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An extension of Von Neumann Morgenstern solution theory to cooperative

games without side payments has been outlined in [1]. In this paper we revise

some of the definitions given in [1] and prove that in the new theory every three-

person constant sum game is solvable (see [1, Theorem 1]). Other results that

were formulated in [1] had already been proved in [2]. [1 ; 2] are also necessary

for a full understanding of the basic definitions of this paper.

1. Basic definitions. If N is a set with n members, we denote by F^the n-dimen-

sional euclidean space the coordinates of whose points are indexed by the members

of N. Subsets of N will be denoted by S. If x e EN and i e N, x' will denote the

coordinate of x corresponding to i; xs will denote the set {xl: ieS}. The super-

script JV will be omitted, thus we write x instead of xN. We write x s ^ y s if x ' 2: y'

for all ieS; similarly for > and = . 0 denotes the empty set.

Definition 1.1. An n-person characteristic function is a pair iN,v) where N is a

set with n members, and v is a function that carries each S <= N into a set v (S) <= EN

so that

(1) viS) is closed,

(2) v (S) is convex,

(3) vi0) = E\
(4) if xeviS) and xs ^ y s then ye viS).

Definition 1.2. An n-person game is a triad iN,v,H), where iN,v) is an n-

person characteristic function and H is a convex compact subset of t>(iV).

We notice that this definition is not identical with that given in [1 ; 2]. In the

first place v is not assumed to be superadditive, i.e., the condition: viSy US2)

=> viSy) C\viS2) for every pair of disjoint coalitions Sy and S2 is dropped.

Secondly H need not be a polyhedron.

2. Solutions.   Let G = (N, v, H) be an n-person game.

Definition 2.1. Let x,yeEN, S ^ 0. x dominates y via S, written x^-sy, if

x e d(S) and xs > ys.

Definition 2.2. x dominates y, written x ^y, if there is an S such that x J=~s y.

For xeF^the following sets are defined: domsx = {y : x^sy} and dorn x = {y:

x^-y}.LetK <=EN. We define domsK = |JX6KdomsxanddomK = (JxeKdomx.
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Definition 2.3. V is K-stable if V = K-dom V.

Definition 2.4. The K-core is the set K-domK.

We use the following abbreviation: P. S.O.—the proof, which is straight-

forward, will be omitted.

Proposition 2.5. Every K-stable set contains the K-core. P.S.O.

Proposition 2.6. If for each xeK ndomK there is a yeK-domK such

that y £—x then the K-core is the only K-stable set. P.S.O.

We denote : vl = sup,, 6 „({¡})X;'.

Definition 2.7. x is individually rational if xl 2: v' for all i e JV.

Definition 2.8. x is group rational if there is no y e H such that y > x.

We denote: A = {x:xeH, x is individually rational} and A = {x:xeÀ, x is

group rational}.

Proposition 2.9. K is Astable if and only if it is Astable.

Proof. Let K be ^-stable. We show firstly that (1) A - A c domK. If xe

À - A then there is a y0 e À such that y0 > x. Define f(y) = minieJV (yl - x').

Since / is continuous and Ä is compact / receives its maximum in A at a point z,

which must be in A. By 1.2 z ev(N). f(z) =/(j>0); therefore z > x. We have that

zy-Nx and if wj^z then w^x. If zeK then xedomK. If z e dom X then there is

a w0 e K such that w0<>- z and therefore w0J>-x,soxe dom fC. From (1) it follows

that vi-dom K = A—dom K and therefore K is 4-stable. Now, let K be bi-

stable. If x6^4 — A we define z as before and we see that zeAcKKJ domK

implies that xedomK. We conclude that (1) holds and therefore K = A—dom K

= Ä-domK, i.e., K is A stable.

Definition 2.10. A solution of G is an A-stable set.

If G has a solution we say that G is solvable.

Theorem 2.11. Every two person game has a unique solution, consisting of

all of A. P.S.O.

Definition 2.12.   G is constant-sum if H is contained in a plane

Z x' = e.

3. Three-person constant sum games.

I. Auxiliary lemmas. We use the following abbreviations: 3-P.C.G. —

three-person constant sum game, W. L. G. — without loss of generality.

Let G = (N,v,H) be 3-P.C.G. We denote the members of JV by the first three

positive integers and set S¡ = JV - {¿} for i = 1,2,3. Let xeH. We denote:

Z?= yx'=e and L = {y: Z?= i y '= «}. We have that Ä = {x:xeH, xl ̂  t/',

i = 1,2,3} = A So A is a convex compact subset of L. Domination between
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points of A is possible only via the S¡, i.e., if x, y e A and x^sy then S is one of the

S¡. For a subset B of L and i e N the following sets are defined: Bl = B r\v(S¡),

È' = B' n dorn S.B'' and b' = Bl - B\

Lemma 1.1. If B is convex then B' is convex.

Proof. B' = B rw(Si) is convex. If x1,x2eB'then there are yl,y2eB' such

that yj^s^j fox j = 1,2. If 0< t < 1, x = ixx + (1 - i)*2 and J = 'J'i + (I-O.K2

then x.yeB' and y ^-S| x, so x e B'.

We remark that A' is convex and compact, A' is convex and a1 is compact.

Let xeL and e > 0. The set {y.yeL, Z,ii(y'- x1)2 < s2} is denoted by

S(x,e). x is an interior point of a subset B of L if there is an 8 > 0 such that

S(x,e) c B.

Lemma 1.2. If B cz L is convex and K = BlnBJ^0, i^j, then K contains

an interior point.

Proof. W.L.G. i = 1 and ; = 2. We show firstly that K # 0 implies that B

contains an interior point. If B has no interior points then there are points xx and

x2 such that every y e B can be written as y = txx + (1 — f)x2, — 00 < t < 00.

Let xeK. x = t0xx + (1 — f0)x2. There are y¡ = ttxx + (1 — t¡)x2, y¡^Si* f°r

/ = 1,2. We have y2> x2and y\> x3 i.e., ^x2 + (1 - tx)x\ > r0x2 + (1 - r0)x2

and i^i + (1 - it)x| > t0x\ + (1 - r0)x2J. So (fj - i0)(x2 - x2) > 0 and (tx - t0)

(x\ — x2) > 0. Therefore sgn(x2 — x2) = sgn(xi — x2). In the same way y2^-s2x

implies that sgn (x\ — x2) = sgn(x¡ — x2). So the three differences xk — x\ have

the same sign, which is impossible since Zt3= x x\ = Zt3= 1 x\. Now, let z be an

interior point of B and yeK. For small positive t the points tz + (1 — t)y are

interior points of K.

Lemma 1.3. IfxeO =(~]f=1A'then x is an interior point of 0.

Proof. There are y^g.x for j = 1,2,3. We have: y\ > x2,y\ > x3,y\ > x1,

y\ > x3,y\ > x1 and y\ > x2. There exist 0 < tk < 1 such that zk= tkyt +(l — tk)yk

satisfy zkl = x1, k = 2,3. Since z\ > x3 and z\ < x3 there is a 0 < tx < 1 such

that x = txz2 + (1 — tx)z3. So x is an interior point of the convex hull of {yx, y2,

y3} and therefore of A. But if x e O is an interior point of A then x is also an in-

terior point of 0.

Lemma 1.4. If B <=. L is convex, xx,x2 eB, x\ = x2, x\ < x\, x{ > x{ and

y satisfies y' — x\, yJ = x{ and yk = x\ + xx — x2 then: y f B if and only if

Bn{z: zSk = ySk} = 0. P.S.O.

Lemma 1.5. Ifxe A'then there is a ye a1 such that y ^-s. x and for every

e>0, S(y,e)nii#0.

Proof. Define/(z) = minjeSi(zJ — xJ)./receives its maximum in A' at a point
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y which must be in a'. Since x e Â'fiy) > 0 and therefore y ^Si x. If 0^ t < 1

then ty + (1 — t)x is in A\ therefore for every s > 0 Siy, e) n .4' ^ 0.

If x,yeL then the set {z: z = tx + (1 - t)>>, 0 ^ í ï£ 1} is denoted by [xy] and

is called an interval, x and y are called the ends of [xy] ■ (xy] = [xy] — {x}

" \xy) = [xy] - {y} • ixy) = [xy] — ({x} U {y}). For i = 1,2,3 the following sets

are defined : D' = A3 n A*, where S¡ = {j, fe}, and F' = {x : x e D', x' ja / for every

y e D'}- D' is convex and compact. F'is an interval.

Lemma 1.6. Let Sk = {i,j}. If x' receives its maximum in Fk at a point a, then:

a $ aJ if and only if A' => A'.

Proof. W.L.G.i = 2 and j = 3. If Â3 => A2 then aeF1 c D1 <=. A2 c À3. If

a $ a3 then there is an xeA3 such that x ^-S3a. There is an g > 0 such that U

= Si<x,e)C\AcA3. Now we show that if y e A2then y1 ^ a1. If there isaze^42 such

that z1 > a1 then for a small positive ft/ = tz + (1 — i)<* satisfies »Sa1 and

m e U. So we have uefl1 and u1 > a1 which is impossible. Next we show that

ye A2 implies that y2 <¡ a2. Suppose that there is a zeA2 such that z2 > a2. If

z1 = a1 then for a small positive tu = tz + (1 — r)oe satisfies u 6 U, u1 = a1 and

u2 > a2. So we have that u e F1 and u2 > a2 which is impossible. If z ' < a x then

there is a 0 < t < 1 such that w = tz + (1 — i)x satisfies w' = a' and w2 > a2

•aS2 ̂  wS2 therefore we>42, but this is impossible as we have already shown.

We have shown that every ye 4 2 satisfies yS3 ̂  as\ Since aedomS3 x we have

A2 c Af\ domS3 x cz À 3.

The sets {A1, A2}, {A2, A3} and {A3, A1} will be called pairs.

Definition 1.7. The pair {A',Aj} intersects maximally if':

(1) À1 n iJ' 5¿ 0.

(2) a! n aJ" t¿ 0.

The number of pairs that intersect maximally will be denoted by miG).

Lemma 1.8. Let i #7 and A' C\A' #0. A1 dp ̂  and A' is? A1 if and only if

{A',AJ} intersects maximally.

Proof. W.L.G. i = 2 and j = 3. If À3 => A2 or Â2 => A3 then a2 C\a3 = 0 and

therefore {A2, A3} does not intersect maximally. Now suppose that A2 dp A3 and

À3 dp A2. Let x2 and x3 receive their maxima in F1 at the points a and ß res-

pectively. By 1.6: A2 d: J3 implies that aea3 and ^42 dp A3 implies that /Jea2.

We haveX1) that F1 c a2 Ua3 and F1 Oa* # 0, k = 2,3. Since F1 is connected

and F1 na3 and F1 Ha2 are closed we must have (F1 C\a2) niF1 Ha3) = F1

na2na35¿0.

From the proof of 1.8 we can conclude that: (1.9) if {A\ AJ} intersects maxi-

mally then Fk na' n aJ # 0 where {k} = N - {i,;}.

(0 Otherwise there is xe F1 n À2 n ^Í3. Let z^s2*- F°r sma11 ' > °> " = tz + 0 — 0*

satisfy h^x1 and u eD1, which is impossible.



284 BEZALEL PELEG [February

Lemma 1.10. If i^j,x,yea\ x # y and xJ = y3 then every zeAi satisfies

z1 = xJ and {u:ueA\u3=x3}c a\ P.S.O.

Lemma 1.11. Let Sk = {i,j}. If {A', A3} intersects maximally and xl and x3

take their maxima in Fk at the points a and ß respectively then Fk= [aß} and

one of the following possibilities holds:

(a) a = ß, aea'na3

(b) a^ß, [<xß}cai r\a3,

(Cj)oijt=ß, (a/3] ca'nÀ3, ixe a'n a3,

(c,) a=£ß, \ßß)ca3 r\Al, ßea'na3.

Proof. W.L.G. i = 2 and j = 3. We saw in the proof of 1.8 that a e F1 n a3

and ßeF1 C\a2. If a = ß then (a) holds. If a # ß we have the following possibil-

ities for the relative positions of a3 and F1 :

(1) There is no x # a in a3 nF1, i.e., (aß} c A?.

(2) There is an x ^= a in a3 OF1,and,therefore, by 1.10, F1 c a3.And similarly

for a2 and F1 :

(3) There is no y # /? in a2 n F1, i.e., [a/3) c= A2.

(4) There is a j; ^ /? in a2 OF1 and therefore F1 c a2.

Since F1 <= a2u a3 (1) and (3) cannot hold together. If (2) and (4) hold together

then we have (b). If (1) and (4) hold together, then we have (cf). If (2) and (3) hold

together then we have (c¡). We say that Fk has a-shape if (a) holds; similarly for

(b), (c,) and (c,).

For xeA the following sets are defined: Q,(x) = [y.yeA, ySt ^ xs'}, T,(x)

= {y\yeA,yl < x'} and R,(x) = A- T,(x). We remark that:

(1.12) dom Q,(x)nRi(x) = dom SlQ,(x) nR,(x),

(1.13) x i A1 if and only if x e Q,(x) - dom Q,(x),

(1.14) x $ À1 if and only if Q,(x) C\Ai = 0.

Lemma 1.15. Ifxe A - A \ y # x, y e A'O Q,(x) then there is ajeS, such that

every ze A'satisfies z3 _ x3. P.S.O.

Lemma 1.16. Let Sk = {i,j}. We denote the ends of Fk by a and ß such that

a' = ß'. If y e A satisfies yk = ak and y' < ? then Q,(y) n A1 = 0. P.S.O.

Lemma 1.17. Let Sk = {i,j}. If yeFk n a' n a3 and xeRk(y)- Fk then

dom x O Qk(y) = 0.

Proof. W.L.G. i = 2 and j = 3. We denote the ends of F1 by a and /? such

that a2 = j?2. Let xeÄ^-F1 and yeQy(y)-x2+x3^y2 + y3^y2 + y3

so x^Slj> is impossible. Ifx1 > y1 and x^-S2.y or x^-S3y then x^-sj or x^-S37

respectively, which is impossible. If xl = yl then either x2< ß2 or x3 < a3. If

x3 < a3 then, by 1.16, x £ A3. Since y3 = y3 = a3 > x3, if x^- y then x^S3j>, but

this is impossible. Similarly if x2 < ß2 then x^- y is impossible.
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Lemma 1.18. If a B c A is convex and compact then (N,v,B) is 3-P.C.G.,

Bl = A1 OB and Èl c À1 C\B. P.S.O.

If B c= A is convex and compact we say that B is solvable or that B has a

solution if(N,v,B) is solvable. We also write m(B) instead of m ((N,v,B)).

Lemma 1.19. IfxeDkand I e Sk then R'k(x) = Â' r>Rk(x).

Proof. 1/ y e À1 n Rk(x) then yk ̂  xk and there isa. zeA1 such that z£—Sl y.

Since zk > ykze Rk(x). So we have z e Rk(x) n A1 = Rfc' (x) and therefore

yeR'k(x). We have shown that R¡,(x) zo À' r\Rk(x). By 1.18 R'k(x) <= A1 r\Rk(x),

so Â'k(x) = Àl r\Rk(x).

Lemma 1.20. If xeDk— Ak, leSk and {Ak,Al } does not intersect maximally,

then {Rl(x),Rk(x)} does not intersect maximally.

Proof. Since {Ak,A'} does not intersect maximally, by 1.8 at least one of the

the folio wing possibilities holds: Àkr\Àl = 0, À1 => Akor Àkzo A1 .lfÀknÀl =0

then Rkk(x) n Rlk(x) <= Àk n À1 n Rk(x) = 0. If A' => ¿* then R'k (x) = i' n Rt(x)

=> ̂4* n i?t(x) = R*(x). .4 *=> i4' is impossible since xeA1 — Ak.

Definition 1.21. Let Bx,--,Bl be convex compact subsets of A. Bx,--,Bl are

called independent if there exist solutions Vx, —, V,, V¡ solution of B¡ respectively,

such that dom Vk r\(\JlJ = x Vf) = 0 for k = 1, -, I.

Lemma 1.22. If Bx,--, Bl are independent then there exist solutions Vx,---,Vlt

Vi solution  of B¡ for  i = 1, —, /, such that (JJ~i Vj is U)= » Brstable. P.S.O.

In the following three subsections we shall prove :

Theorem. Every 3-P.C.G. G is solvable.

The proof will be by induction on m(G).

II. First part: m(G) = 0. In this subsection we show that every 3-P.C.G. G for

which m(G) = 0 is solvable. We also prove some additional auxiliary lemmas :

Lemma ILL Let G be 3-P.C.G. If À1 nÀ2 = À2C\À3 = Â3 n À1 = 0 then the
A-core is the solution of G.

Proof. Denote C = A — dom A. If x e A — C then there is a y e A that dominates

it. There is an i such that y^-Six, i-e-> xeA'. By 1.5 there is a zea1 such that

z (^-s,*- If z # C then z e /I ' where Z # i. There is an e > 0 such that S(z, e) O A

c A'. But S(z,s) C\A '#0; therefore A1 (~\Al #0 which is impossible. We have

shown that for every xeA — C there is a z e C such that z^-x. By 2.6 C is the

only /1-stable set.

ILemma II.2. Let G be 3-P.C.G. Ifm(G) = 0 then the A-core is the solution ofG.

Proof. lfÂ1r\À2=Â2r\À3 =Â3r>Â1 = 0 then by II. 1 the 4-core is the

solution of G. If it is not the case then, W.L.G., we assume that A2 C\A3^ 0. Since

{A2, A3} does not intersect maximally we have that either Â3 => .42 or ^42 = A3.
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W.L.G. we suppose that A3 => A2. There are three possibilities for the relative

position of A1 and A3 : (a) À1 n Â3 = 0, (b) À3 => A1 or (c) À1 => v43. In each case

we show that C, the ,4-core, is the solution of G. (a) A1 n A3 = 0. If x e A — C

then there is a ye A suchthaty^Sixf°rsomei- Since A3 => A2 we may assume that

i e S2. There is a z e a 'such that z^~s.x. If i = 1 then, since A1 d AJ = 0 for

.7 = 2,3, zeC. If i = 3 then, since a3 ni2 = 0and À1C\À3 = 0, zeC. By 2.6 C

is the solution of G. ib) A3 => A1. \f x e A — C then there is a y e /I such that y ̂ -S3x.

So there is a zea3 such that z'p-x. Since c^níyí1 ui2) = 0,zeC. So C is the

solution of G. (c) A1 =i A3. The proof in this case parallels that in case (b).

Let G = (N,t;,/i)be3-P.C.G.

Lemma II.3. // ¿j e Dk - Â\ n e Dk n ßt(£) and U is a solution of Qkin) then

V = U U [¿ft] is a solution of Qki£).

Proof. W.L.G. fe = l. rf^L?, n2^? and rj3^Ç3; therefore (domS3[<ft]

U domS2[<ft])n[<ft] = 0. l--Ay; therefore ß1(£)ni1=0. So domSl [^]

n [¿ft] = 0. Summing we have (1) dorn [¿ft] n [¿ft] = 0. Now we show (2) ßt(0

- [#/] - ôifa) «= dorn [<ft]. Let x e ß^) - [fr] - Qyin). \fxl^nl then there

is a y e [¿ft] such that y1 = x1. y ^ x so we may assume that y2 > x2. Under this

assumption we can find a z e [¿ft] with zs¡ > xs\ so z^~x. If x1 < n1 then, since

x $ Qyil), either x2 < n2 or x3 < n3 and therefore x e dorn S3?; U dorn Sz r¡. We

now prove (3) dorn U n [¿ft] = 0 and dom [¿ft] n Í7 = 0. Let x e [¿ft] and y e U.

y1 g x1, y2 ^ x2 and y3 2: x3 therefore x^-y is impossible and if y^-x then

y^-Slx, but, since x^/i1, this is also impossible. Combining (1), (2) and (3) it

follows that V = U U [¿ft] solves ß^).

Lemma II.4. If £eDk — Ak then QkiÇ) is solvable and if V solves it then

dom V => TkiO - V.

Proof. W.L.G. k = 1. Denote J = ß^) HD1. Let í| be a point where x1

receives its minimum in J. We show that Q\in) n ß{(f?) = 0 for all i # j. First,

since i $ A\ À1 O Q¿£) = 0. So we have ßj(i/) ci'n Q^n) <=. A1 n Qx(i) = 0.

Next, since x1 receives its minimum in J at n Qyin) nD1 = {n}. n^A1 therefore

r, e Qyir,)-core. We have ßfo) n ßfo) <= ß2(>/) O ßfo) = D1 n ß^/j) = {rç}, so
ßiOO <~> ßi(>?) = 0- By Hl ßi(»7) is solvable. Let U be a solution of Qyin); by

II.3 U U [¿ft] solves ß^). Now let F be a solution of Qyi£). ¿j e ßt(0-core so

{67. dom^TuCÖ-ßiCÖ therefore dom F =s (ß^) - F) U(T^) - Qfâ)
= T^í) - K

Lemma U.S. Leí St = {¿J}. If Fkhas c¡-shape and peFk r\A then there is a

solution V ofQiip) such that V C\Fk = {p}.

Proof. W.L.G. i = 2 and j = 3. We denote the ends of F1 by a and jS such that

a2 > ß2. Since F1 has c3-shape we have (1) À2 n/^fa) = 0 and (2) [ßa) e A3.

From (1) it follows that (3) ß2(/i) = 0. We show (4) [p» c ß|(ju).   Let   x e [p».
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x1 = p.1, x2 < p2 and x3 > p3. By (2) x e A3, therefore there is a ye A3 such that

y^S3x. For small t > 0 z = ty + (1 — t)x satisfy z1 > x1, z2> x2and z3 > p3,

so ze Ql(p) and x e 62(ju). For the relative position of Q\(p) and Q\(p) we have

the following possibilities : (a) Q\(p) n ß2(/i) =0 or(b) ß2(/t) n ß2(/i) # 0. If (a)

holds then by (3) Q2 (p) O QJ2(p) = 0 for all i + j. By II. 1 Q2(p) - dom ß2(/x) is a

solution of ß2(/i) and since peQ2(p)-coxc, (Q2(p) - dorn ß2(/i)) HF1 = {p}.

If (b) then by 1.2 there is an interior point Ç of ß2(/x) n ßf(/i). C1 > /t1, C2 < M2

and £3 > p3. Ç e D2 - /42, therefore by II.4 ß2(£) is solvable. If U is a solution of

ß2(Q then, by 11.3, [f/z] U C/ solves ß2(/i). Since ([&] U U) n F1 = {/*} this

completes the proof.

Definition II.6. The pair {/4',/f} satisfies condition M if:

(1) {A1, A1} intersects maximally,

(2) Fkr\alnaJ <\z ¿* where {fc} = JV - {i,j}.

We now formulate the induction hypothesis :

11.7. every 3-P.C.G. G for which m(G) g I - 1 is solvable. Let G be 3-P.C.G.

for which m(G) — I. We have to prove that G is solvable. We distinguish between

the following possibilities:

11.8. there is at least one pair that satisfies condition M.

11.9. there is no pair that satisfies condition M.

III. Second part: case II. 8. W.L.G. {^2,^3} satisfies condition M.Theendsof

F1 will be denoted by a and ß such that a2 ^ ß2. F1 n a2 n a3 d: i1 therefore at

least one of the ends is in a2 n a3 — A1. We shall prove that G is solvable when :

(III.l) aea2 Ha3 - Â1. The proof when ßea2 Ha3 - À1 is similar to that in

case (III.l). We shall distinguish three cases according to the three possible shapes

ofF1 in case (III.l).

Ill.a. F1 has a-shape. By (III.l) and II.4 Qy(a) is solvable and if V solves it

then (1) dom V => Ty(a) - V. Since aeF1 À2 C\A3 nR1(a) = 0. By 1.19 A\(a)

n R\(a) = 0, so {R2y(a), R3(a)} does not intersect maximally. From 1.20 it follows

now that m(Ry(a)) _ I - 1. By II.7 Rj(a) is solvable. If Qy(a) and Rt(a) are

independent then from 1.22 and (1) it follows that A has a solution. If Qy(a) and

Ry(a) are not independent then if V solves Qy(a) and W solves R^a) either (2)

dom V n W ¿ 0 or (3) dom If n F # 0. From Ill.a and 1.17 it follows that (4)

domRjia) nß1(a) = 0. By (4) we have that (3) is impossible. By (III.l) ae A

- dom A therefore (5) ae W n V. From (2), (5) and 1.12 it follows that there is

a z 5¿ a in V nA1. By 1.15 and due to Ill.a, we may assume that every ye A1

satisfies y2 S v-2- Let £ be a point where x3 receives its maximum(2) in V C\Al.

If ue VryA1 then t,2 = u2 and Ç3 ̂  u3 and therefore (6) dom SlÇ => dom Sl«.

aeD3 - À3 therefore, by II.4, ß3(a) is solvable. If U solves ß3 (a) then by (4) we

have that (7) dom U n V = 0. We remark that (8) ß3(a) nA3 c {x: x2 = a2}.

Let x1 receive its maximum in U C\A3 at the point n. We define: v = (n1, e — n1

- Ç3, Ç3).    By   1.12   and  (6)  we  have  that   (9)  Ry (a) - dom V = Rt(a)

(2) Observe that a solution of a compact set is compact, see [3, Theorem 3].
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-domSl£ = ß3(a)U{x: xeRyia), x3 ^ Ç3}. By (8) we have that (10) ß2(ce)

-dom U = Q2ia)-doms¡n= {x:xeß2(a), x1^ n1}. Combining (1), (9) and (10)

we have (11) A - dom(L7 U V) = {x:xe^, xS2 ̂  vS2}. If v M then from 1.4,

(11), (9) and (7) it follows that U U V solves A. Suppose now that veA. We

define Vy = (a1, e - a1- £ 3,C3). By 1.16 we have that (12) 0 = A2 r\ Q2

(vi) => A2 n ß2(v). ßi(a) U ß3(a) c Ä2(v) therefore by (12) and 1.12 we have (13)

domß2(v)n(ß1(<x)Uß3(a)) = 0. veD2-A2 therefore ß2(v) is solvable. If Uy

solves ß2(v) then by (11) and (13) V U U U Uy is a solution of A.

Ill.b. F1 has b-shape. Due to Ill.b, we have that Ryia) n(i2 ui3) = 0 and

therefore (1) Aft«) = Ä?(a) = 0. From (1) it follows that (2) Rfia) r\ Ada) = 0
for all i^j.lfxe Ryia) then x2 + x 3 £! a2 + a 3 therefore (3) [a/3] n dom ^/^(a)

= 0. From (1) and (3) we have that (4) Ryia) — domR^a) => [ap1]. We also have

that (5) Tyia) - domRyiot) = T^a) - dom{a,0} = {x:xe T^a), x2^ a2,x3 ^ ß3}.

Define p = (e - a2 - j33,a2, ¿?3).

III.b.1. p M- By 1.4 we have that (6) {x:xSl ^ ps'} n A = 0. By (2) and

II.l the /^(oO-core is the solution of Ryia). By (4), (5) and (6) we have that Ryia)

— dom Ryia) solves .4.

III.b.2. peA. peD1 - A1 therefore Qyip) is solvable. We remark that (7)

Qyip) dA1 cz {x:x2 = a2}. We distinguish several subcases of II.b.2.

III.b.2.1. There is a solution Vy of Qyip) such that Vy nA1 = 0. We have that

(8) dom Vy n i?i(a) = 0. From (5) and (8) it follows that

VyViRyia)-dom Ryia))
is a solution of G.

III.b.2.2. There is a solution V2 of ßt(p) such that V2C\Al = {p}. In this case:

Ryia) - dom F2 = ß3(a) U Q2(ß). a e D3 - À 3 and ß e D 2- A2 so ß3(a) and Q2iß)

are solvable and if U solves ß3(a) and W solves ß2(/0 then, by 1.13, cceU and

/3eW. Since ß3 (a) <= R2iß) and Q2iß) <= R3i<x) it follows from 1.12 that

domU C\W = dornW nU = 0.

From these results and (5) it follows that U u W u F2 is a solution of G.

III.b.2.3. There is a solution F3 of Qyip) such that F3 O /I1 - {p} # 0. Let x3

receive its maximum in V3 C\Al at the point ¿j- ¿J2 = p2 and ¿J3 > p3. By II.3

[pa] Uf3 = F3 solves ßx(a). We define v = (a\e - a1 - Ç3,Ç3). Ryia)- dom 73'

= 23(a)U{x:xei,xs^ vSl}. Let 17 solve ß3(a). dom 17 n (ßt(a) U {x:

x e A, xSl ^ vS2}) = 0. If v $A then F3 U L7 solves G. If v e A then v e D2 - ¿2.

By I.16ß2(v)n/12 = 0. ßi(a) Uß3(a) c/?2(v) therefore by 1.12 domß2(v)

n (ßi(a) Uß3(a))=0. If W solves ß2(v) we have that V3 U U U If is a solution of G.

III.c. F1 ftas c3-shape. As in Ill.a, we have that /?i(a) is solvable and if ßx(a)

and /^(a) are independent then G is solvable. If ßi(a) and Ryia) are not indepen-

dent and F solves ß1(a)and WRyia) then either dom V n W^0oi dom W nF#0.

III.c. 1. There exist F0 and W0 such that domF0 n W0 ¥= 0. aeW0 therefore

there must be a z # a in VQ O A1. We have that either z3 = a3 or z2 = a2.
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III.c.1.1. z3 = a3. In this case we have that (1) ye A1 implies y3 ^ z3. Let x2

take its maximum in V0 C\ A1 at the point £. Define v = (a1,^2, e — a1 — £2).

From (1) it follows that (2) Rx(a) - domV0 = Q2(a)\J{x:xeA, xSl ^ vS3}.

By II.5 there is a solution U of ß2(a) such that U n F1 = {a} ; it follows that (3)

dom U n Qx(a) = 0. If v $ A then U U V0 is a solution of G. If v e A then v e D3

- A3, so ß3(v) r\A3 = 0. It follows that (4) dorn Q3(v) n (ß2(a) U ßj(a)) = 0.

We also have that (5) dom U n ß3(v) = 0. Now if Ux is a solution of ß3(v) then,

combining (2), (3), (4) and (5), we have that V0 U U u Ux is a solution of G.

III.c.1.2. z2 = a2. We now have that ye A1 implies y2 ^ a2. We show that we

may suppose : (*) there is no u e A3 such that u2 = a2 and u1 > a. \ If (*) fails

then F2 has ¿-shape and {A1, A3} satisfies condition M, so by IH.b G is solvable.

We also notice that: (* *) if &eA, ê2 = a2, ê3 ^ /?3 and J solves ß^tf) then

J u [a??] solves ßx(a). Now if (*) holds and U is a solution of ß3(a) then dorn U

n (ôi(a) U ß2(a)) = 0. Let V solve ßj(a). We denote by p(V) the point where x3

takes its maximum in A1 n V. The point where x3 takes its maximum in A1 n

{x:xl = a1} is denoted by £. L7 denotes a fixed solution of ß3(a). We remark

that a e U.

III.c.1.2.1. There is a solution Vx of Qx(a) such that ß3 < i¿3(Vx). Define v

= (a},e-a} - n3(Vx),p3(Vx)). We have that Rx(a) - dom Vx = ß3(a) u{x:

xe/4, xS2 ̂  vS2}. If v $ A then (J U Vx is a solution of G. If veA then veZ)2

- A2. Let 17! solve ß2(v). dom Ux n(Qx(a) U ß3(a)) = 0, so [7 U Ux U J^ is a

solution of G.

III.c.1.2.2. Every solution V of ß^a) satisfies p.3(V) i% ß3 and there is a

solution Vx of Qx(a) such that p3(Vx) = ß3. ße a2 nD2 therefore Q2(ß) is sol-

vable. If Ux solves Q2(ß) then 17 j r\A2 = {ß} and domE71n(ß1(ji(K1)) U ß3(a))

= 0. Let L72 be asolution of Qx(n(Vx)). From (**) it follows that U2 C\Al =

{p(Vx)}. So we have that U U Ux U Î72 is a solution of G.

III.c.1.2.3. If F solves ßt(a) then p3(V) < ß3.

IH.c.1.2.3.1. C3^ß3. Define v = (e-a2-jS3, a2, /S3). By 1.17 ß^ndom

Pt(a) = dom[aj8] C\Qx(a), so dom Px(a) n{x:xei, xSl ^ vSl} = 0. If v i A

and 17 x solves Q2(ß) then Í/ u [aß] U L^ solves G. If v e A let C72 be a solution

of ßi(v). By (* *) and the definition of U2 U2C\A1 = 0. So in this case U U Ux

U L72 U [aß] solves G.

III.c.1.2.3.2. C3 < ß3- Define v = (e - a2 - Ç3, a2, Ç3). By II.5 there is a

solution Ux of ß2(0 such that Ux OF1 = {£}. If v#/l then 17 u L71 u[a£] is a

solution of G. If v e A - A1 and 172 solves Qx(v) then U UUXUU2U [a£] is a

solution of G. If v 6 Ax then L^ U U2 U (7 is a solution of G.

III.c.2. If V solves ßj(a) and W Rx(ix) then dom kF n V ¿ 0 and dom V C\W

= 0. By 1.17 we have that dom^a) - [/Sa)) n ß^a) = 0. By 1.19 R3x(a) = i3

nP^a). [/?a) c A3 therefore [ßa) <= R3x(a). So we conclude that

(1) dom^a)- domP^a)) n ßt(a) = 0.
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Since F1 has c3-shape we have also that A2 (~\Ry(a) = 0. If {A1, A3} does not

intersect maximally then, by 1.20, (Rj(a),R3(a)} does not intersect maximally

and we have that m(Ry(a)) = 0. By II.2 the R¡Xa)-core is the solution of R^a)

which, by (1), contradicts III.c.2. So {A1, A3} intersects maximally. The x2

coordinate of F2 will be denoted by d.

III.c.2.1. d < a2. We denote the ends of F2 by y and 5 such that ôl = y1. We

remark that 8eD2 — A2. So ß2(<5) is solvable and if U solves it then dorn U => T2(<5)

- U and dom U n R2(<5) = 0. Denote v = (al,d,e - d - a1) and P = {x:

xeA, xSl ^ vS3}. We remark that P( n P3 = 0 for all i # ; and that (P - dorn P)

n((a/3] U [y<5)) = 0. So(3) P - domP solves P and

dom (P - dom P) O (ß2(<5) U Qy(a)) = 0.

Summing we have that Uy = U (J(P — domP) solves Ry(a) and that dom Uy n

Qy(a) = 0. Since this result contradicts III.c.2 d < a2 is impossible.

III.c.2.2. d = a2. If F2 has a-shape or ¿-shape then {A1, A3} satisfies condi-

tion M and by Ill.a or IILb G is solvable. It remains only to complete the proof

when F2 has c3 or Cj-shape.

III.c.2.2.1. y1<a1. In this case F 2 has c3-shape. Let n satisfy n2 = a2 and

a1 > n1 > max. (y%,e — a2 — ß3) and Uy be a solution of ßi(n). U2 = [an] U Uy

solves Qy(a). Let Ce (aß} nA1, U3 be a solution of ß2(() and £/4 a solution of

ß3(a). Us = l/3 U U4 U [aÇ] is a solution of Rx(a). But dom U2nU5=£0

contradicting III.c.2, so III.c.2.2.1 is impossible.

lll.c.2.2.2. y1 = a1. In this case F2 has c^shape. By II.5 there exist solutions

Uy of ß3(a) and U2 of Q2(a) such that Uxr\F2 = {a} = U2nFl. U = Uy U U2

is a solution of Ri(a) but(3) dom U n ßi(a) = 0 contradicting III.c.2.

III.c.2.2.3. y1 > a1. In this case F2 has Cj-shape and yea1 Da3 - yl2. Let U

solve ß2(y). l/j = U U (ß3(a) - dom ß3(a)) solves Ry(a) but dom Uy n Qt(a) = 0

which is impossible.

III.c.2.3. d > a2. In this case we show that À1 nÀ3 n Ry(a) = 0. It follows

that (R3(a),R|(a)} does not intersect maximally which is impossible as we have

already seen. Suppose that À1 nÀ3 n Ry(a) # 0. Let xei1 n ^nfi^).

x1 ^ a1. Since(4) a g a3 x2 < a2. Let zeax C\ a3 O F2 and y be an interior point

of já"10 À3. There is a u e [yz] O ^í1 n /13such that u2> a2. So there is a w e [ux]

for which w2 = a2- we À1 ni3. If w1^ a1 then aeÀ3 and if w3 ̂  a3 then aeÀ1.

Since both cases are impossible we must have 0 = A1 C\A3 (~\Ry(a).

IV. Third part: case 11.9.

TVA. m(G)^2. W.L.G. {A2,A3} does not intersect maximally.

IV.1.1. À2 n À3 = 0. We shall show that m(G) = 0. If m(G) > 0 then, W.L.G.,

{A1,A3} intersects maximally. Let zea1 C\a3 C\F2and y be an interior point of

Âl r>À3. \_yz) c À3. If ze À2 then we have À2 n À3 =¿ 0 which is impossible. If

(3) See 1.17.

(4) If x2 > x2  then aSj ^ a^3 and xe<43 imply aeA* which is untrue.
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z $ À2 then {/l1,^3} satisfies condition M, which is again impossible. Therefore

{A1, A3} does not intersect maximally.

IV.1.2. Â3 =>A2. If {A1,A3} intersects maximally then there is a zea1C\a3

r\F2. a3 C\A2 = 0; therefore z $ À2. But since we have a1 na3 r\F2<= Â2,

{A1, A3} cannot intersect maximally.

IV.l.2.1. À1 n Â3 = 0. À2 n i1 <= À1 n 42 c i1 n J3 = 0, so m(G) = 0.

IV.1.2.2. i3 => A1. We denote C = A- dom A. If xeA-C then there is a

y eA such that y£-S3x. So there is a zea 3 such that z^-x. a3 niÀ1 KJA2) =0

therefore z e C. By 2.6 C is a solution of G.

IV. 1.2.3. À1 => ¿3. We have i1 =5 A3 => A3 r> ¿2, so miG) = 0.

IV.1.3. /I2 => ̂43. The proof in this case parallels that in IV.1.2.

IV.2. miG) = 3. We denote Fk=[akßk] and D = f\fmlA\

Lemma IV.2.1. Under the assumptions q/TV.2 we can find i and k such that

Sk = {i,j} and:

(l)at'=/3i,
(2) akea'r\aJ,

(3.a) xJ iafces ifs maximum in {x:x' = a^} C\D at a point êeak such that

every y eAk that satisfies yJ = &j and y'>#' is in A', or

(3.b) x1 takes its maximum in {x : xJ = ak} O D at a point peak C\ A' and Fk

has Cj-shape.

Proof. F1 = [a1jS1].W.L.G.a12^jß2.Wealsosupposethat a e a2r\a3.If a$a2n a3

then/?ea2 Ha3 and the proof is not altered much. We now consider F3.

IV.2.1.1. Every yeF3 satisfies y2 < a2. Let ■& be the point where x3 takes its

maximum in {x:x2 = a2} HD. ê # <Xy. We show that êeÀ2. If F3= [a3/?3] and

a3 ^ ß\ then a3 > &3 since & i F3. If a3 > t?1 then a3yS2ê, and if??1 ^ a3 then

there isa he [axa3] such that u £—s2$- Now if & e a3 then F2 has c^-shape and

iïea1 and if#ev4°3 then it follows from 1.3 that fîea1. So in this case we can

choose k = 1 and i = 2.

IV.2.1.2. There is a y eF3 such that y 2= a2. Let 1? = y. If F3 has a-shape then

&eal and there is no u e A1 that satisfies u3 = #3 and «2 > #2. So we can choose

k = 1 and i = 2. If F3 has not a-shape then ß\ > a2. If F3 has b-shape and y = ß3

then there is no u e 4 * such that u3 = -&3, and u2>&2 and we can choose fc = 1

and i = 2. If y ^ ß3 then we have that ß3ea2 r\a* and every x e F1 satisfies

x2 < jß3. By IV.2.1.1. we may take k = 3 and i = 2. If F3 has c2-shape then

&ea 'and if w e^4, u3 = #3 and u2>fî2 then uei2. So we can take fc = 1 and

i = 2. If F3 has q-shape and y = ß3 we choose fc = 1 and i = 2. If y 7^ ß3 then

we have that /?3 e a 2 n a ' and every xeF1 satisfies x2 < ß2. By IV.2.1.1. we can

choose k = 3 and / = 2.

IV.2.1.3. Every yeF3 satisfies y2 > a2. If F has a, borc^shapethenwehave

that ß\ ^ a2, ß3ea2 Ha1 and every xeF1 satisfies x2 < ß\. By IV.2.1.1, we can

choose fc = 3 and i = 2. Now suppose that F3 has c2-shape. Let x1 take its maxi-
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mum in D 0{x:x2 = a2} at the point p. p ¥" <x3. We shall show that peA1 C\A2.

p2 = a3 < ß\. p1 > a3 therefore p3 < a3 = ß\. So ß3^SiP- We have also that

a} > p1 therefore there is a u e [a^] such that u^-Slp. It follows from 1.3 that

pea3. Summing we have: a3 ï: /S3, a3ea 2(~\ a1 and x1 takes its maximum in

D n {x:x2 = a2} at a point pea3 C\A2. So we can take k = 3 and i = 1.

We now prove that G is solvable in caseIV.2. W.L.G. the results of IV.2.1 hold

for k = 1 and i = 2.

IV.2.2. (3.a) holds in IV.2.1. We remark(5) that ifzeA'n Qx(§) then z3 = #3.

If there is a z e A1 such that z3 = &3 and z2>d2 then F3 has c2-shape. By Lemma

II.5 there is a solution F of Qx(&) such that kTiF3 = {&}. So we can always find

a solution Vx of ßt(i?) such that Vx C\Al = {■&}. Similar reasoning shows that

there is always a solution V2 of Q3(ctx) such that V2 n A3 = {aj.

IV.2.2.1. #3 > /S3. We define v = (a},e - aj -§3,§3). Suppose veA We have

that Q2(v)r\A2 = 0. So if [7 is a solution of ß2(v) then Vx U F2 u [7 u[^aj

solves G. If v ¿ ¿ then K,UF2U [öaj solves G.

IV.2.2.2. i?3 = ß\. If [7 is a solution of Q2(ßx) then Ft U V2 U L7 is a solution of G.

IV.2.2.3. #3 < /S3. Let x3 take its maximum in A1 O {x: x1 = a}} at Ç. We

define p = (e — a2 — /S3,a2,/S3). Suppose £3 = /?3and p e ,4. In this case if If7 is a

solution of g2(p\) and W^ is a solution of gj(p) then V2UW UWXUF1 solves G.

If p ¿ 4 then F2 U W U F1 is a solution of G. If Ç 3 < j?3 then F' has c3-shape.

We define n = (e - £3 - a2, a2, Ç3). By II.5 there is a solution U of g2(Q such that

{C} = l/nFMfi/^ then [7 u V2 U [fo] solves G. If ne A - A1 and Ux solves

giO?) then F2 U t7 U L/i U [ÇaJ is a solution for G. If rç e /I1 then // = ■& and K,

U F2 U U is a solution of G.

IV.2.3.(3.b) holds in IV.2.1. So F1 has c3-shape. By II.5 there is a solution

V of Q2(ax) such that V OF1 = {a^. Next we show that there is a solution I7! of

gx(p) such that Vx nA1 = {p}. If g^p) n^1 = {p} this follows from the fact

that p belongs to every solution of Qx(p). If there is xeg^p) dA1, x ^ p, then

xea1 and(6) x2= p2. Using 1.10 and observing that peÂ3 we see that F2 has

C3-shape and peF2. II.5 yields a desired Vx. Now define v = (<x\,p2,e — a1 — p2).

Observe that g3(v) nA3 = 0. If v e A and F2 is a solution of g3(v) then V KJVX

UF2U [paj is a solution of G. If v$A then FU^U [paj solves G.
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