SOLUTIONS TO COOPERATIVE GAMES WITHOUT
SIDE PAYMENTS

BY
BEZALEL PELEG

An extension of Von Neumann Morgenstern solution theory to cooperative
games without side payments has been outlined in [1]. In this paper we revise
some of the definitions given in [1] and prove that in the new theory every three-
person constant sum game is solvable (see [1, Theorem 1]). Other results that
were formulated in [1] had already been proved in [2]. [1;2]are also necessary
for a full understanding of the basic definitions of this paper.

1. Basic definitions. If N is a set with n members, we denote by E"the n-dimen-
sional euclidean space the coordinates of whose points are indexed by the members
of N. Subsets of N will be denoted by S. If xe E¥ and ie N, x* will denote the
coordinate of x corresponding to i; x° will denote the set {x‘:ie S}. The super-
script N will be omitted, thus we write x instead of x". Wewrite x 5> ySif x'> )
for all i € S; similarly for > and =. @ denotes the empty set.

DEFINITION 1.1. An n-person characteristic function is a pair (N,v) where N is a
set with n members, and v is a function that carries each S = N into a set v(S) < E¥
so that

(1) v(S) is closed,

(2) v(S) is convex,

(3) v(®) =E",

(4) if xev(S) and x5 ySthen yev(S).

DEFINITION 1.2. An n-person game is a triad (N,v, H), where (N,v) is an n-
person characteristic function and H is a convex compact subset of v(N).

We notice that this definition is not identical with that given in [1; 2]. In the
first place v is not assumed to be superadditive, i.e., the condition: v(S; US,)
> v(S,) Nv(S,) for every pair of disjoint coalitions S; and S, is dropped.
Secondly H need not be a polyhedron.

2. Solutions. Let G = (N, v, H) be an n-person game.

DEerFINITION 2.1. Let x,ye EY, S # 8. x dominates y via S, written x gy, if
xev(S) and x5 > y°.

DEFINITION 2.2. x dominates y, written x &y, if there is an S such that x & y.

For x € E" the following sets are defined: domgx = {y:x%gy}and domx = {y:
x> y}.Let K cE". We definedomsK = | J, .kdomgx and dom K = |, .x dom x.
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DEerFINITION 2.3. V is K-stable if V = K—dom V.

DErINITION 2.4. The K-core is the set K—dom K.

We use the following abbreviation: P.S.O.—the proof, which is straight-
forward, will be omitted.

PROPOSITION 2.5. Every K-stable set contains the K-core. P.S.O.

PROPOSITION 2.6. If for each xe K NdomK there is a ye K—domK such
that y >x then the K-core is the only K-stable set. P.S.O.

We denote: o' = sup, . ,(i)X"-

DEerINITION 2.7. x is individually rational if x'= v' for all ie N.

DEFINITION 2.8. x is group rational if there is no y € H such that y > x.

We denote: 4 = {x:xeH, x is individually rational} and 4 = {x:xe 4, x is
group rational}.

ProposiTION 2.9. K is A-stable if and only if it is A-stable.

Proof. Let K be A-stable. We show firstly that (1) A — A cdomK. If xe
A — A then there is a y,e 4 such that y, > x. Define f(y) = min,_y (' — x°).
Since f is continuous and 4 is compact f receives its maximum in 4 at a point z,
which must be in 4. By 1.2 zev(N). f(z) = f(y,); therefore z > x. We have that
z>-yx and if w2z then w &x. If z € K then x edom K. If z e dom K then there is
a wy € K such that wy>— z and therefore wy— x, so x e dom K. From (1) it follows
that 4 —dom K = A—dom K and therefore K is A-stable. Now, let K be A-
stable. If xe A — 4 we define z as before and we see that ze Ac KU domK
implies that x e dom K. We conclude that (1) holds and therefore K = A —dom K
= A—domK, i.e., K is 4 stable.

DErINITION 2.10. A solution of G is an A-stable set.

If G has a solution we say that G is solvable.

THEOREM 2.11. Every two person game has a unique solution, consisting of
all of A. P.S.0.

DErINITION 2.12. G is constant-sum if H is contained in a plane
Yxi=e
ieN

3. Three-person constant sum games.

I. Auxiliary lemmas. We use the following abbreviations: 3-P.C.G. —
three-person constant sum game, W. L. G. — without loss of generality.

Let G = (N,v,H) be 3-P.C.G. We denote the members of N by the first three
positive integers and set S; =N — {i} for i=1,2,3. Let xe H. We denote:
Y. xX*=e and L={y:X)_,y'=e}. We have that 4= {x:xeH, x' =1
i=1,2,3} =A. So A is a convex compact subset of L. Domination between
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points of A is possible only via the S;, i.e., if x, y € A and x>y then S is one of the
S;. For a subset B of L and i e N the following sets are defined: B' = B N (S)),
B'=B'ndom B’ and b'= B' - B

LeMMA L.1. If B is convex then B' is convex.

Proof. B'= B Nu(S,) is convex. If x,,x, B’ then there are y,,y,e B’ such
that y; &5 x;forj=1,2.If0< ¢ < Lx=tx;+(1—-0x,and y =ty, + (1-10)y,
then x,ye B'and y &, x, so xe B".

We remark that 4’ is convex and compact, 4'is convex and a' is compact.

Let xe Land e > 0. The set {y:yeL, X2, (y'—x)* <e?} is denoted by
S(x,¢&). x is an interior point of a subset B of L if there is an ¢ > 0 such that
S(x,&) = B.

LEMMA 1.2. If B< L is convex and K = B'NnBi# @, i #j, then K contains
an interior point.

Proof. W.L.G. i=1 and j =2. We show firstly that K # @ implies that B
contains an interior point. If B has no interior points then there are points x; and
x, such that every ye B can be written as y =tx; + (1 — f)x,, — 0 <t < 00.
Let xe K. x =toxy + (1 — to)x,. There are y, =t;x; + (1 — t))x,, &5, x for
I=1,2. We have y2>x2and y} >x3ie., t,x2 + (1 —t)x2 > tox2 + (1 — to)x3
and t;x3 + (1 — t))x3 > tox3 + (1 — t)x3. So (t; — o) (x? — x2) > 0 and (¢; — t,)
(x; — x3) > 0. Therefore sgn (x{ — x3) = sgn(x; — x3). In the same way y,%s,x
implies that sgn (x] — x3) = sgn(x; — x3). So the three differences x* — x% have
the same sign, which is impossible since 3,7_; x¥ = Y'2_, x5, Now, let z be an
interior point of B and y e K. For small positive ¢ the points tz + (1 — t)y are
interior points of K.

LemmA 1.3. If xeO =ni3=1fii then x is an interior point of O.

Proof. There are y;—, x for j =1,2,3. We have: yi> X%yt > x> X,
y3 > x3,y3 > x! and y3 > x% There exist 0 < 1, < 1 such that z,= t,y, + (1 —t )y,
satisfy z} =x!, k=2,3. Since z3 > x® and z3 < x> there is a 0 <t, <1 such
that x = t,z, + (1 — t,)z;. So x is an interior point of the convex hull of {y, y,,
y3} and therefore of 4. But if x € O is an interior point of A then x is also an in-
terior point of O.

LemMA 1.4. If B c L is convex, x;,x,€B, x* =x% xi <xi, x{>xJ and
y satisfies ¥ = x5, ¥/ = x§ and y*=x} + x¥ — x} then: y ¢ B if and only if
BN {z: %z y>} = 4. P.S.0.

Lemma LS. Ij:xechithen there is a ye a'such that y >, x and for every
e>0, S(y,e) NA #8.

Proof. Define f(z) = min,.5, (z/ — x’). freceives its maximum in 4 at a point
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y which must be in a’. Since x € A° f(y) > 0 and therefore y —s,x. If0St<1
then ty + (1 — t)x is in A, therefore for every ¢ >0 S(y,e) N 4‘ # 9.

If x,ye L then the set {z:z = tx + (1 — 1)y, 0 £ t < 1} is denoted by [x y] and
is called an interval. x and y are called the ends of [xy] - (xy] = [xy] — {x}
Dxy) = [xy] = {y} - (xy) = [xy] — ({x} U {y}). For i =1,2,3 the following sets
are defined: D' = 4’ N 4*, where S; = {j,k}, and F' = {x:x e D', x* > ' for every
ye D'} D'is convex and compact. F'is an interval.

LemMMA 1.6. Let S, = {i,j}. If x' receives its maximum in F* at a point o, then:
« ¢ a’ if and only if A’ > A"

Proof. W.L.G.i=2 and j=3. If 4> A% then aeF'cD'c 4> c 4> If
a ¢ a*then there is an x € 4* such that x &, «. There is an & >0 such that U
=S(at,8) NA< A>. Now we show that if y € 4then y! < a'. If there isa z € A such
that z' > o' then for a small positive tu =tz + (1 — f)o satisfies u'> a! and
ueU. So we have ue D' and u' > ' which is impossible. Next we show that
y € A% implies that y? < a? Suppose that there is a ze A2 such that z> > o®. If
z' =o' then for a small positive tu = tz + (1 — t)a satisfies ue U, u' = ' and
u® > a%. So we have that ue F' and u® > «® which is impossible. If z ' < a ' then
there is a 0 <t <1 such that w =tz + (1 — f)x satisfies w'=a and w? > «?
-052 > w52 therefore w e A% but this is impossible as we have already shown.
We have shown that every y € 4 satisfies y** < a®. Since xedomg, x we have
A*c ANndomg, x = A3

The sets {A*, 4%}, {42, A%} and {4°, 4"} will be called pairs.

DEFINITION 1.7. The pair {4', 4’} intersects maximally if:

(1) A'NA#6.

Q) dna’ #¢.

The number of pairs that intersect maximally will be denoted by m(G).

LemMA 1.8. Let i #j and A r'\/ijyéﬂ. Aoi:b Al and A7 b A° if and only if
{4', A’} intersects maximally.

Proof. W.L.G. i=2and j=3.If 4> > A% or 4> > A% then a®> Na® =¢ and
therefore {42, 4} does not intersect maximally. Now suppose that A2 $ 4° and
A® $ A%, Let x? and x® receive their maxima in F' at the points a and f res-
pectively. By 1.6: A% ¢ A? implies that «ea® and A% b 4° implies that fea’.
We have(') that F* c a?Ua®and F' Nna*# 8, k =2,3. Since F' is connected
and F' Nna® and F' Na? are closed we must have (F! Na®) N(F' Na’®) =F!
Nna*Na’ 0.

From the proof of 1.8 we can conclude that: (1.9) if {A4’, 4’} intersects maxi-
mally then F* Na’ Na’ # @ where {k} = N - {i,}.

(1) Otherwise there is xe€ F1 N A2 N A3, Let z5—5,x. For small t > 0, u =tz + (1 — t)x
satisfy u!> x! and u € D1, which is impossible.
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LeMMAa L10. If i#j,x,yea', x#y and x’ = y/ then every ze A' satisfies
2/ < x' and {u:ue A u’=x’} cd'. P.S.0.

LeMMmA L11. Let S, = {i,j}. If {4’, A’} intersects maximally and x' and x’
take their maxima in F* at the points « and P respectively then F*= [« f] and
one of the following possibilities holds:

(@) a=4p, aca' Na’

(b) a#p, [l cad nd’,

(c) a#p, (@Blcd N4, aea'na’l,
(c) a#p, [«f) ca’ N4} Bea'nal

Proof. W.L.G. i =2 and j = 3. We saw in the proof of 1.8 that e F* Nna®
and fe F'Na? If « = B then (a) holds. If « # B we have the following possibil-
ities for the relative positions of a* and F': .

(1) There is no x # « in a®> NF', i.e., (28] < 4°.

(2) There is an x # « in a®> N F*,and, therefore, by I.10, F! < . And similarly
for a® and F*:

(3) Thereis no y # B in a®> NF, ie., [af) = A

(4) There is a y # B in a> NF! and therefore F'c a®.

Since F! < a?U a® (1) and (3) cannot hold together. If (2) and (4) hold together
then we have (b). If (1) and (4) hold together, then we have (c;). If (2) and (3) hold
together then we have (c;). We say that F* has a-shape if (a) holds; similarly for
(b), (c;) and (c)).

For xe A the following sets are defined: Qi(x) = {y:ye 4, y* = x}, Ty(x)
={y:ye 4,y <x'} and R(x) = A — T|(x). We remark that:

(L.12) dom Q,(x) N R(x) = dom,Q(x) N R(x),

(I.13) x ¢ A'if and only if x € Q;(x) — dom Q(x),

(L.14) x ¢ A if and only if Q,(x) N4’ = 4.

LemMA L.15. Ifxed — Al y # x, y € AN Q(x) then there is a j € S; such that
every z € A'satisfies 2/ < x7. P.S.0.

LeMMA 1.16. Let Sy = {i,j}. We denote the ends of F*by a and B such that
o' = B'. If y € A satisfies y* = o* and y' < B’ then Q(y) NA =g P.S.0.

Lemma L.17. Let S, = {i, j}. If yeF* na' Na’ and xeR,(y) — F* then
domx N Q,(y) = 4.

Proof. W.L.G. i =2 and j = 3. We denote the ends of F' by « and f§ such
that o> > B> Let xeR,(y)—F' and yeQ,() x*+x*<y*+93<y*+)°
50 xS, is impossible. If x' > y' and x4, y or x5,y then x5y or x5y
respectively, which is impossible. If x' =y* then either x’>< g2 or x> < o3, If
x> < o® then, by .16, x ¢ A3. Since y* = y® = o® > x?, if x>~ y then x>g,y, but
this is impossible. Similarly if x* < 2 then x> y is impossible.
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LeMMA 1.18. If a B< A is convex and compact then (N,v,B) is 3-P.C.G.,
B'=A'nBand B'c A'nB. P.S.0.

If B = A is convex and compact we say that B is solvable or that B has a
solution if (N, v, B) is solvable. We also write m(B) instead of m ((N,v, B)).

LemMa 1.19. If xe D* and 1€ S, then RL(x) = A' N Ry(x).

Proof. If ye A' NR,(x) then y* > x* and there is a ze 4' such that z5—g, y.
Since z*> y*zeRy(x). So we have zeR,(x) N A' = R/(x) and therefore
y € RL(x). We have shown that R} (x) > A' N Ry(x). By 1.18 R.(x) = A' NR(x),
so RL(x) = 4 NR(x).

LemMA 1.20. If xe D*— A'ﬁ leS, and {A", A'} does not intersect maximally,
then {R;(x), R} (x)} does not intersect maximally.

Proof. Since {A",A‘} does not intersect maximally, by 1.8 at least one of the
the following possibilities holds: A*N A' =8, A' > A*or A*> A' . If A* N 4' =¢
then R¥(x) NRi(x) c A*N A" NR,(x) =8. If A' > A* then R}(x) = A' NRY(x)
> A*NR(x) = RX(x). A*> 4' is impossible since x e 4' — A*

DeriNiTION 1.21. Let By, ---, B, be convex compact subsets of 4. B,,---, B, are
called independent if there exist solutions Vi, ---, ¥}, V; solution of B; respectively,
such that dom ¥V, N(|Jj=, V) =@ for k=1,--,1.

LeMMA 1.22. If B,,---, Bl are independent then there exist solutions Vy,---,V,,
V; solution of B; for i=1,---,1, such that U;=1 V;is U}=1 Bj-stable. P.S.0.

In the following three subsections we shall prove:
THEOREM. Every 3-P.C.G. G is solvable.

The proof will be by induction on m(G).
II. First part: m(G) = 0. In this subsection we show that every 3-P.C.G. G for
which m(G) = 0 is solvable. We also prove some additional auxiliary lemmas:

LemMMA IL1. Let G be 3-P.C.G. If A' N A% = A*NA%= A> N A' =@ then the
A-core is the solution of G.

Proof. Denote C = A — dom A. If x e A— C then there is a y € A that dominates
it. There is an i such that y&g x,ie., x€ A'. By L5 there is a zea' such that
zo—s,x. If 2¢ C then ze A' where I # i. There is an ¢ > 0 such that S(z,&) N 4
c A'.But S(z,e) N 4 ' @; therefore A' N\ A' # @ which is impossible. We have
shown that for every x € A — C there is a z € C such that z>x. By 2.6 C is the
only A-stable set.

ILEMMA I1.2. Let G be 3-P.C.G. If m(G) = O then the A-core is the solution of G.

Proof. If A'NA%=A2NA> =4>NA4"' =@ then by IL1 the A-core is the
solution of G. If it is not the case then, W.L.G., we assume that A2 N A3 # @. Since
{42, 4%} does not intersect maximally we have that either 4> > A% or 4% > 4°.
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W.L.G. we suppose that A°> > A>. There are three possibilities for the relative
position of A' and 4%: (a) A' N A® =g, (b) 4> > 4! or (c) 4! > A4°. In each case
we show that C, the A-core, is the solution of G. (a) A'NA*=0.If xed — C
then there is a ye A such that y > x for some i. Since 4* > 4% we may assume that
ieS,. Thereisa zea'suchthat z—5x. If i =1 then,since 4' N 47 = ¢ for
j=2,3,zeC.1f i =3 then, since a> NA’=¢and A'NA>=9,zeC. By 2.6 C
is the solution of G. (b) A® > A'. If xe A— C then there isa y e A such that Vos,X.
So there is a z € a® such that z& x. Since a® N (41U A% =@,zeC. So C is the
solution of G. (c) A > A*. The proof in this case parallels that in case (b).
Let G = (N,v, H) be 3-P.C.G.

Lemma I1.3. If EeD* — A% neD*N Q&) and U is a solution of Qu(n) then
V =U U[¢&n] is a solution of Q(&).

Proof. WL.G. k=1. y' &', n* =2 ¢* and n* 2 &; therefore (domg, [¢7]
U domg,[&n]) N[En] =0. &~ A'; therefore Q,(6) NA' =8. So domg, [¢1]
N [én] = @. Summing we have (1) dom [¢n] N [¢n] = 8. Now we show (2) Q,(%)
~ [&n] — Qy(m) = dom [&n]. Let x e Q;(&) — [én] — Q,(n). If x' = n' then there
is a y e [&n] such that y' = x'. y # x so we may assume that y* > x”. Under this
assumption we can find a z e [én] with z%° > x®2, s0 z&— x. If x* < 5’ then, since
x ¢ Q,(n), either x> <y or x> <n® and therefore xedom s, Ydom g, n. We
now prove (3) dom U N[én] =@ and dom[én] NU =@. Let xe[¢n] and ye U.
y! < x', y* = x? and y® = x* therefore x&y is impossible and if y>x then
y&s,X, but, since x¢ A, this is also impossible. Combining (1), (2) and (3) it
follows that V = U U [¢n] solves Q,(&).

LemMma I1.4. IféeD"—fi" then Q&) is solvable and if V solves it then
domV o T(&) - V.

Proof. W.L.G. k=1. Denote J=0,() ND'. Let n be a point where x'
receives its minimum in J. We show that Q{'(n) N Q{(n) =@ for all i+#j. First,
since & ¢ A', A' N Q,(&) = @. So we have Ql() = AN Q,(n) = A' N Q,(¢) = 2.
Next, since x! receives its minimum in J at 4 Q,(n) " D' = {}. ¢ A* therefore
n € Qy(n)-core. We have @4 N 03(n) = Q3(n) N Q3(m) = D' N Qi(n) = {n}, so
03(n) N Q3(n) =9. By IL.1 Q,(n) is solvable. Let U be a solution of Q,(n); by
I1.3 U U[&n] solves Q,(&). Now let ¥ be a solution of Q,(&). &€ Q,(&)-core so
¢eV. dom¢ o Ty(&) — Q4(¢) therefore domV = (Q4(8) — V) U(Ty(¢) — Q:(8)
= T1(€) -V

Lemma ILS. Let S, = {i,j}. If F*has c;-shape and pe F* N A* then there is a
solution V of Qi(u) such that V N F* = {u}.

Proof. W.L.G. i =2 and j = 3. We denote the ends of F' by « and f such that
«®> B2 Since F' has c,-shape we have (1) 4> N R («) = @ and (2) [Ba) = A°.
From (1) it follows that (3) Q2(x) = 8. We show (4) [Bu) = Q53(»). Let xe[Bu).
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x!=p!, x* < p? and x* > p°. By (2) x € A°, therefore there is a y € 4> such that
y&—s,x. For small t>0 z=1ty+ (1 — t)x satisfy z'>x!, 22> x2%and 23> 4@,
s0 ze Q3(w) and x € Q3(n). For the relative position of Q1(x) and Q3(y) we have
the following possibilities: (a) 2(x) N Q3(w) =8 or (b) Oi(w) N O3(k) = 8. If (a)
holds then by (3) 0 (1) N Q%(u) = & for all i # j. By I1.1 Q,(x) — dom Q,(u) is a
solution of Q,(u) and since pe Q,(u)-core, (Qx(n) —dom Q,(w) NF' = {u}.
If (b) then by 1.2 there is an interior point ¢ of O3(w) N O3 (). {* > u', (? < u?
and {3 > p. (e D* — A? therefore by I1.4 Q,(() is solvable. If U is a solution of
0,(0) then, by 1L3, [{u] U U solves Q,(u). Since ([(u] W U) N F' = {u} this
completes the proof.

DEFINITION I1.6. The pair {4, 4°} satisfies condition M if:

(1) {4}, A’} intersects maximally,

() F*na'na’ ¢ A* where {k} = N — {i,j}.

We now formulate the induction hypothesis:

I1.7. every 3-P.C.G. G for which m(G) =1 — 1 is solvable. Let G be 3-P.C.G.
for which m(G) = I. We have to prove that G is solvable. We distinguish between
the following possibilities:

I1.8. there is at least one pair that satisfies condition M.

I1.9. there is no pair that satisfies condition M.

III. Second part: case 11.8. W.L.G. {4?, 4°} satisfies condition M. The ends of
F! will be denoted by « and B such that «® = 2. F* na? Na® ¢ A therefore at
least one of the ends is in a*> N a® — A'. We shall prove that G is solvable when:
(IIL1) aca’Na® - A'. The proof when fea® Na® — A' is similar to that in
case (IT1.1). We shall distinguish three cases according to the three possible shapes
of F! in case (IIL.1).

IlLa. F! has a-shape. By (II1.1) and I1.4 Q,(«) is solvable and if V solves it
then (1) domV o Ty(a) — V. Since ae F* 4> N A* NR,(x) =@. By 119 R«)
N R3(«) = @, so {R3(«), R3(a)} does not intersect maximally. From 1.20 it follows
now that m(R,(«)) 1 — 1. By II.7 R, («) is solvable. If Q,(x) and R,(«) are
independent then from 1.22 and (1) it follows that 4 has a solution. If Q,(«) and
R,(x) are not independent then if V' solves Q;(«) and W solves R,(«) either (2)
domV NW # @ or 3) domW NV #@. From Ill.a and 1.17 it follows that (4)
domR,(2) NQ,(x) =@. By (4) we have that (3) is impossible. By (III.1) ae 4
— dom 4 therefore (5) ae W N V. From (2), (5) and 1.12 it follows that there is
az#ain ¥V NAY By 1.15 and due to IIl.a, we may assume that every ye A’
satisfies y2 < «2. Let { be a point where x* receives its maximum(*) in ¥V N4
IfueV NA'then (> =u?and {* 2 u® and therefore (6) dom g,( > dom g u.
ae D? — A° therefore, by I1.4, Q;(«) is solvable. If U solves Q3 () then by (4) we
have that (7) domU NV =@. We remark that (8) Q3(x) N A% = {x: x* =a?}.
Let x! receive its maximum in U N A> at the point #. We define: v= (", e — '
—¢3,¢%. By 112 and (6) we have that (9) R, (®) — dom V = Ry (o)

(2) Observe that a solution of a compact set is compact. see [3, Theorem 3].
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—dom g ¢ = Q3(@) U {x: xeRy(a), x* = {*}. By (8) we have that (10) Q,(a)
—dom U=Q,(¢)—domg,n= {x:x€Q,(«), x' = n'}. Combining (1), (9) and (10)
we have (11) A —dom(U U V) = {x:xe 4, x> 2v**}. If v ¢ A then from 1.4,
(11), (9) and (7) it follows that U UV solves A. Suppose now that ve A. We
define v, = (¢}, e—al— {3¢%. By L16 we have that (12) 8=4>NQ,
(v;) 2 42 N Q,(v). Q1(x) U Q;(0) = Ry(v) therefore by (12) and 1.12 we have (13)
dom @,(v) N(Q(®) U Q3(x)) = B. ve D* — A? therefore Q,(v) is solvable. If U,
solves Q,(v) then by (11) and (13) V U U LU U, is a solution of A.

IILb. F! has b-shape. Due to I1L.b, we have that R («) N (42 U 4A%) = & and
therefore (1) R3(«) = R3(«) = 8. From (1) it follows that (2) R{(x)NRi(a) =9
for all i # j. If x € R,(«) then x* 4+ x*< o + > therefore (3) [«f] Ndom g, R,(«)
= @. From (1) and (3) we have that (4) R,(¢) — dom R,() = [«f]. We also have
that (5) T,(0) — dom R, (a) = Ty(2)) — dom {a, B} = {x:x € Ty(®), x = a?, x> = p*}.
Define u = (e — o — 302, B°).

IILb.1. u ¢ A. By L4 we have that (6) {x:x*'=p%'} N4 =¢. By (2) and
I1.1 the R,(«)-core is the solution of R,(®). By (4), (5) and (6) we have that R,(«)
— dom R;(a) solves A.

IILb.2. pe A. peD* — A* therefore Q,(u) is solvable. We remark that (7)
0,(w) N A" < {x:x* = «*}. We distinguish several subcases of II.b.2.

IILb.2.1. There is a solution ¥; of Q,(u) such that V; N A' = @. We have that
(8) domV,; NR,(x) =@. From (5) and (8) it follows that

Vi U(R,(®) — dom R, (@)
is a solution of G.

II1.b.2.2. There is a solution ¥, of Q,(x) such that V, N A" = {u}. In this case:
Ry(a) — dom ¥, = Q3(@) U Q,(B). e D* — A%and fe D >~ A*s0 Q4(a) and Q,(B)
are solvable and if U solves Q,(«) and W solves Q,(f) then, by 1.13, e U and
BeW. Since Q3 («) = R,(B) and Q,(f) = R3(e) it follows from I.12 that

domUNW=domW NU =4.

From these results and (5) it follows that U U W U V, is a solution of G.

IIL.b.2.3. There is a solution V; of Q,(x) such that V5 N A" — {u} # @. Let x°
receive its maximum in V3 NA! at the point {- {* = y* and {* > u°. By 1.3
[ua] U Vs = V; solves Q(@). We define v = (¢!, e — ' — {3,0%). Ry(2)— dom V3
=03 U{x:xed,x522v%}. Let U solve Qy(a). domU N (Q(x) U {x:
xeA,x522v52}) =@.If v ¢ A then V; U U solves G. If ve 4 then ve D* — 4%
By 1.16 Q,(v) N 42 =¢. Q,(x) UQs(®) = Ry(v) therefore by 112 domQ,(v)
N(Q1(0) UQ5(a))=9.If W solves Q,(v) we have that V3 U U UW is a solution of G.

IlL.c. F! has cs-shape. As in IIl.a, we have that R,(«) is solvable and if Q,(x)
and R,(«) are independent then G is solvable. If Q,(«) and R,(«) are not indepen-
dent and V solves Q,(x) and W R,(«) then either dom ¥V N W #@ or dom WNV #8.

IIL.c.1. There exist ¥, and W, such that dom V, N W, # @. a € W, therefore
there must be a z # « in ¥, N A*. We have that either z* = o® or 2> = o®.
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I.c.1.1. z> = o?. In this case we have that (1) ye 4! implies y® < z°. Let x>
take its maximum in ¥, N A' at the point {. Define v=(a!,¢% e — ol —(2).
From (1) it follows that (2) R;(x) —domV, = Q,(x) U{x:xe 4, x> =5}
By IL5 there is a solution U of Q,(a) such that U N F'= {a}; it follows that (3)
domU NQ,(x)=0.If v ¢ Athen U UV, is a solution of G. If ve A then ve D?
— A%50 Q3(v) N A® = 8. Tt follows that (4) dom Qs(v) N (Q,(e) U Qy(x)) = &.
We also have that (5) dom U N Q;(v) = @. Now if U, is a solution of Q5(v) then,
combining (2), (3), (4) and (5), we have that V, U U U U is a solution of G.

I.c.1.2.- z% = a®>. We now have that y € 4! implies y? < a®. We show that we
may suppose: () there is no u € 4% such that u*=a?and u'> ' If (x) fails
then F? has b-shape and {4', 4%} satisfies condition M, so by IILb G is solvable.
We also notice that: (+*) if € 4,9* =, 9> < > and J solves Q,(9) then
J U [ad] solves Q,(«). Now if (x) holds and U is a solution of Q,(«) then dom U
N (Q1(x) U Qy(a)) = @. Let V solve Q,(«x). We denote by u(V) the point where x>
takes its maximum in 4! N V. The point where x? takes its maximum in A N
{x:x' =a'} is denoted by {. U denotes a fixed solution of Q,(x). We remark
that ae U.

II.c.1.2.1. There is a solution V; of Q;(«) such that g* < u3(V,). Define v
=(a',e—a' — y3(Vy), 1*(V))). We have that R,(a) —dom V; = Q4(x) U{x:
xed, x5*2v5?}. If v ¢ A then U UV, is a solution of G. If ve 4 then ve D2
— A% Let U, solve Q,(v). domU; N(Q () UQs(@)=8,s0 UUU, UV, is a
solution of G.

IIl.c.1.2.2. Every solution V of Q;(x) satisfies u(V)< B> and there is a
solution V; of Q,(«) such that p*(V;) = B°. Bea®* N D? therefore Q,(B) is sol-
vable. If U, solves Q,(B) then U; N 4*={B} and dom U, N(Q,(u(Vy)) U Q;(a))
=@. Let U, be asolution of Q,(u(V;)). From (x*) it follows that U, N A=
{u(v1)}. So we have that U U U, U U, is a solution of G.

IIL.c.1.2.3. If ¥ solves Q,(x) then p*(V) < B°.

Ml.c.1.2.3.1. {* = B> Define v = (e — a®> — 3 o?, °). By 1.17 Q,(x) "dom
Ry(2) = dom[af] N Q (), so dom Ry(x) N{x:xed, x* 2V} =¢. Ifv¢da
and U, solves Q,(f) then U U [«f] U U, solves G. If ve 4 let U, be a solution
of Q;(v). By (*) and the definition of U, U, N A' = @. So in this case U U U,
VU, U[ap] solves G.

ILc.1.2.3.2. {3 < B>, Definev=(e—a®>—(3 a2 (3. By IL5 there is a
solution U, of Q,({) such that U; NF' = {{}. If v¢ 4 then UV U, U[al] is a
solution of G. If ve A — A" and U, solves Q,(v) then UU U, UU, U[a] is a
solution of G. If v € A" then U, U U, U U is a solution of G.

IIL.c.2. If V solves Q,(«) and W R, («) then domW NV # @ and domV "W
= @. By L.17 we have that dom (R,(x) — [%)) N Q,(a) = 8. By L.19 R¥(a) = 43
N R,(®). [Bx) = A® therefore [Bx) = R} (). So we conclude that

) dom (Ry(a) — dom R, («)) N Q,(a) = @.
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Since F' has c;-shape we have also that 42 N R(¢) = @. If {4', 4%} does not
intersect maximally then, by 1.20, {R}(«), R}(«)} does not intersect maximally
and we have that m(R,(«)) = 0. By 11.2 the R,(x)-core is the solution of R,(x)
which, by (1), contradicts IIL.c.2. So {4', 4} intersects maximally. The x?
coordinate of F? will be denoted by d.

IIL.c.2.1. d < «®. We denote the ends of F* by y and § such that &' > y'. We
remark that 6 e D> — A% So Q,(6)is solvableand if U solves it then dom U > T,(6)
— U and dom UNRy(S) = B. Denote v=(a',d,e—d—a') and P = {x:
x€ A, x5 = v5*}. We remark that P' N P/ = @ for all i # j and that (P — dom P)
N ((«f] Y[79)) = 8. So(®) P — dom P solves P and

dom (P — dom P) N(Q,(6) U Q,(a)) = @.

Summing we have that U; = U U(P — dom P) solves R;(x) and that dom U, N
0,(0) = @. Since this result contradicts III.c.2 d < «® is impossible.

Il.c.2.2. d = o®. If F* has a-shape or b-shape then {4%, 4%} satisfies condi-
tion M and by Ill.a or IIL.b G is solvable. It remains only to complete the proof
when F? has c; or c,-shape.

II.c.2.2.1. y' <a’ In this case F 2 has cs-shape. Let # satisfy n2=a? and
a! > 7' > max. (y*,e — «® — f) and U, be a solution of Q,(n). U, = [an] VU,
solves Q,(x). Let { e (] N A, U; be a solution of Q,(¢) and U, a solution of
03(0). Us=Uz; VU, U[al] is a solution of Ry(x). But dom U, NUs# ¢
contradicting IIl.c.2, so II1.c.2.2.1 is impossible.

111.c.2.2.2. ! = a'. In this case F* has c,-shape. By IL5 there exist solutions
U, of Q5(«) and U, of Q,(«) such that Uy, NF*={a} =U,NF. U=U, VU,
is a solution of R,(«) but(®*) dom U N Q,(a) = # contradicting III.c.2.

IIL.c.2.2.3. ' > &', In this case F> has c,-shape and yea' Na® — 4% Let U
solve Q,(7). U; = U U (Q;(a) — dom Q(«)) solves R,(«) but domU; N Q;(x) =&
which is impossible.

I1.c.2.3. d > o®. In this case we show that A' N A> "Ry () =@. It follows
that {R3(«), R3(®)} does not intersect maximally which is impossible as we have
already seen. Suppose that A' N4> N R,(a) # 8. Let xe A* N A>NR,(a).
x! = al. Since(*) aea® x* <a®. Let zea® Na®> NF? and y be an interior point
of AN A> Thereisaue[yz] N AN Asuch that u?> o2, So there is a w e [ux]
for which w? = «® we A' N A%, If w' = « ' then a € A® and if w® = o> then a e A®.
Since both cases are impossible we must have ¢ = A'NnAn Ry(®).

IV. Third part: case IL.9.

IV.1. m(G) £2. W.L.G. {42, 4%} does not intersect maximally.

IV.1.1. 4% N A% = g. We shall show that m(G) = 0. If m(G) > 0 then, W.L.G.,
{A', A%} intersects maximally. Let zea' Na® N F ?and y be an interior point of
A'N 43 [yz) c A% If ze A” then we have A2 N A% # @ which is impossible. If

(3) See L.17. . .
(4 If x2 = x2 then aSs = aSs and x€ 43 imply ae 43 which is untrue.
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z ¢ A? then {A', 4°) satisfies condition M, which is again impossible. Therefore
{4*, A%} does not intersect maximally.

IV.1.2. A% > A2 If {A', A%} intersects maximally then there is a zea' Na®
A F2. a®> N A% = ; therefore z ¢ A%. But since we have a'Nna3NF2%c 42
{A', A%} cannot intersect maximally.

IV.12.1. A'NnA®=0. A>NA'cA' NA*c 4* N 4® =9, 50 m(G)=0.

1V.1.2.2. 4% > 4. We denote C = A4 —domA. If xe A — C then there is a
y € A such that y>—s_x. So there is a z € a ® such that z&-x. a®> N(A' UA4?) =¢
therefore z € C. By 2.6 C is a solution of G.

1V.1.2.3. A 5 4%. We have A > 4% > 4% > A%, so m(G) = 0.

1V.1.3. A® > 43, The proof in this case parallels that in IV.1.2.

IV.2. m(G) = 3. We denote F*=[o,8,] and D = [)i.,4"

LemMMA 1V.2.1. Under the assumptions of 1V.2 we can find i and k such that
S, = {i»j} and:

() o2 fl

) ¢yea’na’,

(3.2) x’ takes its maximum in {x:x' —ak} ND at a point € a® such that
every yeA" that satisfies y' =97 and y'>9"is in A, or

(3.b) X' takes its maximum in {x:x’ = «/} N D at a point pea* N A’ and F*
has c;-shape.

Proof. F'=[a,8,].W.L.G.a?2= BZ.Wealso suppose that a € a*Na>.Ifa¢a’ N a®
then fea®Na® and the proof is not altered much. We now considcr F3.

1V.2.1.1. Every y € F3 satisfies y < al. Let & be the point where x> takes its
max1mum in {x x*=a2} ND. 9 #ay. We show that 9 e 42, If F3= [oz3ﬁ3] and

ab > B1 then o >9° since & ¢ F>. If a >9' then o353, and if ' = o then
there is a ue[o;0;] such that ub—g,&. Now if $€a® then F? has c,-shape and
dea' and ifd e A° then it follows from 1.3 that e a’. So in this case we can
choose k=1and i =2.

1V.2.1.2. Thereis a y € F3such that y >= a?. Let ¢ = y. If F> has a-shape then
9 e al and there is no u € A' that satisfies u®> = 9> and u? > 9. So we can choose
k = 1and i = 2. If F2 has not a-shape then 3 > a3. If F> has b-shape and y = 8,
then there is no u € A* such that u> =93 and u?>9? and we can choose k=1
and i =2. If y # B, then we have that B;ea®* Na' and every xeF' satisfies
x* < B2 By IV.2.1.1. we may take k=3 and i=2. If F> has c,-shape then
decalandif ue A, u®=9%and u?>9*then ue 4% So we can take k=1 and
i =2. If F* has c,-shape and y = f; we choose k = 1 and i = 2. If y # f; then
we have that f, €a®Na’ and every x € F ! satisfies x*> < f2. By IV.2.1.1. we can
choose k=3 and i = 2.

IV.2.1.3. Every y e F? satisfies y2 > o. If F* has a, b or ¢,-shape then we have
that B2 = o2, B €a? Na' and every x € F' satisfies x> < 3. By IV.2.1.1, we can
choose k = 3 and i = 2. Now suppose that F> has c,-shape. Let x take its maxi-
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mum in D N {x: x*> = a3} at the point p. p # a;. We shall show that pe A' N 4.
p* =a} < B3 p' > o} therefore p® <aj=p3. So B;>s,p. We have also that
al > p! therefore thereis a u € [o;3] such that u—s,p- It follows from 1.3 that
p€a’ Summing we have: a) = B3, a;ea’Na' and x' takes its maximum in
D N{x:x* =a}} at a point pea’ N A2. So we can take k = 3 and i = 1.

We now prove that G is solvable in case IV.2. W.L.G. the results of IV.2.1 hold
fork=1and i=2.

IV.2.2. (3.a) holds in IV.2.1. We remark(®) that if ze A N Q,(9) then z3 =
If there is a z € A" such that z* = 9> and z?>9? then F> has c,-shape. By Lemma
IL.5 there is a solution ¥ of Q,(9) such that ¥ N F? = {#}. So we can always find
a solution ¥, of Q,(¢) such that V; N A' = {#}. Similar reasoning shows that
there is always a solution ¥V, of Qs(a;) such that ¥, N 4% = {«,}.

IV.2.2.1. 9° > B]. We define v = (a}, e — af —9°,9%). Suppose ve A. We have
that Q,(v) N A%=. So if U is a solution of Q,(v) then V, UV, UU U [da,]
solves G. If v ¢ A then V; UV, U[¥«a,] solves G.

IV.2.2.2. 9 = B3.1f Uisasolution of Q,(f8,) then ¥, U ¥, U U isasolution of G.

1V.2.2.3. 9* < B}. Let x* take its maximum in 4* N {x:x' =«}} at (. We
define pu = (e — af — B3, a?, B3). Suppose (= pand pe A. In this case if W is a
solution of Q,(8,) and W is a solution of Q,(x) then ¥, UW U W, U F! solves G.
If u¢ A then V, UW UF'isa solution of G. If {*< B3 then F! has c;-shape.
We define nn = (e — {* — 2,0, (?). By IL5 there is a solution U of Q,(¢) such that
{{}=UNF'.1fn¢ A then U UV, U[{a;]solves G.Ifne A — A' and U, solves
Q.(n) then V, WU U U, U [{«,] is a solution for G.If ne A' then n =9 and V,
UV, UU is a solution of G.

1V.2.3.(3.b) holds in IV.2.1. So F* has c;-shape. By IL5 there is a solution
V of Qy(«;) such that ¥ N F! = {a,}. Next we show that there is a solution V; of
0,(p) such that V; N A" = {p}. If Q,(p) N A' = {p} this follows from the fact
that p belongs to every solution of Q,(p). If there is x € Q;(p) N A*, x # p, then
xea' and(5) x?= p? Using 1.10 and observing that p e A> we see that F? has
C;-shape and p € F2. 115 yields a desired V;. Now define v = (1, p2, e — a! — p?).
Observe that Q;(v) N4> =@. If ve 4 and V, is a solution of Q4(v) then V UV,
UV, U [pa,] is a solution of G. If v¢ A then ¥V U V; U [pa,] solves G.
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(%) Suppose thereisze A1 NQ; (F) withz3 > $3.a;1 € Al so there is ue A1 with u2 >al=92,
For small t > 0 y = tu + (1—¢)z satisfy y51>951 and ye A! which is impossible since & € al.
() By an argument similar to that in footnote (5).



