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It is the purpose of this paper to answer the questions left unanswered in

§4 of [3]. For easy references, the statements to be proved are listed below. The

reader is referred to [3] for the terminology used in this paper.

Theorem 1. H ~ a2(í,r)n.í.s. H~a3(í,r).

Theorem 2. For A - 1 > - k/logr, H ~ a^f,k,b) n.t.s. H ~ a3(f,r).

Theorem 3. For k> 4, H ~ ciyit, k + 1, c) n.t.s. H ~ a^r, k, c).

A generating sequence for a Hausdorff matrix is totally monotone if and only if

the corresponding mass function is nonnegative and nondecreasing over the

closed unit interval. The technique used in proving each of the above theorems

is to show that the corresponding mass function is decreasing at at least one point

in the unit interval.

Proof of Theorem 1. If we let pit) = <x2(f, ̂/a^t, r), then pit) can be written

as the product of Xyit) and A2(i), where

*lW ílog(l/r)     ' ÁÁt)-  l-r' + i-

Let 9yiu) and 02(w) denote the corresponding mass functions. Then, from

[2, p. 781],

rO, Og,u<r,

0i(") = \ (1/log r) - (log u/log r) + 1, r g u < 1,

Ll, B-l,
and

f 1, « = 1,
02(u) =\

[rk, rk<u<rk-1, fc = l,2,3,-.

If 0(u) denotes the mass function corresponding to pit), then, using the com-

position formula
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(1) 0(u) = 02(«)+ J 9y(u/v)d92(v),

(see, e.g. [1, p. 196]) we obtain

255

9(u)

— r
k-l

[(1 - r) logu + (r(k - 1) - fc) logr - (1 - r)],

K — ¿, 3,4, •••,

logr

rk <u< r*"1,

1+d-r)(l-logtt)

logr

1, M = l.

For fc = 2,3,4, •••,

9(rk 4- 0) - 9(rk - 0) = rk~ \l - r)2/log r < 0.

Therefore 0(u) is not a totally regular mass function.

Proof of Theorem 2. Now let p(t) = ax(i, fc, b)/oL3(t, r). Then u(i) can be

written as the product of ky(t) and A2(i), where Xy(t) = a.y(t,k, b)-(t + 1), and

A2(r) is as in Theorem 1.

Writing í + 1 as b((t + b)/b) 4- 1 - b, we may write Ax(i) in the form

If 9y(t) denotes the mass function corresponding to hy(t), then

r  L    r*-i     W   f« Í        i \'-i

9y(t)   =

LI,    « = 1

Again using formula (1),

1, " = 1,

,  0=u<l

0(0 =

m—1     j r k-l    ts     /•»'■"m-1     j p Jt-1    Ls     /»i
.»-i

j-i

log-      dt

(1 - b)b

F(k) r^KpH^"<r™

m = 1,2,3, •••.

For rm<u<rm_1,

(2)
dflpQ = (1 - r)

du k
mi(ur-J)

6-1

f(Kj),
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where

(3) f(k,j) =sI1f^-{log(r>)r"1+ ^^{log^/a)}*-1

(4)    f(k+l,j)-f(k,j) =
b'^jlog^/u)}"-1

kT(k)
[/c + (l-b)log(//u)].

Case I. k = 2. From (3), /(2,;) < 0 whenever 1 + (1 - b)fclog(r>) < 0; i.e.,

u < a¡ = rJ exp( — l/b(b — 1)). If we consider those values of u in the interval

r < u < 1, then, from (2), j = 0. We now determine a value b0 such that we will

have u > r and u < aQ < 1. Note that, since ¿ > 1, r < a0 if and only if b > b0,

where b0 = [- 1 + (1 - (4/logr))1/2]/2. Thus, for r < u < a0, f(2,0) < 0.

Case II. For fc > 2, again consider u in the interval r < u < 1 ; i.e., / =

0. Then (4) shows that /(fc,0) is a decreasing function of k, provided k —

(1 - b) log u < 0; i.e., b > bx = 1 - (fc/logr). It is easy to show that bx > b0.

Thus, for b > b,,/(fc,0) is a decreasing function of k. Since bx > b0,f (2,0) < 0

for u in the interval r < u < a0. Therefore f(k,0) < 0 for k § 2, (2) is negative

for r < u < a0, and thus 0(u) is not a totally regular mass function.

Proof of Theorem 3. Let p(t) = a1(i, fc + 1, c)/oii(t, k, c). Then

«Hm)( 1 +

(í + c) n o-o
B = l

where a„ = - 1 + cos(2nn/k) + i sin(2nn/k), n = 1,2, —,/c — 1. Using a partial

fraction decomposition of the second quantity in the parentheses, we may write

it in the form
*-i

+ I coc„

t + c      B = 1fe(f-ca„) '

If 0(h) denotes the mass function of p(t), then

000 =
1    / *_1       \

■;-t (kuC -   I U"""     ,   0<M<1.
k + l\ B = 1 /

For 0 < m < 1,

(5)

1,

d9_
du

B-l,

^(-:?>o-
where p°B = <x„u c(atn+1). Since )?„ and ßk.n are complex conjugates,

2uc ,        fe even,

(6) I A
n = l

(t/2)-l

I    (ßn + ßk-n)
n = l

(*-l)/2

I     (ßn + ßk-n),
n = l

fc odd.
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ß. + ßk-n = - 4sin(y„ + inn/k))sininn/k)u-c c°8 ™,

where y„ = - c(logu) sin (2n7t/fe).

Since all values of n for which cos i2nn/k) ^ 0 give rise to terms bounded in u,

consider only those terms of the series in (6) from 1 to p, where p = [fc/4].

Let s„ = sin(y„ + inn/k)) sin inn/k). Then the series from 1 to p may be

written in the form

(-4)1 s„u~c cos (2,m/*)

n = l

Pick a sequence of values um of u such that

y y + in/k) = (4m - 3)n/2; i.e.,

u,„ = exp[{(7t/fe) - ((4m - 3)ji/2)}/csin(27r/fc)].

Then, for each term of this sequence, Sy = sin in/k). For each k > 4, and all m

sufficiently large, each of the quantities in parentheses becomes unbounded.

Therefore d9/du < 0 for an infinite number of values of a near 0, and 0(u) is

not a totally regular mass function.

The restriction k > 4 is a natural one, in order to guarantee that there will be

at least one value of n for which cos i2nn/k) > 0.

Moreover, formulas (5) and (6) enable one to give a shorter proof of Theorem

4.8 of [3], which I shall now do.

For k — 3, 0(u) is a totally regular mass function, provided we can show that (5)

is nonnegative. Using (6) this is equivalent to the condition that /(u) 2: 0, where

/(„) = 3 - 4«-«««W» sin(7l + (7r/3))sin(jt/3)

= 3-2V3uc/2sin(y1 + (7t/3)).

For 0 < u < l,/(u) possesses a minimum at each value of u for which yt = 2m7t;

i.e., u = expi-4mn/y/3c) /(u = exp(- 4mn/cyj3)) = 3(1 - exp(- 2mn/yj3))

> 0. Since /(0) = 1, the oscillations of / near 0 remain positive. If u lies in the

interval 0 ^ y% + in/3) ^ n, then exp(-4tt/3c^3) ^ u ^ 1, and /'(") < 0 for

all u in this interval. Since/(l) = 0,/(«) is nonnegative in this interval. We have

now shown that/(u) ^ 0 for all u in the interval [0,1], and hence 0(u) is a totally

regular mass function.

For k = 4, let

/(a) = 4 - 2^/2 sin (jx + in/4)) - 2uc.

=    _   4u -c <*>» <**«/*> [s

+   u-e(cos<2(p-lW')-c°M2p!i/fc))/s ,

+  u ~c (cos <4n/*) ~cos (6,t/i:)) is

+   S U~° (cos(2'I'"c)" cos C*1/*)))...)"]
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Let um denote those values of u for which

yt + (re/4) = (2m - l)re/2, m = 1,2,3, •••; i.e., wmexp(-(4m - 3)re/4c).

Partition 0 < u < 1 by means of 0<— < "2m+2<w2m+i < u2m<u2m-i < '" < L

We note that sin (yx + (re/4)) has a maximum value at u2m^x and a minimum

value at u2m, and uc is monotone increasing for 0 < u < 1. Hence, for u2m+1 _ u

= "2m, f(u) = 4 - 2[V2 + exp(- 8m - 3)re/4] > 0. For u2m g u = u2m_„

/(«) = 4 - 2 [ J2 + exp(( - 8m - 7)re/4)] > 0. Since/(0) = 4 > 0, all oscillations

near 0 remain positive. For exp(- n/c) ^ u = 1, /(«) = 4 - 2(^/2(1/^/2) + 1)

= 0. Therefore 0(u) is a totally regular mass function.

Clearly l/p(i) cannot be totally monotone, since limt_œl/p(i) = (k + V)/k > 1.
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