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1. Introduction. Let G be a topological transformation group on a compact

Hausdorff space Y and FiG; Y) its fixed point set. The present paper is devoted to

the study of the cohomology structure of FiG; Y) in the following three cases:

(1) G is the group Z2 of integers modulo 2 and Y has the mod 2 cohomology

ring of the real projective n-space.

(2) G is the group Zp of integers modulo p, where p is an odd prime, and Y

has the mod p cohomology structure of the lens (2n + l)-space mod p.

(3) G is the circle group S1 (the group of reals mod 1) and Y has the integral

cohomology ring of the complex projective n-space.

For the sake of simplicity, we shall call Y a cohomology real projective n-

space or a cohomology lens (2n + l)-space mod p or a cohomology complex

projective n-space if its cohomology structure is that described in (1) or (2) or

(3). (Formal definition of these notions will be given later.)

The study of the problem proposed above is motivated by two recent theorems

obtained separately by P. A. Smith and C. T. Yang. In [6], Smith proved that

if Z2 acts effectively on the real projective n-space, then the fixed point set is either

empty, or it has exactly two components Cx and C2, where each C; is a coho-

mology real projective n¡-space, i = 1,2, and nx + n2 = n — 1. Later in an un-

published work, Yang proved that if S1 acts differentiably on the complex pro-

jective n-space, then the fixed point set is nonempty, has at most n + 1 com-

ponents, say Cy,--,Ck, fc ̂  n + 1, where each C¡ is a cohomology complex

projective n¡-space, i = 1,2, ■••,fc, and nx + n2 + •■• + nk = n — fc + 1. Our main

purpose is to show that, under the more general setting of (1) and (3), essentially

the same conclusions obtained by Smith and Yang still hold true. We also include

a study of case (2), which is the natural counter part of case (1) when p is odd.

All topological spaces considered in this paper are assumed to be compact

Hausdorff. For such a space X, //*(X;L)= In°°=0Hn(X;L) will denote the

Alexander-Spanier-Wallace cohomology ring with coefficient domain L. Let G
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be a transformation group on a space X. For each xeX the closed subgroup

Gx = {g e G | gx = x} of G is called the isotropic subgroup at x and the subset

G(x) = {gx e X | g e G} of X is called an orfrif. The action is said to be free (or

G acts freely on X) if Gx = e (the identity subgroup of G) for all x e X. The set

.X/G = {G(x) | x e X} endowed with the usual quotient topology is called the

orbit space. The map (the word map will always mean a continuous map in this

paper) sending xel to G(x)eX/G is called the canonical projection and will

be denoted by n : X -» X/G. We call X a cohomology n-sphere over L if H*(X;L)

= H*(Sn;L), where S " denotes the n-sphere. If L=Zp, we also call X a co-

homology n-sphere mod p. If L= Z (the group of integers), we also call X an

integral cohomology n-sphere. As usual, empty space is regarded as cohomology

( —l)-sphere over L.

2. Cohomology real projective spaces and cohomology lens spaces. Through-

out this section, the coefficient domain L for cohomology will be the field Zp

of characteristic p ^ 0. We adopt the convention that H*(X) shall mean H*(X ;ZP)

for p #2 and for p = 2 the coefficient domain Z2 shall be indicated out expli-

citly. A space Yis called a cohomology real projective n-space if the ring H*(Y;Z2)

is given by

(2.1) H*(Y;Z2) = Z2[x]/(x"+1),   degree x = 1,

where Z2[x] is the polynomial ring with coefficients in Z2 and (x"+1) is the ideal

generated by xn+1. Y is called a cohomology lens (2n + l)-space modp, p # 2,

if the ring H*( Y) is given by

(2.2) H*(Y) = A[a] ® Zp[x]/(xn+1),   degree a = 1, degree x = 2,

where A[a] is the exterior algebra generated by a over Zp, Zp[x] is the poly-

nomial ring with coefficients in Zp and (x"+1) is the ideal generated by xn + 1. In

addition, we also require that ß(a) = x, where ß :Hl(Y)^H2(Y) is the Bock-

stein homomorphism. The following two propositions are well known.

Proposition 2.3. // Z2 acts freely on a cohomology n-sphere mod 2 X, then

X/Z2 is a cohomology real projective n-space.

Proposition 2.4. // Zp (p i= 2) acts freely on a cohomology (2n + l)-sphere

modp X, then X/Zp is a cohomology lens (2n + V)-space modp.

Much more interesting is their converse. We have

Theorem 2.5. If Z2 acts freely on a connected space X such that X\Z2 is a

cohomology real projective n-space, then X is a cohomology n-sphere mod 2.

Proof. Using Smith's special cohomology [1, p. 41], we have the Smith exact

sequence which in the case of free action of Z2 takes the following form.
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0^H°(X/Z2;Z2)^ //°(X;Z2)^//°(X/Z2;Z2)i//1(X/Z2;Z2)^.-

(1) - Hk-liX/Z2;Z2)i HkiX/Z2;Z2)^H\X;Z2)

- H\X/Z2;Z2)^-,

where n* : H%X/Z2 ; Z2) -» //*(X ; Z2) is the homomorphism induced by the

canonical projection n:X -* X/Z2. Since X is connected, //°(X;Z2) = Z2 and

hence n* ://°(X/Z2 ; Z2)->//°(X ; Z2) must be an isomorphism. This implies that

7t* :H1iX/Z2;Z2)-*H1iX;Z2) is trivial. The ring structure imposed on

H*iX/Z2;Z2) then implies that tc* :H\X/Z2;Z2) -*H\X;Z2) is trivial for all

fc ̂  1. The theorem follows immediately from the exactness of (1).

Theorem 2.6. // Zp (p / 2) acts freely on a connected space X such that

X/Zp is a cohomology lens (2n + i)-space mod p, then X is a cohomology (2n + 1)-

sphere mod p.

We need some preliminary considerations. The action of Zp on X induces an

action of Zp on //*(X). More precisely, let Tbe a generator of Zp; then the in-

duced homomorphism T* : ZZ*(X) -» //*(X) satisfies T* p= 1 (the identity homo-

morphism) and hence defines an action of Zp on Z/*(X). We can therefore talk

about the functor //*(ZP;//*(X)), the cohomology of the group Zp with co-

efficients in H*(X). Let t* — 1 - T*, o* = ZfTo T*f and 7Z*(X)° = kert*. we

have [2]

r//*(X)° ifs = 0,

(2.7) //S(ZP; H*iX)) =    j ker T*/Im o* if s = 2fc, fc > 0,

[kerff*/ImT* if s = 2fc + 1, fc ̂  0.

Moreover, H*iZp;Zp) = £s°!0H\Zp;Zp) has a ring structure which can be de-

scribed as

(2.8) H*iZp;Zp) =A[a] <g> Zp[x], degree a = 1, degree x = 2,

where A[a] and Zp[x] are the same as in (2.2). Furthermore, we also have

ßia) = x, where ß :HxiZp;Zp)^H2iZp;Zp) is the Bockstein homomorphism.

The following two lemmas can be easily established.

Lemma   2.9.     // o* = 0 and //*(X)° = 0, then H\X) = 0.

Lemma   2.10.   Ifo* = 0 and dim //'(X)° = 1, then dim H\X) g p - 1.

Proof of (2.6). We shall only give a proof for the case n > 0. Since Zp acts

freely on X, there is the Leray-Cartan spectral sequence [1] (£r) whose £2-term

is given by E2f = H\Zp;H\X)) and whose F^-term is associated with //*(X/Zp).

As JSj' = 0 when either s or t is negative, we have the exact sequence for low

dimensions [2]

(1) o - £2'° ^->H\X/ZP) -£» E°f -^E2f -^> H\X/ZP).
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Since X is connected, E\fi = lZ?=0Es20 = H*(Zp;Zp). In particular, £2>0 = Z2

and <¡>x must be an isomorphism. Let aeE2'° be a generator, then a' = (¡)x(a)

is a generator of HX(X/ZP). By (2.8), x = ß(a) is a generator of £2'° and we have

4>2(x) = 02 °ß(a) = /S ° 0i(a) = ß(a') ¿ 0 by (2.2). Hence 02 must also be an iso-

morphism. As a and x generate £|'°, it follows that

(2) 4>s-ES2° ̂ H\X/ZP)

is an isomorphism for all 1 ̂  s ^ 2n + 1. Since n* °(¡>x(a) = 0, we have

7t*°02(x) = n*°ß°4>x(a) = ßon*°<px(a) = 0. But (/^(a) and 02(x) generate the

ring H*(X/ZP) according to (2.2); it follows that

(3) n*:Hs(X/Zp)->Hs(X)

is trivial for all s = 1. Notice that (2) implies that Es/° has no cobounding ele-

ments for all r ^ 2 and 1 ^ s = 2n + 1. In particular we have

(4) d,+x:£°;si -+ Es,tî>0 is trivial for all 1 g s ^ 2b.

To see the consequence of (3), consider the Smith exact sequences. Following

the notations of [1, p. 41], these are

(5) - - H\X/ZP)^H\X)-* Hs(x) - Hs+1(X/Zp) - -,

(6) - -> íT(t) -» H\X)A H\X/ZP) - Hs+i(x) - ....

It is known [1] that n* ° u = o* ; hence (3) implies that

(7) o* : H'(X) -> HS(X) is trivial for all s ^ 1.

Now we proceed to prove by induction that HS(X) = 0 for all 1 ^ s ^ 2n.

By exactness of (1), we have E°2-1 = H\X)° = 0; hence H\X) = 0 by (7) and

Lemma 2.9. Suppose it has been shown that H\X) = 0 for all 1 ^ i < s S 2n.

It is easily seen that this implies that the differentials dr :E°'S-+Err's~r+1 are

trivial for all 2 <¡ r < s + 1 are r > s + 1. This together with (4) gives £2,s = E°^s .

By (2), we have E'¿° = Imij), = H\S/ZP). As dimHs(X/Zp) = Ii=0Fco"i'i, we have

£^'s = 0. Thus we obtain £0,s = HS(X)° = 0. Applying Lemma 2.9 again, we

obtain HS(X) = 0.

Next we take up the case s = 2n + 1. As before, H'(X) = 0 for all 1 ̂  i g 2n

implies that dr : E°/2n+1 -► £;,2"+2 ~r is trivial for all 2 g r < 2n + 2 and r > 2n + 2.

Hence we have E°2'2n+1 = £$;2+"2+1 and F^1 =£0œ,2n+1= 0, where the last

equation holds because H2n+1(Z/Zp) = £20"+1'0 by (2). Similarly, we have

Fn2+2'0 = E22nntï° and E2nnX23-° = E2^2'0 = 0. (Since r72n+2(X/Zp) = 0.) But

by definition, £22B"++2'° = £2;++22'7lm(£20Bt2+1- "2"+J E2^0) and £°B2+3+1

= ker(£°;2+"2+1 ->"2n+2 E2nnX22°). It follows that d2n+2: E0^1 -»*£#   is an
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somorphism. Thus we obtain E°2'2n+1 = E^1 £ E22nn++22'° = E22n+2'° = Zp. By

(7), (2.7) and Lemma 2.10, we obtain dimH2n+l (X/Zp) ^ p - 1.

For s > 2n 4-1, let us consider the exact sequences (5) and (6). It is not hard

to see [1] that the composition map Hs(X)->Hs(t) and H'(x) -» H\X) is t*.

(5) and (6) then imply that z* : H\X) -+ HS(X) is an epimorphism for all s > 2n + 1.

It follows that HS(X) = t*Hs(X) = ••• = t*p_1Hs(X) = o*Hs(X) = 0 by (7).

Finally let us return to H2n+1(X/Zp). As we have now shown that dim H*(X)

< co, the Euler-characteristic formula of E. E. Floyd [1, p. 40]

Z ( - l)s dim H (X) = p Z ( -1)* dim HS(X/ZP)
5=0 s=0

can be applied. In our case, this reduces to

l-dimH2n+1(*) = 0

or H2tt+1(X) = Zp. This completes the proof of (2.6).

3. Cohomology covering spaces and lifting of actions. It is a well-known

fact that the real projective n-space admits the n-sphere as its two-folded cover-

ing space. The purpose of this section is to give-a construction which among

other things will insure that every cohomology real projective n-sphere admits

a cohomology n-sphere mod 2 as its two-folded covering space. Throughout this

section, cohomology always has Zp as coefficient group with no distinction

between p being even or odd, Y is a fixed connected space and a e H1(Y) is a fixed

nonzero element.

Let /: Yx Y->ZP be a 1-cocycle representing a, then there exists an open

covering V of Y such that

(3.1) f(yo^2) = /(yo>J>i) +f(yi,y2) whenever y0,yi,y2eVei/'.

By a 'f-chain we mean a finite sequence (y¡)n¡ = 0 of points of Y such that

{y,-y, y,} e F¡eT^" for all i = l,2,---,n. Let fceYbe a fixed base point. By a

f '-chain with base point b we mean a f-chain (y¡)"=0 such that v0 = b.

The set of all "¡^-chains with base point b is denoted by x- (yù"=o> (>'j)7=oeX

are said to be equivalent if

(3-2) y„ = y'm

and „ m

Zf(yt-t,yd = Xf(y'j-uy'j).¡=i j=i

The quotient set under this equivalence relation is denoted by X and the equi-

valence class of (y¡)1=o^X is denoted by [.y¡]"=0-The function tc :X-> Y given by

7t([>'i]"=0) = yn is clearly well defined.

Now we topologize X as follows. Let x = [y|],"=0eX and &(y„) be a base

of neighborhoods of y„ such that every B(y„) e 3>(yn) is contained in some Ve "V.

To each B(yn) e ¡%(y„), define
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(3.3)

B*ix)= ky'$.0eX\y'meBiyJ and

n m \

lf(yt-»yù+fiy„ya+ £ fiy'j,y'j-ù = o .
¡=i                             j=i i

It is easily verified that a Hausdorff topology is defined on X with á?(x)

= {B*(x) | B(y„) e ^(y„)} as a base of neighborhoods at x and that % : X -> Y

is a continuous map. In fact, n maps every B*(x) homeomorphicaliy onto Biy„)

hence it is even a local homeomorphism. In particular, there exists an open

covering 'f* of X such that every V* e y* is mapped homeomorphicaliy onto

some Ve~f by n.

Lemma   3.4.   For each yeY, 7t-1(y) has exactly p points.

pProof. It suffices to consider the case y = b. The function <p : 7t ib) -» Z

given by <p([y¡]?=0) = 2?=i/(y(-i,y¡), where [yjl-oen'^b), is clearly injective.

Moreover, Im çb c Zp is a subgroup ; hence we have either Im 0 = 0 or Im çb = Zp.

If Imçb = 0, we define a 0-cochain g : Y-*ZP by giy) = Z"=i/(y¡-i,y¡) where

(y,)"=o is any "^-chain with base point b such that y„ = y. Such a "f -chain exists

(since Y is connected) and a is well defined. Now if y,y'' e Ve~t~, we have giy')

- giy) =fiy,y') since we can represent giy') by JZmif(yt-uyd +/(>'»/)■ But

this means/— ¿ig has empty support, contradicting the assumption that a#0.

Notice that (3.4) also implies that X is compact.

By a y*-chain we mean a finite sequence (xf)"=0 of points of X such that

that {X|_„ x,} e V*e V* for all i = 1,2, • • -, n. A y*-chain (x¡),"= „ is said to cover

a -r-chain (yj)?.0 (or (y¡)?=() is cohered by (x¡)?=0) if 7t(x¡) = y¡ for all

i = 0,1, •••,n. The function h:X -*ZP given by

(3-5) KtyJ^o) = - Z/Cyi-i,^¡=i

is clearly well defined having the property that

(3-6) «(x0)-n(xn)   =   if(y,-uyù
¡ = i

whenever a f *-chain (x¡)"=0 covers a ^-chain (y¡)"=0- The following lemma

is immediate.

Lemma 3.7. iChain lifting property and monodromy property.) Given a "T-

chain (yf)"=0 end a point xen~1iy0), there exists a unique ir*-chain (x,-)"=0

covering (y¡)"=o with x0 = x. Given two ^-chains (y¡)"=0 and iy'j)J=o with

y0 = y'o and y„ = y'm, two -r*-chains^x/fi=o and (x})™=0 covering (y¡)?=0 and

(y'j)7=o respectively with x0 = x'0, then x„ = x'm if and only í/Z¡=i/(y¡-i,y¡)

= Tj = yfiy'j-y ,y'j)-
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Lemma 3.8. There exists a free action of Zp on X such that X/Zp = Y and

n coincides with the canonical projection.

Proof. Define a map S: 7t-1(b)^ 7t_1(&) by S(x) = 0_1(</>(x) + 1), where

x e n 1(b) and tp:n1(b)-+Zp is the function defined in Lemma 3.4. Extend S

to a map i->X as follows. Let x = [v¡]"=0eX be an arbitrary point of X.

Choose a T^*-chain (x,)"=0 covering (j>;)"=0 with x0 = S([b}), where [b] 6 7c_1(o)

is the class of the f-chain (b,b); then define S(x) = x . S is well defined in view

of Lemma 3.8 and it is easily verified to be a periodic map on X of period p

having no fixed point. Later we shall refer to S as the deck-transformation.

Lemma 3.9.     The homomorphism n* -.^(Y)-^ HX(X) takes a into 0.

Proof. In fact, 7t*(a) contains the coboundary Sh, where h is the 0-cochain

defined by (3.5).

Lemma   3.10.   X is connected.

Proof. It is not hard to see that if X is not connected, then it has exactly p

components Xy,---,Xp and every n\X,:X,-> Yis a homeomorphism. It follows

that 7t*(a) ¥= 0, contrary to (3.9).

Collecting (3.1) through (3.10), we have thus proved

Theorem 3.11. Let Y be a connected space and aeH1(Y) a nonzero ele-

ment; then there exists a space X and a free action of Zp on X such that

Y = X/Zp and n* : Hl(Y) -* HL(X) maps a into zero.

Because of the last property of n*, the space X may be called a cohomology

covering space of Y with respect to aeH1(Y). This space can actually be charac-

terized abstractly. We formulate this in the following way. By a cohomology

covering space of Y with respect to a, we mean a principal bundle (X, Y, Zp, n)

such that n*(a) = 0, where Yis a connected space and a e H\Y) is a preassigned

nonzero element. We state without proof the following uniqueness theorem.

Theorem 3.12. Let (X,Y,Zp,n) and (X',Y,Zp,n') be two cohomology cov-

ering spaces of Y with respect to aeHi(Y) and g : Y-> Y a homeomorphism

such that g*(a) = a, where g* :H1(Y)-> HX(Y) is the homomorphism induced

by g. Then there exists a homeomorphism g:X-*X' such that n' °g = g °n.

Moreover, let xeX and x'eX' be any two preassigned points such that

n'(x') = g °7c(x); then g can be chosen in such a way that g(x) = x', and it is

completely determined by this condition.

Suppose that G is a transformation group on Y, a bundle lifting of G is an

action of G on X such that each geG acts on X as a bundle map g [7](i.e.,it

commutes with the deck-transformation), and n ° g(x) = g ° n(x) for allxeX.

It follows that a bundle lifting of G defines an action of Zp x G on X.
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Theorem 3.13. Let (X,Y,Zp,n) be a cohomology covering space of Y with

respect to aeH1(Y) and G a finite transformation group on Y. Suppose that

a is invariant under G (i.e., g*(a) = a for all geG) and that the fixed point

set F(G; Y) ̂  0. Then G has a bundle lifting.

Proof. In view of (3.12), it suffices to consider a particular X. This can be

obtained by a slight modification of the construction given in the beginning of

this section. There exists an open covering "T of Y, a 1-cocycle /: Y x Y-+Zp

representing a and to each geG a 0-cochain kg:Y^Zp such that (i) gVe~T

for all geG and Ver, (ii) (3.1) holds true and (iii) f(y,y') -f(g(y),g(y'))

= kg(y) — kg(y') whenever y,y'eVe~f. Let x De the set of all -^-chains with

base point b, where b is chosen as a point in F(G; Y). By (i), every geG induces

a function g:f*X defined as g((y¡)1=Q) = (g(y;)),"= 0- Define an equivalence re-

lation in x as (3.2). Condition (iii) insures that each g takes equivalent 1^-chains

into equivalent f-chains and hence induces a map g : X -» X. The rest of the

theorem is obvious.

4. Fixed point sets of actions of Zp on cohomology real projective spaces

or cohomology lens spaces. With the machineries built up in the previous two

sections, it is now easy to establish two of the main theorems of this paper.

Theorem 4.1. If Z2 acts on a cohomology real projective n-space, then the

fixed point set F is either empty or it has at most two components. If F has k

components Cx,--,Ck, 1 ^ k ^ 2, then each C¡ is a cohomology real projective

n¡-space, i = 1, —,fc and

k

E nt = n — k + 1.
i=i

Proof. Let Z2 act on a cohomology real projective n-space Y, that is, an in-

volution T: Y-* Y and suppose that F(Z2;Y) = F # 0. According to (3.11),

there is a cohomology covering space X with respect to a, where aeH1(Y;Z2)

is a generator. As X is connected, we know that X is a cohomology n-sphere mod 2

by (2.5). Since F =£ 0 and a is necessarily invariant under T*, T can be lifted

to an involution f : X -> X which commutes with the deck-transformation S on

X (see Lemma 3.8). f and S together then define an action of Z2 x Z2 on X.

Consider the subgroups in Z2 x Z2 generated by (S, 1) (1,F) and (S,T), their

fixed point sets F0,Fi and F2 respectively. By the well-known theorem of P. A.

Smith [1], F¡ is a cohomology n;-sphere mod 2, i = 0,1,2. Moreover, by a theorem

of P. A. Smith [6] and A. Borel [1, p. 175], we have the relation that Z,2=o("¡ + 1)

= n + 1. Obviously, we have n0 = — 1 since S acts freely on X. Hence the equa-

tion reduces to nx + n2 = n — 1. It is not hard to see that n(Fx) and 7t(F2), if

not empty, are precisely the components of F(Z2; Y). Now S acts on F, and F2,
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freely of course; therefore by (2.3) niFy) and rc(F2) are cohomology real pro-

jective «¡-spaces, i = 1,2. This completes the proof of (4.1).

In precisely the same way, one can prove

Theorem 4.2. // Zp (p # 2) acts on a cohomology lens (2n + \)-space mod p,

then the fixed point set F is either empty or it has at most p components. If F

has fc components Cy,--,Ck, 1 ̂  fc :g p, then each C¡ is a cohomology lens

(2n, + \)-space modp, / = 1,2, -..fc and

k

£ nt = n — k + 1.
¡ = i

5. Cohomology complex projective spaces. We now turn to actions of the

circle group S1. An action of S1 on a space X is said to have finite orbit type [1]

if the set {Sx cz S1\xeX} is finite, i.e., if there is only a finite number of distinct

isotropic subgroups. We shall need the notion of universal bundle and classi-

fying space [1, p. 52]. The universal bundle for S1 is the space {J™=yS2n+1 and

the classifying space for S1 is the infinite dimensional complex projective space

CP°°. These spaces are not compact (in fact, not even locally compact) and hence

do not fit into the cohomology we are using now. As usual, this complication

can be avoided by confining ourselves to spaces X on which Si acts to have

finite cohomology dimension over Z [1, p. 6] (notation: dimzX < oo). Then by

taking a sufficiently large N |> dimzX, we may "regard" S2N+l and CPN (com-

plex projective AT-space) as the universal bundle £sc and the classifying space Bsi

for the group S1 (see [1, p. 52] for detailed explanation). This convention shall

be used from now on. Throughout the rest of this paper, cohomology will always

have the group of integers Z as coefficient domain unless otherwise stated. By

a cohomology complex projective n-space we mean a space Y whose integral

cohomology ring H*(Y) is given by

(5.1) H*iY) = Z[x]/(xn+1), degree x = 2,

where Z[x] is the polynomial ring over Z and (xn+1 )is the ideal generated by
xn+1.

Proposition 5.2. // S1 acts freely on an integral cohomology (2n + 1)-

sphere X and if dimzX < oo, then X/S1 is a cohomology complex projective

n-space.

Proof. There exists a spectral sequence (£,.) [1] whose £2-term is given by

E2-' = HsiBst;H'iX)) and whose £œ-term is associated with //♦(X/S1) (up to

certain dimension). The assertion follows readily from the Gysin sequence of

(£r) and the fact that H*(£si) is given by

(5.3) //*(J5si) = Z[x]/(x,v+1), degree x = 2, 2N + 1 > dimzX.
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Theorem 5.4. 1*/ S1 acts freely on X such that X/S is a cohomology com-

plex projective n-space and dim^/S1 < co. If moreover n* : H2(X/S1) -» H2(X)

is trivial, then X is an integral cohomology (2n + l)-sphere and dimzX < co.

Proof. We shall only prove the case n > 0. Since S1 acts freely on X,

7C : X -* X/S1 is a fiber map by a theorem of A. Gleason [4]. This implies easily

that dimzZ < co. We can therefore consider the spectral sequence (Er) of (5.2)

where we have Es2' = Hs(Bsi ; H'(X)) = HS(BS¡) <g> H'(X) (tf*(Bs.) has no torsion).

In particular, we have

(1) E2' = 0 whenever s is odd.

Consider the sequence

0 -> E\-° ^i» ^(X/S1) ^> E?'1 % E22° i2» H^X/S1) ^ E°2-2 .

In general, the last place of this sequence is not exact but only satisfies Im tf>2

c kern* and kcrn*/\m<p2 = E^1. But in our case E1^1 = 0 by (1). Taking ac-

count of the fact that H1(X/S1) — 0, we have thus the following exact sequence:

(2) 0 - El'1 ■% E\-° ^> H^X/S1) £> £20'2.

Now 7t* :^(X/S1) ->E2'2 = H2(X) is trivial by hypothesis; hence (2) reduces to

an exact sequence 0 -> El'1 -» Z ->*2 Z->0. This implies <J>2 :E2-° -> r/2(X/Sx)

is an isomorphism and E°2¡1 = H\X) = 0. As£^° = t?=oEs20 = H*(Bs¡), by (5.3)

and (5.1) one deduces that

(3) <ps:E2-°  -> HXX/S)

is an isomorphism for all 1 _ s S[ 2n + 1. Just as in Theorem 2.6, this fact and

H\X) = 0 enables one to prove inductively that HS(X) = 0 for all 1 ^ s = 2n.

Again as in (2.6), one then uses this and proceeds to show that £2*2n+1 = E2'2+2\

that £2n+2-° = £2^2,0 and that d2n+2 :£2;2+n2+1 -» £2^2'° is an isomorphism.

Hence H2n+1(X) = E°22n+1 £ £2n+2'° = Z.

For higher dimensional groups, of course, no special cohomology theory is

available here. Instead, we propose to prove by induction that H2n+k(X) = 0 for

all fc ̂  2. We have seen that 90 = d2n+2: E°2,2n+1 -* E2n+2'° is an isomorphism.

This can be described as follows. Let a be a generator of H2(Bsi) and 1 denote

the generator of H°(Bsi) as well as that of H°(X). Consider an+1 ® 1 eE22"+ 2,°,

regard it as in £2¡¡+2,(); then there exists uniquely an element beH2n+1(X) such

that 1 ® beE°2'2n+1, considered as in £2;+2+1, satisfies d2n+2(l ® b) = an+1® 1,

and 90 is entirely determined by the relation 0O(1 ® b) = an+1 ® 1.

Let Z(£*'') be the cocycles of Er*'\ ps/ : Z(Es/)-+Es;l y the projection and/!'': Z(Es;t)

-» Es/ the inclusion. We agree that if we write prs'': £/•'-»• E**it it is tacitly assumed

that Z(ES/) = Es/.   Similarly,  if we write j'/: Es/+l -> Es/, it is tacitly assumed
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that Z(£rr',+,'"1) = Frs"r''+r"1 and Esriy has been identified with Z(£*lf). It is

easily verified that we have the following diagram :

;0,2n + 2
Ji

pO,2/1+2        . i?0,2n + 2 _    pO,2/1 + 2 e.0,2/1 + 2 170,2/1 + 2 n
£2 <-¿3 -    £2n + 3        =   ¿2/i + 4       =   £=0 = U

|<*2
,,2,2n+l ;2,2/1+1
^2 J2/I + 2

£2,2/1+1                    .        r.2,2/1+1           r.2,2/1+1     . r-2,2/1+1 e-2,2/1+1 r>
2 --*      ^3 = -t2n + 2        <-        -t2n + 3        =  ¿oo = U

|d2n+2

p2n + 4,0 r.2/1 + 4,0
-tl2 — -ti2n + 2      •

In this diagram, kerd2 = Im j°22n+2 = 0. Define Ö2 :Ê22,2n+1^£22"+4,0 by

02 = d2„+2 /4'2n+1- Since kerd2n+2 = lmjin2+f = 0, we have ker02 = kerp2,2"+1

= Imd2. In other words, O-F^2"42 ->"2 E2f+1 ^e> £2"+4-° is exact. Now

consider a ® beE222n+l, we have 02(a ® b) = c/2„+2((a ® 1) (1 ® b)) = (a ® 1)

^211+2(1®^ because d2n+2(a ® 1) = 0. That is, we have the following com-

mutative diagram:

0   ->    F°'2n + 2 2v     g2,2"+l        "2 ■      c;2n + 4 0

y«®l       î Î y„®l
E.0,2/1+1        "0 .      r.2/1 + 2,0
¿2 ->   ¿2 >

where ya ://*(Bsi) -► //*(Bsi)is the multiplication by a e//2(Bsi). Since y„ and

0O are isomorphisms, 92 must be an isomorphism and hence the exactness of

the upper row implies that //2"+2(X) = £^2n+2 = 0.

Suppose it has been proved that //2n+'(X) = 0 for all 2 ^ i < k. In a similar

manner as above, one can show that there exists a commutative diagram

0->E°f+k->£2'2n+1   A^, E2n+k+2-0

.Î

for fc even and

y„*/2®il lya/2

r-0,2n+l        "0 v     £.2/1 + 2,0
£■2 ->    ^2

£K-1,Z/1+1           "K        r7¿B + )£-l-l,U              .     fU,2n + R .   f\

2 -> ^2 -* ^2 -*"

/-i,/2®i I hri>/2® i
pO,2/1+1 "0 p2« + 2,0

for fc odd with exact upper rows. In either case, one concludes that H2n+kiX)

= E°2an+k = 0. The proof of (5.4) is completed.
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6. Lifting of an action in a principal bundle (X, Y, S1, n).

Proposition 6.1. Let Y beaspace and a an element of H2 (Y), then thereexists

a principal bundle (X, Y,Sx,ri) such that n* :H2(Y)-* H2(X) maps a into zero.

Proof. Represent Y as the inverse limit of an inverse system {Ym<j)™'}

of triangulable spaces [3]. Let (¡>m : Y-* Ym be the projection. By the continuity

property of cohomology, there exists an index m and ameH2(Ym) such that

0m(O = o. Consider the principal bundle (S2N+1,CPN,S1,p), where N is so

chosen that 2N + 1 > dim Ym. According to the standard obstruction theory [5],

there exists a map g : Ym-> CPN such that g*(x) = am, where xeH2(CPN) is a

generator. We have therefore a map / : Y-* CPN (f' = g ° 4>m) such that f*(x) = a.

The bundle induced by/has all the desired  properties stated in (6.1).

Now suppose that an action of Sl is given on the base space Fin a principal

bundle (X, YS1,^. The notion of bundle lifting is defined in the same way as

in §3. More precisely, let ß:SlxX-*X represent the action of the structural

group S1 on X and a :Sl x F-> Y the given action of S1 on Y. Then a bundle

lifting à of a is a map S, : S1 x X -> X which defines an action of S1 on X and

satisfying the conditions (i) n°a.(g,x) = <x(g,n(x)) and (ii) S(gx,ß(g2,x)) =

/3(<72,oé(í7,,x)). The following result is essentially due to T. E. Stewart [8].

Proposition 6.2. Let (X.Y.S1, jt) be a principal bundle and <x:Sl x Y-* Y

an action of S1 on Y. If HX(Y) = 0, then a has a bundle lifting.

Proof. Let R be the additive group of reals and q> : R -* S1 the usual expon-

ential map. The map a':Px Y-vYgiven by a'(t,y) = a.(<p(t),y) defines an action of

R on Y. Using the same argument employed in [8, Lemma 3.3], one deduces

that a' has a bundle lifting a":Rx X^X. Now to "push" a" down to S1, all

we have to do is to adjust it in such a way that it becomes periodic. Define a

map g-.Y^S1 by the condition that a"(0,x) = ß(g(y), a"(l,x)) for all

X6 7t_1(v). Since H\Y) = 0, i.e., n\Y) = 0, where n\Y) is the Bruschlinsky

group [5] of Y, g is homotopic to zero. Hence g can be factored as g = <p ° h

by a map h : Y-y R. Define a : R x X -► X as

a(t,x) = ß(fth(n(x))), a"(t,x)).

It is easily verified that a defines an action of R on X satisfying a(0,x) = a(l,x).

Hence the map à : S1 x X -* X given by

S(ç>(i),x) = S.(t,x)

is well defined, it gives an action of S1 on X which is a bundle lifting of a.

7. Actions of S1 on cohomology complex projective spaces. We first prove a

proposition that will be needed in the proof of the main theorem and it is also

interesting by itself.
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Proposition 7.1. Let S1 act on a cohomology complex projective n-space Y

and assume that dimzY< co. Then the fixed point set F is nonempty and has

at most n + 1 components.

Proof. The proof is based on the following well-known device. Let Ysi be

the orbit space of the diagonal action of S1 on Yx £si, where £si is taken as

the sphere s2N+1 with 2N + 1 > dimzY. There are [1, p. 50] natural maps

ny : Ysi -+ Y/S1 and n2 : Ysi -* Bsi and n2 is always a fibering with Tas fiber.

Consider the spectral sequence (£r) of n2 with the rational field Q as coefficient

domain. We have £2' = HsiBsi;H\Y;Q)) and the £œ-term is associated with

H*iYs¡;Q). Since E2' = 0 when either s or t is odd, it is easily seen that (£r)

is trivial. This enables one to compute readily that

{0, if k is odd,

m + 1     if fc = 2m, 0 g m ̂  n,

n + 1     if fc = 2m, n g m ̂  N.

The map ny is in general not a fibering but for each z = 7t(y) e Y/S1 we have

7î-1 (z) = S2N+1/S1y, where Siy is the isotropic subgroup at y. Now suppose

that F= çb. Then each S*y is a finite group and the rational cohomology of

S2N+1/S1y is trivial, i.e., H\S2N+1/S1y;Q) = 0 for all l^fc^2JV. It follows

from the Vietoris mapping theorem that ny *:H%YSi ; Q)-+h\Ysi;Q) is an iso-

morphism for all 0 ^ fc ̂  2JV. In particular, take fc even with dimzY< fc g 2JV,

we obtain from (1) that H\ Y/S1; Q) ^ 0. But this is a contradiction because

dimQY/S1 ^ din^Y/S1 g dimzY[l, p. 111].

Just as Ysi, we can form the space Fsi which is simply BsixF. The inclusion

/ : F -> Y induces a homomorphism i* : HkiYsi ; Q) -* H\Fsi ; Q). It is known [1,

p. 54] that i* is an isomorphism for all dimQY< fc :£ 2N. Take fc = 2N, by (1)

and the Kunneth formula we obtain dim //°(F; Q) ^ n + 1.

We now present the last main theorem of this paper.

Theorem 7.2. Let S1 act on a cohomology complex projective n-space Y.

Suppose that dimzY < co and that the action has finite orbit type. Then the

fixed point set F is nonempty, it has at most n + 1 components, sayCy,---,Ck

1 <¡ k :£ » + 1, where each C¡ is a cohomology complex projective n¡-space,

i = 1,2, •••,k, and

k

Z n¡ = n — fc + 1.
i = l

Proof. Let aeH2iY) be a generator. By (6.1), there exists a principal bundle

(X, Y, S\ n) such that n* : H\Y) -> H\X) is trivial and therefore X is an integral

cohomology (2n + l)-sphere according to (5.4). Let a : S1 x Y-» Y denote the

given action and ß : S1 x X -» X the action of the structural group. By (6.2), a
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has a bundle lifting ä:Sl x X -* X. a and ß together then define an action

y -.(S1 x S1) x X -+ X of S1 x S1 on X by y((gy,g2),x) = a(gy,ß(g2,x)). We claim

that y has finite orbit type. Suppose that (gy^JeG^S1 xS1. Let y = 7t(x), then

gt g Gy. If Gy =£ S1, i.e., Gv is finite, it is easily seen that Gx = Gy x N, where

NcGy is a subgroup. Hence there is only a finite number of Gx of this type since

a has finite orbit type. If Gv = S1, i.e., y e F, it is easily seen that Gx is then of the

form Gx = {(g,gky) \g eS1}, where fcy is some integer depending on y. More-

over, the function y -» fcy is continuous on F, hence it must be constant on each

component of F. By (7.1), F has at most n + 1 components, say Cy,-,Ck,

l = fc_n + l. To each C¡, i = 1,2, - -, fc. Let k, = ky, yeC, and í/¡ =

{(g,gki) \ge S1}. Then G* must be one of the H„ i - 1,2,—, fc. This proves the

assertion that y has finite orbit structure.

Now let F, be the fixed point set of H,. By a theorem of E. E. Floyd [1, p. 63],

F, is an integral cohomology mrsphere and by dimension parity, m, must be

odd, say m, = 2n,+ 1, i= 1,2, —,fc. It is easily seen that ß -.S1 x F,-*F, is a

free action of S1 on F, for which F¡/Sl =C,. By (5.2), C, is a cohomology complex

projective nrspace, i = 1,2, —,fc. Finally, by a theorem of A. Borel [l,p. 175],

we have the relation

Z (mi-(-l)) = (2n + l)-(-l),
i = i

that is,
k

Z n, = n — fc 4- 1.
¡ = i
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