fixed r, 0 < r < 1, is of the form

n 9r. p , v        a0 4- ciyz + a2z2 + cc3z3 + a4z4

1 •   J oW  " ß0 + ßiz + ß2z2 + ß3z* + /?4z4'

It is remarkable that the degree of P0(z) is quite independent of the function

F(u,v) chosen and results solely from the form of the variational formula (1.28)
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and the fact that Fiu,v) is a function involving no higher derivatives of P(z) than

the first. We shall see presently, however, that the degree of the polynomials

in the numerator and denominator of P0iz) may be reduced to degree 2.

From (2.20) we calculate the coefficients ak and simplify the expressions by

means of Lemma 1, or more explicitly by equation (2.13).

(2.24) ao= r\P'0Fu + P¿FV + rP'¿Fv) - rP0iFu - Fv) - 2r2P¿F„

- r\P¿Fu + P¿FV + rPÖFv) " - r3iP0Fu + P0FVT - 2r\P'0Fvy

= ir2 - r4)iP'0Ftt + P'0FV + rP1^) ~ rP0iFu - Fv)-r\PQFu + P0Fvy

- 2r2P'0Fv-2r\P'oFvy.

(2.25) «y = -(P^FI1 + P0Fu + rP0F„)(3r3 + 2r) + P0Fli(3r2+l) + (P0Fu)-(3r2 + r4)

- iP0Fu + P0FV + rPSFvy ■ (3r3 + 2r5) + (6r3 + 2r)P¿F„

+ (6r3 + 2r5)iP'0Fvy + (1 - 3r2)P0F„ + (3r2 - r4)(P0F„)-

= - iP0Fu + P0FV + rP'¿Fv)i2r - 2r5) + P0F„(3r2 + 1)

+ iP0Fuy -i3r2 + r4) + (6r3 + 2r)P'0Fv + (6r3 + 2r5)(P^F,,)-

+ (1 - 3r2)P0F„ + (3r2 - r*)iP0Fv)--

(2.26) a2 = iP'0F„ + P'0FV + rP'¿Fc)ií + 6r2 + 3r4) - {P0FU + (P0F„)-}(3r3 + 3r)

- {P'0FV + (P0F„)"}(6r2 + 6r4) + {P0FV + iP0Fvy}

- iP¿Fu + P¿FD + rP'¿Fv) - • (r 6 + 6r 4 + 3r2)

= (1 - r2)(l + 4r2 + rA)iP'0Fu + P'0FV + rP'¿Fv) - (6r + 6r3) Re(P0F„)

- (6r - 6r3) Re(P0F„) - (6r2 + 6r4) Re(P0F„)

= a real number.

(2.27) a3 = - iP'QFu + rP'¿Fv)i6r3 + r5 + 3r) + (r4 + 3r2)P0Fu + (r5 - 3r)P'0Fv

+ (3r2 - r*)P0Fv + (r + 6r3 + 3r5)(P0F„ + rP'¿Fvy

+ i3r2 + í)iP0Fuy + i3r5 + 12r3 + 3r)(PÍ,F„r + (1 - 3r2)(P0F„)-

= - iP'0Fu + P¿FV + rP'¿Fv)i2r - 2r5) + P'0Fvi2r5 + 6r3)

+ iP'0Fvy -i6r3 + 2r) + P0Fuir4 + 3r2) + iP0Fuy -(3r2 + 1)

+ P0F„(3r2 - r4) + (PoF„)- -(1 - 3r2)

= «!•
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(2.28) a4 = (P'0FU + rP'0Fv)(3r2 + 2r4) - r3P0Fu + 3r2P0fF„ - r3P0Fv

- (P'0FU + rP'¿Fv)~ -(3r4 + 2r2) - r(P0F„y - (3r4 + Ar2)(P'0Fv)~

+ r(P0Fvy

- (r2 - r4)(P'0Fu + P'0FV + rP'¿Fv) - r(P0Fu - P0Fvy

- r3(P0Fu + P0FC) - 2r2(P^F„)- - 2r4(P^F,)

= «0.

From (2.21) we also calculate the coefficients ßk and obtain

(2.29) ß0 = r3(Fuy - rFu + r3(Fvy + rFv,

(2.30) ßi= - (r4 + 3r2)(Fu)~ + (3r2 + V)FU - (3r2 - r4)(F„)~ + (1 - 3r2)F„,

(2.31) ß2= - (3r3 + 3r){Fu - (Fu)~} - (3r - 3r3){Fv - (Fv)~}

= a pure imaginary number,

(2.32) ß3= -ßi,

(2.33) ß4= -ß0.

Since a4 = ¿t0, a3 = 5lf a2 real, p^4 = -ß0, ß3 = -j81; ß2 pure imaginary,P0(z)

in (2.23) may now be written as

n ia\ p <7\        a0z"2 + atz"' + a2 + glZ + ¿0z2  _ ß^

(2.34) Po(z)        ßo2-2 + ßiZ-1 + ß2_ßiZ_hz2        R(zy

Since P(0) = 1, we also have a0 = ß0. It is seen from (2.34) that we have identi-

cally

(2.35) P0(z) + (j»o (-§"))   = °'

Thus the real part of P0(z) vanishes on | z | = 1. Indeed, Q(ew) is real and R(eie)

is purely imaginary. As we shall soon see Q(z) and R(z) have zeros in common.

Let m denote the number of poles of P0(z), that is the number of zeros of R(z)

distinct from the zeros of Q(z). Because of (2.35) and the fact that ReP0(z)>0

in | z | < 1 with P0(0) = 1, we may write P0(z) of (2.34) in the form

(2.36) '-»"I.*   (££)■

where 0 < pk < 1, E^P* = 1, |c*| = 1 and m^A (compareformula(3.16) of [12]).

In §3 we shall show that Q(el°), which is real, has the same sign near each of

any two consecutive simple poles sk,ek+l in the interval between them on | z | = 1.
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Thus Qie'") has an even number of zeros between each of the poles. It will also

be shown that Q(e'9) has at least one zero between consecutive poles. It then

follows that Q{z) has at least 2m zeros on | z | = 1 but certainly not more than

4 zeros. Thus m ^ 2. When this fact has been established P0iz) in (2.36) may

be written with z = r > 0 in the form

(„7) ™_L*±(£Sl)+í-(>±A)

where - 1 ̂  a ^ 1, \ey | = |e2| = 1.

As in":. ted by (2.8) the solution of finding the value given in (1.4) for a given

function Fiu,v) becomes one of finding the precise values of the parameters

a, Sy and e2 which nny possibly depend upon the fixed number r. If we let

z = re'*, sy = exp iiçb + 9), e2 = exp iiçb - 9) in (2.37) then (1.20) and (1.21) of

Theorem 1 can replace (2.8) and (2.37), respectively.

3. The Julia variation applied to Piz). Let fiz), /(0) = 0, f'iO) = 1, map

| z | < 1 onto a domain D with boundary C. Let C be mapped into CA by the

mapping wA = w + pôw where p is a small real parameter and where pSw is a

shift of each point tv of C in a direction normal to C. Let i/f(z), i^(0) = 0, map

| z | < 1 onto the domain DA bounded by C A. The Julia variation formula for the

function \¡/iz) is defined as [9]

(3.1)       m =m + p j x/'w ̂  2Jerw + o(p)-

Dividing by t//'(0) to obtain normalization we have

rA(3.2) riz)=fiz) + p (h
,,, J + z 1 ¿wdw . ,

z/(2)^"/(Z)]   [2^riW(CFj+0(^

Let /(z) be the starlike function defined by the equations

(3.3) zf'iz)+fiz)=P0iz),   fiO) = 0,   /'(0) = 1,

where P0(z) is the extremal function Q(z)/.R(z) of (2.34). Denote by çb the expression

(3.4) 0 = _^W,W=/(O.

Then differentiation in (3.2) yields

(3.5) zfA\z) = zf'iz) + pj  [z2nz) L±^ + zf'iz) J^P] W» + oip).

On dividing (3.2) by (3.5) and letting Pfe) = zfA\z) -i-/A(z) we have

çbdw + oip),(3.6)       P&0iz) = Poiz) + p zP'(z)C+Z   I   2CzPoiz)
zP0(z)c_2+  (f_z)2



246 M. S. ROBERTSON [February

(3.7)

t'(z) = zP'0(z) + PJ[ z2(^)Po(z) 4- (i-t^i_i!) zP>o{z)

+ 2£z(£ + z)P0(z)

(£ - z)3

(3.8) F(Pt(z), zP^'(z)) = F(P0(z), zP'o(z)) + pD + o(p)

where

(3.9) D = i> Mtpdw,

where M denotes

M =

tf)dw + o(p).

C + zr^P"F  4- rP' F ï 4- ZzÇF^p + (Ç2 + 4£z - Z2)zP'pFv

2z£p0f„(£ + z)
+

(£ - z)3

Since ReP0(z) = 0 on \z\ = 1, the corresponding starlike schlicht function f(z)

has radial slits. Using the special variation ôw — ± i(w — w0) (where the sign

is chosen so ôw is directed inward) on one side of a slit from w0 to co, and zero

everywhere else we have a "hinging" of one of the radial slits at the point w0

of the slit. This device has been used by Hummel [7]. w0 is chosen far out along

the slit so that Q(e'B) is of constant sign on the arc of | z | = 1 which corresponds

to the portion of the radial slit which is varied, tpdw tends to zero as w goes to

infinity on the slit and is constantly negative. We shall presently show that the

square bracket of the integrand in (3.9), when z = r, has its real part equal to

and the quantity (3.10) is real and of constant sign by our choice of w0. Since

the integrand in (3.9) is of constant sign for z = r and since also ReD 2: 0 for

the extremal function P0(z) when z = r it follows that the square bracket in the

integrand in (3.9) must have a negative real part. Since the hinge may be made

on either side of the slit, it follows that Q(£) on | £ | = 1 is negative near two con-

secutive poles e~k, e~k+y of P0(z) on the arc between them. Also since f'(z) = 0

at the tip of each radial slit, Q(Q must vanish somewhere between e~k, ëk+1, and

in fact vanish an even number of times. So Q(Ç) has at least 2m zeros but not

more than 4 and 2m ^ 4, m being the number of simple poles of the extremal

function P0(z).

There remains then to show that the real part of the square bracket of the

integrand in (3.9), when z = r, has the value given in (3.10). On | £ | = 1 we have

(3.11) Re ß(0 = a2 + 2 Re [a0£2 + aj], £ = ew.



1963] ANALYTIC FUNCTIONS WITH POSITIVE REAL PART 247

Substituting the values of a2, a0 and at from (2.23), (2.24) and (2.25) we obtain

after simplification

Re 0(0 = (P'oFu + P'0FV + rP'¿Fv)(í - r2)(l - 2rcos9 + r2)2

(3.12)

where

-(6r2 + 6r*){P'0Fe + (P¿Fv)-}

-(3r + 3r3){P0Fu + (P0Fu)-}

+ (3r3 - 3r) {P0FV + (P0FV)~} - 2Re C

C = r(P0Fu-P0Fv)X2 + r3(P0Fu + P0FV)~ ■C2 + 2r2P¿Fvl2 + 2r\P¿Fvyl2

(3.13) - P0F„(3r2 + IX - (3r2 + r*)(P0Fu)~ -f - (6r3 + 2r)P¿Fvl

- (6r3 + 2r5)(P'0Fv)--(-(l - 3r2)P0F„C - (3r2 - r4)(P0Fv)- . Ç.

On the other hand the square bracket of the integrand in (3.9), when z = r,

£ = elB, has its real part equal to

rRe [(rP'¿Fv + P'0FU + P'0FV) (^A +
2ÇFUP0 + ArÇF P'

(3.14)

(C - r)2

+
2ÇF„P0(Ç + r) 1

« - ry   I

rRe c

(3.15)    rRe

(rP¿Fv + P0FU + P'0FV) (1 - r2) £ -1 + -|

2{2ÇFUP0(Ç- r)2 + ArC(l- r)2P'0Fv} + 2(£2 + rf)(C - r)3P0F„£-3J

where £ = 1 - 2r cos 0 + r2 = | C - r |2,   Ç = ei9. (3.14) can be rewritten in the

form

(rPoF^ + P^ + P^Xl-r2^-1

+ {2(C-2r + r20P„F„ + (-8r2 + Ar3Ç + 4rO>¿Ft,}£~2

_+ 2P0F„{(3r3 - 3r) + (3r2-r4X + (1 - 3r2)Ç~+ r\2 - r3Ç2}E~3_

(rP'¿Fv + P¿FU + P¿F„)(1 - r2)(l - 2rcos0 + r2)2

+ 2P0Fu{-3r-3r3 + (3r2 + r4)Ç + (1 + 3r2)f-rf2-r3Ç2}

+ P¿FV{ - V2r2 - Í2r4+(Ur3 + 4r5)Ç+(I2r3+Ar)l - Ar\2 - Ar2\2}

_+ 2P0Fv{3r3 -3r + (3r2 - rA)Ç + (1 - 3r2)C_+ r\2 - r3£2}

ReQ(0, C = eie,

(3.16)

= £3Re

|C->.

from (3.12) and (3.13). Here we use the fact that Rew = Re w, and the knowledge

that (rP'¿F„ + P'0FU + P'0FV) is real.
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This completes the proof of Theorem 1.

4. Proof of Theorem 2. For the sake of completeness we shall sketch brief-

ly how Theorem 2 follows by the method of proof used in proving Theorem 1.

We shall then give an alternative proof by the method of subordination which

is easier and shorter.

If F(u,v) is replaced by the analytic function F(u), Reu > 0, we have F„ = 0

in our previous calculations. We have previously noted that in this case the

degrees of each of the polynomials in (2.20) and (2.21) are decreased by 2. For

a minimum ReF(P(r)) we have from Lemma 1, on setting Fv = 0, the equation

(4.1) Im{F'iPo(r)) • P'oir)} = 0,

where

(a y, p M _ _»o + giz + g2z2 + g3Z3_

K    } °y '      (F' - r*F', - 2r(F' - F')z + ir*F' - F')z*

and F' = F'{P0(r)}. Letting P'0 = P'oir), we obtain  for  the  coefficients ak, k

= 0, 1, 2, 3 the values

a0   = (P0 - rP'0)F' + ir3P0 + r2F0)F',

oiy   =  {(1 + 2r2)P¿ - 2rP0}F' - {(2r2 + r*)P'0 + 2rP0}F',

(4,3) a2  =  {r2P0 - (2r 4- r3)P0}F' + {P0 + (2r3 + r)PQ}F',

a3  =  -2ir2ImiP'0F') = 0        by (4.1).

Because of the equation (4.1), oty =a real number and a2 = a0. Thus (4.2) becomes

(4.4) Poiz) = (^ + a, + a0z)   -   {èl + ßl - /J0z)  =
Riz)'

where ßx = — 2r(F' — F') = a pure imaginary number, and ß0 = F' — r2F'.

Applying (3.8) to Fiu, v) = F(u), (3.9) becomes for z = r

(4.5, D = j,   [« (f±I) + Wy ]^

(4.6) «.!,_£   ^.#*,

by calculations similar to §3. Thus we conclude that 2m ^ 2, or m = 1 in this

case. Theorem 2 follows immediately.

However, by the theory of subordination each function Piz) is subordinate

to (1 + z)(l - z)-1 since ReP(z) > 0 in | z | < 1. Hence
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where w(z) is regular and | w(z)| < 1 in \z\ < 1, vv(0) = 0. It follows that

(4.8) F(P) = F {j-±4,   w = w(z).

Consequently F(P(z)) is subordinate to the function F((l + z)/(l - z)) in | z | < 1,

and consequently in |z| _ r < 1. (1.22) evidently follows at once, which com-

pletes the proof of Theorem 2.

5.   Proofs of Theorems 3 and 4. Let P(z) e 0>. We shall apply Theorem 1 to

show that

(5.1) Re ¡^(z) - îÇAJ = o   for    \z\ ̂  3'1'2 = 0.577- ,

and that the bound 3_1/2 is sharp. For this special case F(u,v) = u - vu'1 in

Theorem 1 and the minimum on | z | = r of the left-hand side of inequality (5.1),

taken over all members PeSP, occurs for an extremal function of the form

1 4- a (Í + zeie\       1 - a ¡í + ze'^ ¡<p
(5.2) Po(z) = _. [r--ij  + __ [Y^pjij, z = re»,

where -1 <; a = 1, 0 <; 0 ^ 27t, 0 = </> = 27t. We must determine the values of

the parameters a, 9, tj> which minimize the left-hand side of (5.1) on \z\ = r

when P(z) = P0(z). We have

(5.3) p0(z) - 2ÍM = -^iii'JL0—. +        i + z2

(5.4)   Re

P0(z)       l-2zcos0 + z2     1 + 2ocizsin0-z2 '

2 aiz sin 9 - 2ar (1 - r2) sin 0 sin tp

1 - 2 z cos 0 + z2      (1 - r2)2 - 4r(l - r)2cos0 cos</> + 4r2(cos0 - cos(/>)2'

(5 5) Re 1 + z2 (1 - r2)(l-2arsin0sin</J + r2)

1 + 2oa'zsin0 - z2      {2ar sin 0 - (1 + r2) sin </>}2 + (1 - r2)2 cos2</>"

For r < 1,

,5.6, «¡W -^,.

if, and only if,

(1 - 2ar sin 0 sin tp + r2) [(1 - r2)2 - 4r(l - r)2 cos 0 cos tp + 4r2(cos9 - cos <f>)2}

-2arsin0sin</>[{2arsin0-(l + r2)sin<p}2 + (l-r2)2cos2ci>] ^ 0.

Since (1 - 2otrsin0sin0 + r2) ^ (1-r)2 > 0 and (1 - r2)2 - 4r(l -r)2cos9costj)

^ (1-r)4 > 0, we need only consider the inequality (5.7) in the case asin0sin</>

> 0. Thus asin0 and sintp have the same sign. Since

[(1 - r2)2 - 4r(l - r)2 cós 0 cos t¡> + 4r2(cos 0 - cos tj))2}
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is smallest when cos 0 and cos çb have the same sign, it is evident that we need

consider the inequality (5.7) only for the case

0<a^l,   O<0^7t/2,   0<çb^n/2.

We make the substitution

(5.8) 2<T = r-rr"1^2,   r = a - (<r2 - 1)1/2

in (5.7) which becomes

(5.9) F = F(<T,a,0,0)^O

where

F = o3 — 2(cos 0 cos çb + a sin 0 sin çb) a2

+ [(cos 0 cos çb + a sin 0 sin çb)2 — (1 — a2) sin2 0 sin2 çb~\ a

(5.10) +(a-a3)sin30sin0

= ct[o - (cos 0 cos çb + a sin 0 sin 0)]2 - (1 — a2) sin20 sin2çb ■ er

+ (a — a3) sin30 sin çb.

F = 0 has at least one real root a. Let a = oi<x,9,çb) be the largest real zero of F

for fixed ct,9,<¡>. Let

cr0 = max er(a,0,c» = er(a0,0O, c>0).
a ,9,4

If a = 1, F has zeros ct = 0, a = cos(0 — çb) (a double root). Since o0 i$ known

to be at least 1 we can therefore rule out the possibility a = 1. If çb = n/2, F has

zeros a = a sin 0,

ff= a/2 ± ^(4-3a2)1/2 sin0

whose maximum, occurring for 0 = ti/2, a = 3_1/2 is er = 2(3)~1/2 > 1. If there

exists a ct0 > 2(3) ~1/2 we can assume

0<oe<l,   O<0g7t/2,   0<çb<n/2.

From (5.10) we obtain

a sin 0\ 11/21
(5.11)       a = cos 0 cos çb + sin 0 sin çb ♦Mi'-san
For a maximum <r we must have from (5.11)

Off
(5.12) ^ = 0.

Because of (5.12) when we differentiate a in (5.11) we may treat the o on the

right-hand side of (5.11) as if this o were a constant. We obtain
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(5.13) sin0cos0 = cos0sin0  a + (l-a2)1/2 /       3« sin0W   _asin0\1/2l

2 \        er sin 0 / \       o sin <p /

Similarly da/da, = 0 gives us

(5 14Ï 5ÍEÜ -^lshl-    C1 -3a2)2        A
k '   ; sin2 0      cr sin 0     4ff2(l - 2<x2) "    '

Since o sin 0/sin 0 > 0, (5.14) gives

(5.15) ^=a  +i(l-a2)(l-2a2)-"2.
sint/ 2

Again, ôo/<50 = 0 gives

,ri,^        r. ■   ,       •   «       , [       I,,      2x1/2/-.    a sm0\/<      a si
(5.16) cos0sin<¿ = sin0cos<¿   a +-(1-a2)1'2 2-:—r    1-r

2 \     <r sin0/\       a si

sin 0

sin0

l/2n

By virtue of the equation (5.15), the equations (5.13) and (5.16) may be rewritten

as the following equations (5.17) and (5.18).

(5.17) sin0cos0 = sin0cos0[a + (l-2a2)1/2]_1.

»i« •   a      a      •  a      a. 1 + 2a(l - 2a2)1/2
(5.18) sin ̂  cos 0 = sin 0 cos ̂     g +     _ /2   .

If 0 = 7t/2 then (5.17) (or (5.18)) gives <j> = re/2 which leads to <r = 2(3)~1/2

as we have seen before. If 0 < 0 < re/2, 0 < <p < n/2, (5.17) and (5.18) are com-

patible only if

(5.19) [a + (1 - 2a2)1/2]_1 • [1 + 2a(l - 2a2)1/2] [a + (1 - 2a2)172]-1 = 1.

But (5.19) is satisfied only if a = 0. Thus

do   do   do

09' fa' d~4>

cannot all vanish if 0 < a < 1, O<0< n/2, 0 < <f> < n/2. If ôo/ôtj> J= 0 then

max o occurs at <p - n/2 in which case o0 = 2(3) ~1/2. If do/8a ^ 0 the max o

would have to occur at a = 0 or 1, but this case has been ruled out. If do/d9 # 0,

then 0 = re/2. In this case if the max o does not occur when <p = n/2 then do/d(¡>

must vanish. Also do/da. must vanish (otherwise a = 0 or 1). Thus (5.15) and

(5.18) hold when 0 = n/2. (5.18) then forces (¡> = n/2.

It is seen that if a ^ 0, (5.15), (5.17) and (5.18) are compatible only when

<j) = 9 = n/2. Hence o0 = 2(3)"1/2. Then (5.15) gives a = 3~1/2.

Since F has no zeros o larger than 2(3)-1/2 and since F is a cubic polynomial

with leading coefficient positive, it follows that F |> 0 for o ^ 2(3)"1/2 with equality

occurring only if 0 = </> = n/2, a = 3"1/2. For o = 2(3)"1/2 we have r = 3"1/2.
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The extremal function (5.2) becomes

,„m _,.    1 + 3"1/2 (1 + iz\       1-3~1/2 (l-iz\
(5.20) P0(z) = _— ^-_j + —2— \—-j ,

and equality holds in (5.1) for Piz) = P0(z), z = 3~1/2-i. We may obviously

replace P0(z) by P( — iez), | s | = 1, so that this completes the proof of Theorem 3.

As we pointed out in the introduction Theorem 4 follows from Theorem 3

because of the equation (1.6). The extremal function F0iz) of (1.26) is obtained

from the solution (subject to normalization) of the equation

(5.21) ïp& =   -Po(z),

where P0iz) is defined by (1.24). F0iz) maps the unit circle onto a slit domain,

the complex plane minus two rectilinear slits each of length

2[(l + a)1+«-(l-a)1-*]1/2,    a = 3~1/2,

and subtending at the origin an angle te(1 — 3_1/2).

6.    Proof of Theorem 5.    In the introduction we made use of the inequality

(1.15) or

(6.1) Re
isinp zP'iz)

cosp + ¿sin/íP(z)J       1 — r

-2r      i   i
^  -:--,      z   = r < 1.

By Theorem 1 the extremal function, associated with this special case involving

Fiu,v) of (1.16), must be of the form (1.21) from which (6.1) may be deduced.

However, the following alternative method of proof is more instructive and

yields at the same time the stronger inequality

(6.2)
sin pzP'iz)       ^ |zP'(z)| ^    2r

Psinp— icosp       ' ReP(z)        1 — r2'

Define the analytic function çbiQ by the equation

(6.3)       «o = TO+.yo + TO-tfJW   m = uM<L

(6.4, ♦W-^g^Û,

Since Re 0(C) > 0, | C | < 1, we have | c>'(0) | g 2.

(6.5) |zP'(z)l _\zçb'j0) |^     2|z| 2r

ReP(z)       1 - |z|2~ 1 - |z[2      1 - /-2

(6.2) follows from (6.5) and is sharp for p = n¡2 and
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P(z) = (l+ez)(l-ez)_1,     |g| = l.

Theorem 5 results from the inequality (1.14) which follows from (6.2).
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