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1. The use of the finite part of divergent integrals started with A. Cauchy [1 ;2](2),

who used what he called an "integrale extraordinaire" to give a sense to the gamma

function for negative values of the argument. Since that time the notion has been

used and extended by various authors. J. Hadamard [3] extended the concept

to multiple integrals. He and F. Bureau [4] have used the finite part of divergent

integrals as an important tool in solving partial differential equations. Lately

L. Schwartz [5] and M. Lighthill [6] have applied the theory of distributions to

extend the idea of the finite part of divergent integrals.

P. L. Butzer [7] used the operational calculus of J. Mikusinski to study the

finite part of divergent convolution integrals. He has shown an extension in

Mikusinski's operational calculus of the integral ¡'09(t — u)uxdu with a _^ — 1

to FP j'0g(t — u)u"du with a any real number. This extension, at least in the

case when a is not a negative integer, is a very natural one. It is the work of Butzer

which is followed up in this paper.

In §2 a foundation is laid for what is to follow. The concept of an analytic

operator function, which will be necessary in §3, is introduced and the useful

concept of the logarithm of an operator is discussed.

The operator function [FP/(z, t)} which is associated with the function {/(z, t)}

is defined in § 3, and the relationship of this operator function to

Fpf g(t - u)f(z,u)du

is discussed when {f(z, t)} and g are such that FP $'0 9(t — ") /( z> u)du is

defined. It is found that for many functions {/(z, r)} and g, the operator pro-

duct g [FP/(z, i)] reproduces the finite part of the definite integral. The operator

product has the advantage that it exists for all operators g, whereas the finite

part of the divergent integral exists only if g satisfies certain smoothness con-

ditions. Also, the operator product is defined for certain functions {/(z, r)} for

which the finite part of the divergent integral has not been defined.
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In § 4 it is shown how to find the inverse of some of the operators [FP/(z, i)]

and how to utilize these in solving improper integral equations involving the

finite part of divergent convolution integrals on the half-line t ^ 0. A problem

posed by Butzer is solved. The problem is to solve the singular integral equation

Fpf/(i-«)^-du = a(0,      r>0.
•A) u

2.1. Let the interval t ^ 0 be denoted by /. The functions to be considered

in what follows will unless otherwise noted be functions on / to the complex

numbers. With the usual notion of pointwise addition and multiplication by

scalars these functions form a vector space over the field of complex numbers.

The symbols / and {/(i)} will be used to denote an element of this vector space;

the function whose value is one for all t e I will be denoted by n, and the function

whose value is zero for all tel will be denoted by 0. fit) will denote the value

of the function / at the point t. The function |/| is related to the function / by

the definition |/|(i) = |/(0| for aH tei- Greek letters a, ß, (,-■■ will generally

denote scalars.

If a function is integrable, bounded, absolutely continuous, etc., on every

closed and bounded subinterval of / it will be said to have this property locally.

The space of continuous functions on / will be called C*. If/„, n = 1,2, •■•

are in C* we say /„ ->/(C*) as n -» oo if the f„ converge uniformly to / on each

compact subinterval of /. The space of locally integrable functions on / will be

called L*. If f„,n = 1,2, ••• are in L* and $\f(x) -/„(x) | dx-► 0 as n -» oo for

for each X>0we will say /„ ->/(L*) as n -> oo.

We will give a brief survey of the foundations of Mikusiñski's operational

calculus. Most of what is in this section can be found in Mikusiñski's Operational

calculus [8] and also in Erdélyi's Operational calculus and generalized

functions [9].

Let / and g be locally integrable. The function defined by

k(0 = I   /(' — u)giu)du     almost all í ^ 0
Jo

is called the finite convolution of / and g. It is very well known that the finite

convolution of two locally integrable functions is a locally integrable function,

and the finite convolution of two continuous functions is a continuous function.

The finite convolution defines a multiplication which makes L* and C* into

commutative rings. This multiplication will be denoted by juxtaposition; thus

the above equation will be written fc =fg. It is a corollary to a theorem of Titch-

marsh that L* and C* have no divisors of zero. The ring C* can be extended to

a field F, its quotient field, whose elements are of the form a/b, where a,be C*,

and where 6^0. These elements are called Mikusiñski operators or just opera-
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tors. The ring L* is isomorphically imbedded in F under the mapping/-»/c/c

where fe L*, c e C*, and c # 0. The field of complex numbers is isomorphically

imbedded in F by the mapping a -> a • 1 where 1 is the unit element of F. The

unit element of F will be written as 1 ; the zero element of F, like the function

{0}, will be written as 0, and in general, operators of the form a • 1 where a is

a scalar will be denoted merely by a.

Definition 1. Take fneF, n = 1,2, ■■■. Then /„-»• f(F) as n -> oo if and

only if there is a ft ̂  0 in C* such that bfn e C* for n = 1,2, ■•• and bfn -+ bf(C*)

as n-* oo.

The F limit, when it exists, is unique.

f(X) is said to be an operator function if f(X) is a function whose range is in F.

If/'<=(— co, oo) then C(I')C* is the vector space of operator functions f(X), X e /',

such that f(X) = {f(X, t)} is continuous on V x I. If S is a region in the complex

plane then C(S)C* is the vector space of operator functions f(z) = {f(z, t)}

which are continuous on S x I. Convergence in C(I')C* and C(S)C* means

uniform convergence on compact subsets. There are corresponding spaces C(I')F

and C(S)F of operator functions. If f(X) (or f(z)) is such that there is a nonzero

a in C* and af(X) e C(I')C* (C(S)C*) then/(A) (f(z)) is said to be in C(I')F (C(S)F).
A sequence fn(X) in C(I)F converges to f(X) as n -> oo if there is a nonzero a in

C* such that af„(X) e C(I')C* for each n and this sequence converges in C(I)C*

to a/(A) as n -»• oo. Convergence of a sequence /„(z) in C(S)F is defined in an

analogous manner.

Iff(X) is in C(I')F and there is a nonzero a in C* such that af(X) is not only

in C(l')C* but the (d/dX) {af(X, t)} exists and is continuous on F x / then f(X)

is said to be in CX(I')F. If there is a nonzero aeC* and af(z) is not only in C(S)C*

but for each t = 0, a/(z, i) is analytic and (d/dz) {af(z, t)} is in C(S)C* we shall

say that f(z) is in A(S)F.

Definition 2. Let f(X) be in CX(I')F and suppose that a # 0 is an element

of C* such that a/(A) e C(I')C*. We define

ra) = i¿{fl/a,0}.

The derivative/'(z) of an element of A(S)F is defined in analogy to Definition 2.

Definition 3. Let V be a bounded subinterval of E1. Suppose the operator

function f(X) to be in C(I')F. Let the scalar function (¡>(X) be integrable over /'.

If a ^ 0 is such that af(X) is in C(I')C* the integral of tp(X)f(X) is defined by

j   ^>(X)f(X)dX = ^{ j cj>(X)af(X,t)dx}.

If f(z)eC(S)F where S is an open region in the complex plane and J is a recti-

fiable curve contained in S, the line integral over J is defined by
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f/(z)dz = M   Í af(z,t)dz\

where a # 0 is such that af(z) e C(S)C*.

Let the scalar function tp(X) be locally integrable and let the operator function

/(A) be in C(0 = A < co)F. The integral of f(X)tj)(X) on the infinite interval [0, co)

is defined by

»co -T

f(X)tj)(X)dX = lim       f(X)tp(X)dX
Jo T - co J0

when the limit on the right exists. The limit on the right hand side is taken in the

sense of Definition 1.

The values of the integrals defined above and the derivative defined in De-

finition 2 do not depend on which particular element a is chosen to make af(X)

a continuous function.

Definition 4. Suppose <x<0<p\ f(X)eCy[a,ß}F, /(O) = 1, we F, and

(d/dX)f(X) = wf(X) for all Xe(a,ß). In such a case w is said to be a logarithm on

\a,ß} and/(A) = e^ on [a, ß}.

It is known [9, p. 68] that an operator w which is a logarithm on an interval

a = A^/3 is in fact a logarithm on each finite interval [a^^j] where oí] < ß,

a < ßy, and the extension for/(A) from [a,/?] to (-co, co) is unique.

Every function in L* is a logarithm. An example of a logarithm which is not

a function is the operator s = 1/n. The operator e~*s is a shift operator when

A > 0. If g = e"As/, A > 0, then g(i) = 0 t < A, g(t) =/(i - A) when í ^ A.

The operators of Mikusiñski are closely related to the Laplace transform.

The relationship between the Laplace transform and that subspace of F which

consists of all operators of the form s"a, where a e C*, a(t) = 0(e") as r -> co and

n and k are positive numbers, has been investigated by J. D. Weston (see [10]

and [11]). The following theorem of Mikusiñski suggests the existence of some

relationship.

Theorem 1.   Let f be locally integrable, then,

re-xsf(x)dx=f.

Proof. J. Mikusiñski [8, pp. 337 and 377]. This theorem will be extended

later to the case in which the integral exists only as a "finite part."

2.2. If an operator w can be expressed as the quotient of two real, continuous

functions it is said to be a real operator. If w = e/f'is a real operator where e,fe C*

then e and/have a common factor ce F such that a = e/c and b =f/c are real

elements of C*. Thus any expression of a real operator in terms of elements of

C* is, except for common factors in the numerator and denominator, in terms
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of real fonctions. Every element we F has a unique decomposition  Wy + w2 i

where wx and w2 are real. The real operators form a subfield of F.

The following Lemma is due to Mikusiñski [8, p. 192].

Lemma 1.    Let F(l) = ex" and F(l) = 1 then a = 2nki where k is an integer.

Although some operators are called logarithms they are not said to be the

logarithm of something. However, the preceding Lemma allows us to make

the following definition.

Definition 5. Let w be a real logarithm and suppose ew = a, then w is called

the logarithm of a (i.e., In a = w).

In this case the operator function eXw is alternatively denoted by a\ It is seen

by Lemma 1 that the logarithm of an operator, if it exists, is uniquely defined.

If a is a positive scalar the operator ln(a • 1) = (In a) • 1 where 1 is the unit element

of F and In a is the principal value of the logarithm of a- In (a • 1) will be written

as just In a. The logarithm obeys most of the rules expected of a function with

this name. The following statements are easily proved by referring to Definition 5.

Lemma 2.

(i)     lna + In b = In ab,

(ii)    a > 0; lna + lna = lnaa,

(iii)   a real; lna" = alna,

(iv)    lnl/a = -lna.

Statements (i) and (ii) are true in the sense that if any two of the quantities

involved exist the third quantity exists and is given by the formula shown.

Statements (iii) and (iv) are true in the sense that if one side of the equation

exists the other does and is given by the formula shown. Thus the function

given by fia) —lna is an isomorphism between the multiplicative group of

operators which have logarithms and the additive group of real loga-

rithms.

If lis real then hx = eMs {ln,} + C), [12], where C = .577- is Euler's constant.

Thus, In n = s{ln t} + C = s{ln y t} where y = eC. By Lemma 2 we also have

Ins = -s{lny/} and {lni} = - (In y s)/s. Of course many operators have loga-

rithms. The following theorem yields a large class of functions which have

logarithms.

Lemma 3. On each compact subinterval of X> -1 the quantities CA„

and id/dX) CXn converge uniformly to zero as n -» oo.

Proof.

TjX + 1) sin(n-A)T(l + l)r(n-A)

*•" ~    Tin + 1)T(A - n + 1) T(n + 1)

Stirling's formula shows ^„-»0 uniformly on each compact subset of X > — 1.
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To see that id/dX) Ckn tends to zero uniformly differentiate the right hand side

of the above equation and use the fact that T\n - X)/T(n - X) = ln|n - X\

+ 0(l/n).

Lemma 4. If aeL* and an, n = 1,2, •••, is a uniformly bounded sequence of

complex numbers, then Z„ = ia„an is convergent (L*). In particular nZ„ = iana"

is convergent C*.

Proof. The first statement is proved in [13]. The second statement follows

immediately from the first statement.

Lemma 5.   If X > — 1 then

d "  (_iy"+i
-¡yicx,n= Z   —-CAiB_m for n = 1,2,- ••.
oa m=1      m

Proof. This is clearly true for n = 1. The general case follows by induc-

tion.

Theorem 2.   If aeL* is real then

oo     /     y \n +1

w= Z   ^-a"
» = 1 n

is a logarithm and ln(l + a) = w.

Proof. For X > -1 let /(A) = E°°= 0CA^ a ". Then /(0) = 1. Let g(A) = n a/(A).

By Lemmas 3 and 4 the series g(A) = n Zn=oQ,na"+1 can De differentiated term

by term and the result converges in C(A > — 1)C* to g'(A). Thus/(A) e CyiX> — l)F;

moreover, by Lemmas 3 and 4 term by term multiplication of the series for w

and the series for giX) is justified. Rearranging the terms and using Lemma 5 it

is seen that M>g(A) = whafiX) = g\X) = haf\X) and thus wfiX) =/'(A) so that w

is a logarithm and /(A) = eXw. Since /(l) = 1 + a we have ln(l + a) = w.

Corollary 1. If f is locally absolutely continuous and /(0) = a > 0 then

In / exists.

Proof. In fact, / = ah + { ¡of'iu)du} = ah + f'h = an(l + if/a)) so that In /

= ln(l + (/'/a)) + lnn + lna.

It is not necessary that fit) be positive for every or almost every t ^ 0 in order

for/to possess a (real) logarithm. For example

oo      fç.\n t\n

In {cosí} = Inn + ln(l - {sint}) = s{lnyi} + Z '  .
n = l        n

2.3.   We now introduce analytic operator functions.

Definition 6. Let S be an open region in the complex plane, /(z) is said to be

an analytic operator function on S if /(z) is in Aiz)F.
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Thus/(z) = nz is an analytic operator function on each half-plane Rez > a,

a real. The operator function V(z)hz is analytic on each such half-plane if the non-

negative integers are deleted.

Analytic operator functions have many of the properties of analytic functions ;

thus

Theorem 3.   Let f(z) be an analytic operator function on S. Then

(0    If f(z) = 0 on a set   which   has an accumulation point in S, f(z) = 0

everywhere on S;

(ii)    if J is a simple, closed, rectifiable curve in S and z is in the bounded

region enclosed by J then

1   {Z)       2niJj(C-zy^ai"

(iii)    if K(z0, p) = {z | | z — z01 < p } c S then for z e K(z0, p) we have

/(z)=   Z  ;-^(z-z0)«.

The series is convergent (F) to f(z).

Proof. The proofs follow directly from the analogous theorems in complex

variables. For example, to prove (ii) it is noted that for a ^ 0 and af(z) = {g(z,t)}

in A(S)C* we have for each t e I

Since z is not on J and {g(z, t)} is continuous on S x I, equation (1) shows that

(d"/dzn) g(z,t) is continuous at each point of Sx I, that is, g(n)(z) is in C(S)C*.

Thus

and by definition this is

2ni]j(i;-zy+i  ^

It is seen from equation (2) that an analytic operator function has the property

that if af(z) is in A(S)C* then the same function a is such that af{n)(z) is in A(S)C*

for all positive integers n.

In fact Theorem 3 (iii), characterizes analytic operator functions. That is, if

fneF, n = 1,2, •■•, are such that if Zî°(/i,/«!)(zi - Zo)" is convergent (F) then

the operator function f(z) = Zt (fjn !) (z - z0)" is analytic on | z - z01 < \zx - z0|.
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If f(z) is analytic in a region which includes the origin and /(A) = eXv> when

z = A is real the power series expansion,

Jtw
n

e = I v>
converges for sufficiently small A. It is not true that every exponential eXw

is the restriction to the real axis of an analytic operator function.

Example.   For

i, 0 if A > t
aeC*,     ae ÁS =   ,

\a(t-X)   lfA^i

If /(A) = {/(A, /)} is the restriction of an analytic operator function then /(A, i0)

must be the restriction of an analytic function. In order for

m'to) =   \a(tö-X),xVt°0

to be the restriction to the real axis of an analytic function it is necessary that

a(r0 — A) = 0 for all A = i0. Since this must be true for all i0 ^ 0 we have a = 0.

Thus there is no nonzero aeC* for which ae_Ksey4(S)C* and thus e~Xs is not

in A(S)F for any region S which intersects the axis of reals.

Theorem 4. Suppose that w is a real operator and that both w and iw are

logarithms. Then e2W = e^-+'^w ¿s analytic in every bounded region of the

complex plane.

Proof. First we show that eXw is real for real A. Let fy(X) and f2(X) be the real

and imaginary parts of eXw. Take a e C* to be a nonzero real function such that

aeXw = afy(X) + iaf2(X)eCy(-N = A = N)C* for some positive N. Then af'y(X)

+ iafïW = waeXw = awfy(X) + iawf2(X) on (-N,N) so that both af'y(X) = awfy(X)

and af^X) = awf2(X) on (-N,N). Thus/x(A) =fy(0)eXw and/2(A) =/2(0)e/w. Since

/j(0) =/(0) = 1 and/2(0) = 0 it follows that eXw is real for all real A.

If el>tw = gy(p) = ig2(p) where gy(p) and g2(p) are real it can be seen in a sim-

ilar manner that g\(p) = — wg2(p) and g'2(p) = wgy(p). Moreover, let a be a non-

zero real function such that both aeXw and aeiftw are in Cy(-N,N)C* for N > 0.

By use of the above two differential equations it is seen that aezw satisfies the

Cauchy-Riemann equations in the rectangle -N<Rez < N, - N < Im z < N for

each í ^ 0. Thus, by definition, ezwis an analytic operator function in this region,

and since such an a can be found for every positive N, ezw is an analytic operator

function in every bounded region of the  z  plane.

Theorem 4 together with the last example confirms the well-known fact that

the operator is is not a logarithm.

3.1. Theorem 3 shows the possibility of analytic continuation of analytic operator

functions.
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Definition 7. Let Sy and S2 be nonempty regions in the complex plane and

let S2zz> Sy. If/i(z) is an analytic operator function on S y and/2(z) is an analytic

operator function on S2 such that

/iO) =/2(z)

whenever zeSy,f2iz) is said to be the analytic continuation of/^z) to S2.

We will use analytic continuation in order to define the finite part of some

operator functions.

Definition 8. Let Sy and S2 be nonempty regions in the complex plane such

that S2zDSy. Suppose that giz) e AiSy)C* and {giz, t)} is continuous on S2 x (0,oo);

moreover, for t > 0, g(z, r) is analytic on S2. If /(z) e AiS2)F is an analytic ex-

tension of giz) as an operator function to all of S2 then /(z) is said to be the

finite part of {giz, t)} arising from Sy. This is written

[FP 0(2,0] =/(z).

It is clear from the uniqueness of analytic continuation that the finite part of

{giz, t)} arising from a given region is unique.

An example of a function whose finite part can be defined is {a(z,i)} = {f2/r(z +1)}

where S¡ = {z | Re z > 0}. For each positive / the function {/(z, i)} = {i7T(z + 1)}

is analytic in the entire z plane and the operator function /(z) = hz+1 is equal

on Sy to {giz, t)}. Since hz is an analytic operator function in every half-plane

Re z > - n, Definition 8 gives

[FPrF+T)H"
in any half-plane Re z > — n.

It should be noted that a particular nonintegrable function {kit)}, for example

{fc(t)} = {( ~3/2/T(-l/2)}, does not define a unique operator [FPfc(r)] having the

property that [FP/(z,i)]z=I| = [FPfc(i)] whenever/(z,,i) = fc(r) for all positive i.

For example

r       f f + i/2  i        ,-1/2,,
Lrrr(z + i) + r(z + 3/2) JI=3/2

and

ÍFP_íl—1 m h~m-
rr(z + i)L=3/2

however

|_f_        f + 1/2 \ í  r312  )    i    tz    \

\ Viz + 1) + T(z + 1/2) )z = _3/2 == ( T(-1/2)J = \Tiz + 1) U_3/2-

Thus when speaking of the finite part of a particular function care must be used

to show how it was calculated. In spite of this the notation [FP/(a, f)] will fre-
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quently be used in place of the more cumbersome [FP/(z, t)]2=t[ when there is

no possibility of confusion. In particular [FPi2] and [FPiz/r(z + 1)] will be those

analytic operator functions arrived at by using the right half-plane for Sx.

Definition 9.   Let n be a positive integer and suppose that 0 _ /S < 1.

(i) Let a = —n — ß and let the integrable function f be n times differentiable

at the point t. The quantities Ix(f t) and FP j'0f(t - u)u"du are defined by the

equation

(3) /.(/, i) = FP f/(( - u)u"du = lim (  ¡'f(t - u)u"du + Q(e) )
Jo '-*0   \   Je I

where Q(e) is that unique linear combination of lne and negative powers of;

which causes the limit on the right hand side to exist.

(ii) Let the function m possess n derivatives each continuous on [0, t\. Then

for some continuous function g

m(u) = u"g(u) + "Z   ^.«"~*
k = 0        K-

on [0, f]. The quantity FP J"Ó/(í _ u)(m(u)/un+p)du is defined by the equation

FP u - u) =&&*=r m - u) mu+nï ä> r **-;>*

whenever / is such that the integrals on the right exist.

Definition 8 does not yield a value for the operator function [FPiz] when

z = — n. In analogy to what has been done by Hadamard the value of the operator

[FPiz] at z = — n will be defined by means of residues. The operator function [FPiz]

has a simple pole at z = — n and the residue at z = - n is given by

lim  (z + n)[FPíz] =   Res [FPíz]
z-* — n z~—n

where the limit is taken in the sense of convergence in F. It is seen that

(-1)"-1 h~"

The operators [FPîz]î = _„ will now be defined by the equation

(4) [FPíz]í = _„ = ^ ( [FPiz] - ^f^-]) •

Evaluating this limit gives

FPr" = ("^      s"{lnt + y.-J,       m = l,2,-

where y0 = 0 and y„-x = 1 + 1/2-1— + l/(n - 1) when n > 1. The operator

function [FPi2] as defined by Definition 8 and Equation 4 is the same as that

arrived at by Butzer although he utilized quite different considerations.
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The following Lemma is well known. See for instance [4].

Lemma   6.   Suppose ß = —n—ß, n is a positive integer, 0 ^ ß < 1, t > 0, and

f possesses n derivatives at the point t. Then

(i) ifß*0

FP/> - U^du = T0F) ifo - «>-'d«'

(ii) if ß = 0

r! (-1V-1   d" r'
FP J f(t - u)u" " du = K    ¿        — J /(i - u)^ + In«)du.

In certain cases an operator which is not a function can be said to be equal

to a function on a particular subinterval of [0, co]. For the following definition

see Erdélyi [9, Appendix], or Mikusiñski [8, Part VI, Chapter III].

Definition 10. Let there be an n such that n"/e C*. Suppose that g = h"f is

n times differentiable on the open interval (a, b). Then the operator / is said to

be equal on (a, b) to g(n). This is written

/(l) = g<")(0       on(a,b).

Thus [FPrz] = f on (0, co) in the above sense and if m has a sufficient number of

derivatives on / then [FP m(t)/tz} = m(t)/tz on (0, co). If/is differentiable a sufficient

number of times so that FP \0f(t — u)u"du exists for each t on (0, co) then this is

equal in the sense of the above definition to [FPf}f(t) on (0, oo). This is an exer-

cise in [9, p. 133] when a j= — n, but it follows for any a from the above definition

and the preceding lemma. That this can be extended to [FP m(i)/f} is clear from

the definitions. Thus

Theorem 5. Let a = n + ß where n is a positive integer and 0 ^ ß < 1. Let

m have n derivatives each of which is in C*. Suppose m(0) # 0. Then if the locally

integrable function f is n times differentiable on (0, co)

FP f7(i - m) ̂du = kw(t) t > 0

where k is a locally integrable function. The operator

is such that

g(t) = ki"\t)       on (0, oo)

in the sense of Definition 10.
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That the finite part [FP/(z, i)] arising from S y is unique is clear; however, that

the operator function in AiSy)C* which gives rise to the finite part must be com-

pletely stated including its domain of definition S, is seen by the following fact.

We can have functions /x(z) and /2(z) which are in AiSy)C* and AiS2)C* re-

spectively, where Sy and S2 are disjoint regions both contained in a region S3,

and such that /t(z) and /2(z) have different analytic continuations to all of S3 as

operator functions; however, for each t > 0 fyiz,t) and/2(z, i) have the same

analytic continuation to all of S3. In this case it is clear that statement of the do-

main is necessary. An example is

^ = 7(W~z2/4'2     1^*1 <*/4,

Clearly, for each t > 0 these functions have the same analytic continuation to

the entire complex plane. In [8, Chapter VIII] it is shown that both ,/s and iy/s

are logarithms and by Theorem 4 we know that e~zVs = e~xVs e_vVs is an analytic

operator function in every bounded region of the complex plane; thus, e_zVS/z is

an analytic operator function in every bounded region of the complex plane which

does not include the origin. It is known [8, pp. 221-222] that

e-*2/4!2

V(^3)

when z = x > 0. Since /t(z) is equal to e_zVs/z for an infinite number of z (all

positive z) we know by Theorem 3 (i), that /t(z) = e~zVs/z in the entire region

| arg z | < 7t/4. Since this is an analytic operator function in any bounded region

not including the origin we have that the finite part of {e'^'^/Jint3)} arising

from | arg z | < ji/4 is

„-z2/4(2

FP
e

s/int*)

On the other hand the finite part arising from ¡ arg z | > 37i/4 is

e-z*/4tiz /4t    1 i>zVs

FP " = - -_
V(^3)J * '

If [FP/(z, f)] is of a particular type, namely if [FP/(z, i)] = s"giz) on S2

where giz) e AiS2)C*, it is not necessary to specify the domain S y from which

the finite part arises. This follows from

Theorem 6. Let Sy and S2 be regions in the complex plane, S2zz> Sy. If

fiz)eAiS)C*, giz) = AiS2)C*  and suppose that the finite part of {/(z, i)}
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arising from Sy is [FP/(z,í)] = s"g(z) on S2. Then for each t > 0, (d"/ôt" )g(z, t)

exists and

d"
jf9(z,t) =/(z,i)       for zeS2.

Proof. Suppose that n = 1. The case for general n follows by induction. When

n = 1 we have

g(z,t)=     f(z,u)du,       zeSy, tel.
•'o

For t >e >0, f¡f(z,u)du is analytic in S2 and the derivative with respect to t is

f(z, t). Now g(z, t) and ¡'J(z, u)du differ only by a constant then on S2. Thus

g(z, t) possesses a derivative with respect to t when t > 0 and this derivative is

equal to f(z, t).

In particular if [FP/(z, r)] = s"g(z) in S2 is the finite part of f(z, t) arising

from S y c S2 then the finite part arising from any region S3 c S2 is also s"g(z).

Definition 3 tells how to form the integral with respect to a parameter of an

operator function. In order to get an analogue of Theorem 1 in the case of divergent

integrals we need the following definition.

Definition 11. Suppose /(A) e C„[0, p}F. Take a nonzero element a in C* such

that af(X)eC„[0,p}C*. The integral FP ^(f(X)/X')dX where a = n + ß, n ^ 1

is an integer, and 0 s; ß < 1 is defined by

If the limit in the sense of convergence in F exists as p -> co then

Jo    Á »-»     Jo

The improper integral FP fS(af(X, t)/X*) dX exists and is in C* so that the defi-

nition makes sense. Moreover, the integral is independent of the function a so long

as a has the properties required of it in the definition. The transformation T(f(X))

= FP Jo(/(^)Aa)dA is a linear transformation on Cn{0,p}F.

Theorem 7. Let a = n + ß where n ^ 1 is an integer and 0 ^ ß < 1. Suppose

that mmeC* for fe = 0,l, —,n; then

Proof.   Let {m(i)} = «• Suppose ß = 0. Then

/»)*    -As /»/iI.n+1   -As n+1
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where

Í"(t — XY
K        ' dX       whenp<i,

l(p,t) = FP f  *L-^dX       when p £ f.

Thus,

/(p,í) = (-l)"_1nílní + í Z   (~^"  .      CM,       p^(
k = 2 K— l

which after some computation is seen to be

I(n,t) = (-I)""1 n(iln t-t + yn_xt), t £ p

so that I(p)6 C* for each p > 0 and I(p) -y (-1)""1 nh{In í + 7B-i}(F)

C:ce~Xs (-1V-1

which proves the theorem in the case m = h, ß = 0.

When m = n, /? # 0 the proof is similar. Since

m(A) = PjO) + "£ mw(0) A,_a

where {öf„(i)Aa} is locally integrable. Theorem 1 together with the special case of

Theorem 7 just proved shows that

FpfV^A-   Í^Uz^LFPt-]
J0 / {    t     ]      k = 0     k\

and this is the statement of Theorem 7.

3.2.   We give a short table of some operator functions which are finite parts.

Table Of Finite Parts Of Functions

{f(z,t)} [FP/(z,0] Region of

Validity

1. (-Q „z allz

2. {iz} r(z+l)/iz+1 z #  -1, -2, ••
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3.      {ízlnr} OKz + l) + s{lnyí})[FPrz] z-s-1,-2,»

{T'inr} (yn + s{lnf})[FPrn]
z  =   — n

n =  1,2,-

Jo(t) j (t) _ y (-^"l
JoW     „to   2-(n!)2|

+ „t0     22"(n!)2 Ke^"'     z')>     3

-*2
e~  '   ) e_zvs

¿T/Ipñ) ~J~ arisin8 from | arg ̂  | < tt/4 z * 0

y0 = 0, rn-i = 1 + 2 + "" + i when n ^ 1.

y = ec, C = .577 ••• is Euler's constant.

r'(z)
>A(z) =

r(z)

All of the entries in the table except number 3 have already been discussed.

Entry 4 is an example of the more general [FPm(í)/ís]. A direct application of

Definition 9 gives entry 3 for z not a negative integer and for the negative integers

the entry is determined by residues.

4.1. The inverses of several of the operators which represent finite parts have

been found by Butzer [7]. Ifa= —n — ß, 0 < ß < 1 and n is a positive integer

the operator

(5) [Fprp1 =
T(a + 1)

is a locally integrable function. The inverse of [FP t *] = s{ln t} is J^ tu~ VyT(u) du

which is also a locally integrable function. For n ^ 1

(6,     [FP,-T'-(-irT(»){ [f^"" ¡ *-'■    " - ti™

where >>„_! = ye~yn~ ] and for n > 1 these functions are loccally absolutely con-

tinuous. These facts enable one to find the inverse of [FPm(i)/l].

Lemma 7. Suppose m(k) e C* when k =0,1, •••, n ^ 1 is an integer, a = n + ß

whereOz%ß<i. Suppose that at least one of the quantities mik) (0), fc = 0,1, • ••, n — 1

is not zero. Then [FPw(í)/ía]_1 is a locally integrable function.

Proof. Let fct be the first integer such that mik'\0) ± 0. From §3.2 we know

that



1963] OPERATIONAL CALCULUS 361

»-1   m(k)f

^]-^lT^i
where gneC*. Let

/-(*.+    "Z   ^P- [FPr*-]) [FP^-T1
, \       k=k¡+i    K- i

and

mw(0)

Then /e C* and /? 7e 0 is a scalar. We have

[FP^'T1

[»¥]   - /+/?     '

The inverse of/+ )S is

iz(-iri4-V=Uz ("1)r

Since fe C* the last sum is likewise in C*. Thus,

[FP~]_1=|[FP/kl_Tl + E-™11"-""1 ( £ Í^+TC')

is locally integrable since it is the sum of a locally integrable function and a con-

tinuous function.

It can now be seen how to use operators in order to solve singular integral

equations.

Theorem 8.    Let a= —n—ß, where 0^/?<l,   and  n   is  a  positive in-

teger. A necessary and sufficient condition that there exist a function f such that

(7) FP fit - u)u"du = git)       all t > 0
•'o

is that both of the following conditions be satisfied:

(i) g is the nth derivation on (0, oo) of a function k which is locally in-

tegrable;

(ii) the operator s"k [FP i"]" 1 is a locally integrable function which is n

times differentiable at each point of the interval (0, oo).

// conditions (i) and (ii) are satisfied all of the solutions to Equation (7)

are given by

(8) / = /, + /o

where

fyit) = (s'klFPf]-1)®       on (0,oo)

and /0 is any function such that
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(9) /o(0 = ((«o +«!» + ■•• + <xm-^'l)ÍFPf]~lK*)       on (0, oo)

where the a 's are complex numbers. The functions are equal to the operators

in the sense of Definition 10.

Proof.    First we show that the set of all solutions to the homogeneous equation

FP I f(t-u)u"du = 0      all i>0
Jo

is given by Equation (9).

Let/be a solution to the homogeneous equation. By Lemma 9 the operator

/[FP/a] is zero on the interval (0, oo) and thus it is a polynomial in s. We have

/ = [Fprr f w)

for some integer p. /must be at least locally integrable in order that FP j'0f(t—ufu'du

exist according to Definition 9. If / is locally integrable it must be that

p i£ n — 1. Thus every solution to the homogeneous equation must be of the

form given in Equation (9).

From Equations (5) and (6) it is seen that the operator specified in Equation (9)

is indeed a locally integrable function which is infinitely differentiable for each

positive t. Thus FP $¿f0(t — u)u"du is defined by Definition 9 for each positive t.

The operator/0[FPia] = So-1 °¡¡s' is equal to zero on (0, oo) in the sense of De-

finition 10. Thus by Theorem 5

FP f fo(t - u)u'du = 0       all i > 0.
Jo

Thus we have proved that the set of all solutions to the homogeneous equation

is given by Equation (9). Let / be any solution to Equation (7). A function / is

then a solution to Equation (7) if and only if / = / + /0 where f0 is a solution

to the homogeneous equation. Thus, if there is one solution we can find all the

solutions. We will now show that conditions (i) and (ii) together are necessary

and sufficient conditions in order that there exist one solution to Equation (7).

Suppose that (i) and (ii) are satisfied. Letfy = s"fc[FPi"]-1. Since/t is n times

differentiable the integral FP JÓ/iO — u)u"du exists for each t > 0. Define g y by

FP Í fy(t - u)u"du = gy(t)       all t > 0.
Jo

Since

/i[FPia] = snk,

it is seen by Theorem 5 that s"k(t) = gy(t) on (0, oo) in the sense of Definition 10.

But s"k(t) = g(t) on (0, co) so that

git) = 9i(t)       all t > 0.
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Thus fx is a solution to Equation (7).

On the other hand if Equation (7) has a solution, Theorem 5 shows that (i)

is satisfied, that is g(t) = k(n)(t) for each í > 0 for some locally integrable function

k; tins solution/is such that

/[FPi'] = g2

for some operator g2 and

g2(t) = kw(t)

on (0, oo) in the sense of Definition 10. Thus

^r(h"g2)(t) = fc("'(i)

at each point of (0, oo). Solving this differential equation we get

n

h"g2   = k + Z a„_rnr.
r=l

Thus
g2 - snk + Z a„-rnk-n

r=l

and

g2 [FPi"] - » - s"k [FPi1] ~l  = f- s"k [FPi"] -x = ( Z a/) [FPi1] "J.

/ satisfies Equation (8) and the right hand side of the above equation satisfies

the homogeneous equation, thus the operator s"fc[FPi"]_1 satisfies condition (ii)

and Equation (7). This completes the proof of the theorem.

These same methods may be used to solve singular convolution equations

where the convolution involves m(t)/(tn+ß) rather than l/(f+ß). The fact that the

operator [FP m(t)/f~\ can be expressed in terms of the operators [FPi*-01] by

the representation

[fp^.

allows us to state a lemma analogous to Lemmas 7 and 8 but involving [FP m(t)/f]

rather than [FPi1].

Theorem 9. Let a. = n + ß, n positive integer, 0 ^ ß < 1. Let m be a con-

tinuous function on I with n continuous derivatives. Suppose m(0) # 0. A neces-

sary and sufficient condition that there exist a solution f to the equation.

FP f f(t-u)^-du = 0(t)       allt>0
Jo t<l

is that both of the following conditions be satisfied:

n— í

gn + I
k = 0

mw(0)

fc! [FPi*-"]
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(i)     g is the nth derivative on (0,oo) of a locally integrable function k;

(ii)    the operator s"fc[FPm(f)/ia]-1 is a locally integrable function which is

n times differentiable on (0, oo).

Every solution is of the form

f = fi+fo

where fyit) — (s"fc [FP m( 0/f°J-1)(0 on (0, oo) and f0 isa solution to the homo-

geneous equation

0—du = 0       allt>0.¡'fit - «)
-o

The proof is essentially the same as the proof of Theorem 8 and will not be

given again.

By Lemma 7 [FP m(í)/ía] ~1 is locally integrable and if it is n times differentiable

on (0, oo) there will be nonzero solutions to the homogeneous equation. The

functions / = a0 [FP m(0/ia] ~ * with a0 a complex number are such that

/ FP^W = an

and the operator a0 is equal to zero on (0, oo) in the sense of Definition 10. Thus

Theorem 5 these functions satisfy the homogeneous equation. The dimension

of the vector space of solutions to the homogeneous equation is dependent on

the order to which m' vanishes at the origin. As we have seen when m = h

(i.e., m'(0), ■••,m(',_1)(0) = 0) the dimension is n.

4.2 The results discussed in the preceding section will be applied in this section

to solve the particular singular integral equation

FP I fit - u) J-^-du = git)       all t > 0.
Jo

He re J0 is the Bessel function of the first kind and of order zero.

The operator r = (s2 + 1)1/2  is  defined  by the power  series expansion  of

s2 + 1)1/2, and from Mikusiñski [8, p. 456] it is known that

x2„      Í2n
ir-sy =|y J2B(0j     n = l,2,-

where J2n is the Bessel function of order 2n. In the remainder of this section we

shall use the symbol r to denote (s2 + 1)1/2 and the symbol p to denote (z2 + 1)1/2

where z is a complex number. If a is a locally integrable function which has a

Laplace transform we shall denote its Laplace transform, Jo°e~z'a(í)dí, by d(z).

Theorem 10.   (i) [FPJ0(i)A] = ln2(r-s)/y.

(ii)   Let a be the locally integrable function [FP J0(í)/í]~ * • We have
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In - (p - z)
y

when Re z > 0.

Proof,    (i) It is shown in Erdélyi [14, p. 26] that

CO

J0(t) + 2 Z J2„(i) =  1.
n = l

Thus

J0(t) -1 2 \
Z jJ2a(t)j

= _  £  (r - s)2"

n2
and the series is convergent (C*) since (r — s)   e C*. Thus

Jo(0-1 = ln(l - (r - sf) = ln2s(r - s).

Now

[FP^]={^o(0_Z^j + [Fprl]

= In 2s (r — s) — In ys

= ln-(r-s)
y

which proves (i).

(ii)   Let

and

= [FPr'r"lfrW7*l
From the proof of Lemma 7 we know that

c
a = = c + c Z  (-l)"(c&)".

1 + cb „=1

The function c possesses a Laplace transform (Erdélyi [14, p. 251, Equation (11)]);

thus if the sum on the right (which represents a continuous function) is expo-

nentially bounded, a possesses a Laplace transform. We will first show this sum

to be exponentially bounded.
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Since I J0(t) I ̂  1 for all / and beC* there is a constant B such that | b \ (t) g B

for all t ^ 0. Since c(t) is positive for t > 0

|*|(»i.jr«««-«/J^r**
The integral Jo" (u — l)/r(w)y" du converges uniformly on each interval 0 :g £ g í

so that

/•r    /»oo      cu—1 /»co/»i      rn-1 /»co ^u

—^—dudÇ=\   \-^——d^du=\    ——-L-— du.
J0 J«    F(")r Jo Jo  r(")r Jo    IX« 4-1)7"

This is a well known function v(t/y), and from Erdélyi [14, p. 219]

O^v(-)   =   r—^-du^e"y,      r>0.
\ y /     Jo r(") r

Thus

and

| ci |(t) = Be"\ i>0

Z H"(0 =  I   ^TT^'''  =   Be«B+*)Mt .
n = l fi = 1      I(")

Thus the function a possesses a Laplace transform.

In order to evaluate â(z) we note that /0(z) = Vp ar*d the Laplace transform

of {Jo(0 - 1} is 1/p - 1/z. Since b = {(J0(t) - 1)/.}

r. . f00 1 1  .        .      2z
b(z) = ,. _---du = In-.

J2   V("2 + 1)    " Z + P

Thus the transform of n[FP(J0(r)A)] = hb + {lni} is

«ÍFP^l(z) = iln^-
lnyz      12.

= - In z(p - z).
z      z    y

Now

a-(z) n Tpp ̂ 1 (Z) = an [FP ̂ 1 (z) = n(z) . ±,      Re z > 0

and we have

à(z) = 7-7K7-ttt .    Re z > 0
w      ln(2(p-z)/y)'

which proves (ii).

A more explicit representation of [FPJ0(f)/i]_1 can be obtained from the in-

version formula for Laplace transforms. To get convergence of the integral which

occurs we will use the representation for n2[FPJ0(i)/f]-1. Thus
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i^rwi-H^n)«
(df2  2-/ J z2ln(2(p-z)/y)j

c- ico

whenever c> 0.

We already know that a necessary and sufficient condition that the equation

(10) FP [fit-u)J~^du = git)       alloO
Jo "

possess a solution is that both the following conditions hold : (i) there is a locally

integrable function fc which is differentiable on (0, oo) and is such that fc'(r) = git)

for all t > 0, and (ii) s[FPJ0(í)/í]_1fc is locally integrable and differentiable on

(0, oo).

Corollary 2. Let the conditions (i) and (ii) hold. Let k be as specified in (i),

let c > 0 and

d2     1   fc + iœ ez'dz
ait) = T-r tttI ,,   ...-cT-x      a// í > 0.

w     dt2 2niJ z2ln(2(p-z)/y)
c — too

A necessary and sufficient condition that f be a solution to Equation (10)

is that for some complex number a0

fit) = (afc)'(O + a0a(f)      all t > 0.

Proof. Since [FPJo(0/i]_1 = {-(0} »* follows from Theorem 9 that /(t)

satisfies Equation (10). It only remains to show that the solutions to the homo-

geneous equation form a vector space of exactly one dimension. The function

_1_
a~{Vo(t)-i)/t} + lFPt-q

is the sum of a locally integrable function [FPr-1]-1 and an infinite series which

represents a continuous function. Since [FPt-1]-1 = Jo0((í"~1)/^(u)y',) du is

discontinuous at the origin, s a is not a function for any n g£ 1, and the only

solutions to the homogeneous equation are scalar multiples of a.

References

1. Sur un nouveau genre d'intégrales, Oeuvres complètes d'Augustin Cauchy, Series II, Vol.

6, pp. 78-88, Gauthier-Villars, Paris, 1938.

2. Diverses propriétés de la fonction T(x), Oeuvres complètes d'Augustin Cauchy, Series II,

Vol. 7, pp. 121-123, Gauthier-Villars, Paris, 1938.

3. J. Hadamard, Lectures on Cauchy's problem in linear hyperbolic  differential equations,

Dover, New York, 1953.

4. F. Bureau, Divergent integrals and partial differential equations, Comm. Pure and Appl.

Math. 8 (1955), 143-202.



368 T. K. BOEHME

5. L. Schwartz, Theorie des distributions, Vols. I and II, Hermann, Paris, 1957.

6. M. Lighthill, Introduction to Fourier analysis and generalized functions, Cambridge Univ.

Press Cambridge, 1959.

7. P. Butzer, Singular integral equations of Volterra type and the finite part of divergent

integrals, Arch. Rational Mech. Anal. 3 (1959), 194-205.

8. J. Mikusiñski, Operational calculus, Pergamon, New York, 1959.

9. A. Erdélyi, Operational calculus and generalized function, California Institute of Techno-

logy, 1959. (Lecture notes)

10. J. D. Weston, Operational calculus and generalized functions, Proc. Roy. Soc. London

Ser. A 250 (1959), 460-471.

11. -, An extension of the Laplace transform calculus, Circ. Math. Palermo, Series II 6

(1957), 325-333.
12. J. Mikusiñski, Sur les fondements du calcul opératoire, Studia Math. 11 (1949), 41-70.

13. Cz. Ryll-Nardzewski, Sur les séries de puissances dans le calcul opératoire, Studia Math.

13 (1953), 41^t7.
14. A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi and Bateman staff, Higher tran-

scendental functions, Vol. II, McGraw-Hill, New York, 1953.

15. -, Tables of integral transforms, Vol. I, McGraw-Hill, New York, 1954.

University of Washington,

Seattle, Washington


