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1. Let L be a noetherian domain that is integrally closed in its quotient

field F. To each ideal A of L is assigned an ideal Aa, the integral closure or comple-

tion of A, that consists of all elements xeL for which an equation of the form,

x" + ajx"-1 + ••• + an = 0, a¡eAl, holds. If £2 is the set of all valuations v of F

such that the associated valuation ring Rv contains L, then Aa coincides with the

ideal Ab = {x; v(x) ̂  v(A), Vu eil}, [2; 3]. An ideal A is said to be complete if

A = Aa, and the set of all complete ideals is denoted by T(L). If A and B belong

to T(L), the product AB may not belong to T(L), but the completion of the pro-

duct (AB)a does. Hence a binary composition "x" is defined on T(L) by the

condition, A x B = (AB)a. Under this composition T(L) is a commutative semi-

group with an identity in which the cancellation law holds [2].

In case L is a two dimensional regular local ring, Zariski has shown [4, Appen-

dix 5] that (r(L), x) is a Gaussian semigroup, and that the composition x is

ordinary product. In this paper we study the case in which L is a two dimensional

normal local domain which is subject to conditions less stringent than regularity.

(See §2 below.) It is shown that modulo a simple equivalence relation the semi-

group (r0(L), x ) is Gaussian, where T0(L) is the subset of T(L) that consists of

primary ideals belonging to the maximal ideal of L. However (r0(L), x ) is not

Gaussian in an absolute sense for in simple examples it is seen that the maximal

ideal M of L is an irreducible element of (r(L), x) that is not "prime." (Here

we are using the semigroup terminology of Jacobson [1, Chapter IV].)

Our methods are direct extensions of those of Zariski. In case L is regular, the

form ring associated with L and the sequence of powers of the maximal ideal M

is a polynomial ring over a field and Zariski's arguments are based in part on the

fact that such a ring is a unique factorization domain. In our case the form ring is

an integrally closed noetherian domain, and we obtain results analogous to

Zariski's by using the Artin theory of factorization in the sense of "quasi-equality"

that is valid in such domains.

2. Let (L,M) be an integrally closed local domain of dimension two and assume

that L has an infinite residue field k. Let uuu2,•••,«„ be a fixed minimal basis
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of the maximal ideal M, and let R = k\Xy,X2, ■•■,X„} where the X, are indeter-

minates. Denote by N the ideal in R generated by forms f(X)(3) of degree t that

are such that/(w)eM<+1. If o = R/N = k\_Xy,x2, •••,x„}, then o is the form ring

of L and has transcendence degree 2 over fc. Since N is homogeneous it defines a

variety in the projective space P„-y(k), which is in this case an algebraic curve.

Our considerations in this paper will be based largely on the following two

assumptions :

(1) o is an integrally closed domain so that the variety V defined by N is

irreducible and arithmetically normal;

(2) the linear system cut out on V by the hyperplanes of its ambient space is

nonspecial.

The fact that o is a domain implies that the pseudo-valuation vM defined by the

sequence of powers of M can be extended to a valuation of F. We shall follow

the terminology of Zariski and speak of the %-value of an element or ideal of L as

the order of the element or ideal. We denote by Sl0 that subset of Í2 that consists

of valuations v distinct from vM that are such that Rv (the valuation ring of v)

dominates L. (That is, M„ C\L = M, where Mv is the maximal ideal of Rv.) Let

N* be the ideal generated by all forms f(X) of degree t such that v(f(u)) > tv(M)

for all v e Sl0. It is easy to verify that JV* = Rad N, and since (1) implies that N is

prime we have N* = N. Since vM is a valuation it follows that if u is an element

of order one then M' :uL = M'_1for all t ^ 1. Moreover, the ring

L„ = L[u1/m, u2/u,-;u„/u]

is integrally closed in F. In fact, if 9 is integral over Lu, then 9 satisfies an

equation, 9'+ a19'~1 + ■■■ + a, = 0, a,eLu. If d, is the degree of a, as a

polynomial in Uy/u,---,uju and if e is an integer such that ei^d, for all i,

then uela, e Mei and ue9 e (Me)a. Since Me is a valuation ideal it is complete so

that it follows that 9 e Lu. It is to be noted that if Mu is a maximal ideal in L„

such that MUC\L = M, then LJMU is algebraic over fc. In fact, the field LJMU is

generated over fc (as a polynomial ring) by the M„-residues of the quotients

uy/u,u2/u,--,u„/u. (See [6].)

Our second assumption implies that if/(x) and g(x) are homogeneous elements

of o of degree r and s respectively such that the ideal of+og is irrelevant, then the

ideal 0/+ rjg contains all homogeneous elements of 0 of degree not less than

r + s. In fact, if tf>(A, t) denotes the fc-dimension of the space of forms of degree t

in A, then when (fig) is irrelevant, </>((/,g),i) = <p(of,t) + <p(og,t) - t/>(o(/g),t)

in view of the fact that 0 is integrally closed. Since all multiples of the system of

(3) If f(X) e L[XU X2,---, X„] we shall use the notation f(X) to denote the element of

R obtained from/by taking its coefficients modulo M. Similarly, if f(X) is a given element

of R (or if/(;t)isagiven element of R/N) then f(.X) will denote a representative polynomial

for/(JQ or for f(x) with coefficients in L. This convention will be used throughout the paper

without further mention.
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hyperplane sections on V are complete and nonspecial, a simple application of

the Riemann-Roch theorem yields the desired result.

3. If Mj is a maximal ideal of the ring Lx — L\u2/uit-',uju{\ such that

My C\L = M, and if c¡ii = 2,3, •••,«) is the residue of ujuy modulo My, then c¡

is algebraic over k and the point C = (1, c2, •••, c„) belongs to V. Indeed, if fiX) is

a form of degree / that belongs to N then/(u)eMi+1. Hence fil,u2/uy,---,u„/uy)

belongs to MLy <= My, which shows that /(l, c2, ■••, c„) = 0. Moreover, if

p is the prime ideal in k[x2/xy,---,xjxy~\ determined by point C, and if

fyixJXy, ■ • -, XjXy), • • -,ftiX2/Xy, -•-, XjXy)

is a basis for p, a straightforward computation shows that the ideal MLy

+ Lyfyi---,u¡/uy,---) + ■ • • + Lj/,(-■ -,u¡/uy,■ • •) is equal to Mt. Conversely, if C

= il,c2,---,cn) is any point of V that is algebraic over k (here we have assumed

Cy # 0 and normalized) and if ihyi---,x¡/xy,---),---,hs i---,x¡/xy,---)) is the non-

homogeneous prime ideal determined by C, then MLy + y.jLyhji---,u¡/uy,---) is

a maximal ideal in Ly that lies over M. In particular, if y g Í20, and if

viuy) ^ u(k¡). ¿ = 2,3, ••-,« then Lt is a subring of the valuation ring Rv and

M„ OLi is a maximal ideal Mj of Ly such that M1nL = M. In fact, since

UyLy is the center of vM in Ly it is prime, so that if My is not maximal in L,

then Mi = UyLy. This shows that R„ contains the quotient ring of Lt at

UyLy, and since this latter ring is a maximal subring of F it follows that Rv

coincides with it and v = vM. This contradicts the fact that v e Q0. The point C

of V that is associated with this ideal My will be called the focus of v on the va-

riety V. Some properties of the foci of valuations are described in the following

lemmas. All of the ideas here are adaptations of some of those expounded in [5].

For any element 0 of L of order t there is a form Q,iX) e R of degree t such that

0 — 0,(w)eM'+1, and any two such forms are congruent modulo N. Hence

the element 0,(x) of o is uniquely determined by 0. This element is called the

leading form of 0.

Lemma 3.1. // 9 is of order t, v e Cl0 is such that v(uy) = r(M), and C =

(l,c2, ••■,cn) is the focus ofv, then v (0) > viM') if and only if 0(1,c2, ■••,c„) = 0.

Proof. Clear.

Corollary. Ifx¡ is not contained in the homogeneous prime ideal p of o corre-

ponding to the focal point C of v iveÇï0), then L¡ = L[uy/uh---,u„/u¡] is a sub-

ring of Rv.

Lemma 3.2. The set Sv = {0; ord 0 = t, u(0)= r(M')} is multiplicatively closed

or each v e Û0.

Proof. Since vM is a valuation, the order of a product is the sum of the orders

of the factors, and from this the lemma follows immediately.
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Lemma 3.3. The set Z = {x/y; ord x ^ ord v, j>eS„} ¿s a local ring which

dominates L. In fact, if u is an element of order one in L such that v(u) = v(M)

then L„cZ and Z is a quotient ring of Lu at a maximal ideal Mu such that

MUC\L=M.

Proof. If u satisfies the conditions of the lemma then L,cZc Rv, where Rv

is the valuation ring of v. If Mu is the center of t;¡ in L„, then Mu O L = M, and

Mu is maximal since v # vM. Hence we need only observe that the quotient ring

of Lu at Mu coincides with Z, and this is straightforward, q.e.d.

The local ring Z is called the first quadratic transform of L in the direction of v.

In view of the above lemmas it is clear that if two valuations of Í20 have the same

focal point C then they determine, the same quadratic transform. Indeed all

valuations which dominate Z have the same focal point. For this reason we say

that Z is the quadratic transform corresponding to the focal point C, and we

denote it by L'(C) or by L'(p), where p is the ideal of C in o.

Lemma 3.4. Under assumption (1) of $2, the local ring L'(C) is a two-dimen-

sional regular local ring.

Proof. We use the same notation as above. Since V is normal, C is a simple

point of V. If p is the ideal of C in k [x2/x1( ■••,x„/x^], then there is an element

h(x2/Xi,---,x„/Xi)eTp, h$ip2. We assert that the two elements ut and

h(u2/Ui,-,u„/Ui)

together form a basis for the maximal ideal M' in L'(C). In fact, let f(u2/ut,—, «„/«i)

be an element of M'. Then/(x2/x1,--,xn/x1) is an element of the field of func-

tions £ on V which vanishes at C and is therefore a local multiple of the uniform-

izing parameter at C. We therefore have,

}(x2/Xi, •••,x„/x1) = h(x2/Xi, ■■•,x„/Xi) —-,

<Kxu— ,xH)

where <p and \j/ are forms of the same degree p in o and ij/ does not vanish at C. Let

s = deg/, t = deg/z, g(xt, -,x„) = x[ f(x2/xu -, x„/xt), and g0(xu -, xn)

= x\h(x2/xu •■■,xn/x1). The form

x\4>(xi,-,xn)g(xi,—,xn) - x?§o(xi,-,x») <K*i, "•>*„)

vanishes, so that u\^(ux, -, u.)¿(«i>— >«») - «Î£o(«i» —, "»)<K"i, -» «»)

= F(Ui, —, u„), where F is a form of degree t + s + p + 1 with coefficients in L.

We thus have

«K»)  . £(X) = go(»i.-»"») . <K")   ,   F(«i,-,mb)«i
wf uf «{ u{ '      MP+s+<+l
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Each of the elements i/<")/"î, <K")/"? and P(u)/uf+s+,+1 is an element of L'iQ

and since \¡i does not vanish at C, \¡/iu)/u"y is a unit in L'iC). It thus follows that

Uy and hiu2/uy,---,u„/uy) generate M'. Since MjL' is a prime ideal, and since

goixy, •••,x„)isnot zero, 30(u1; ••-,«„) is of order rand hence t)M(A(u2/M1,---,wn/u1))

= O.Thus hiu2/uy,---,u„/uy) does not belong to UyL' so that dim L' 2: 2. Since M'

has a basis of two elements, our lemma follows, q.e.d.

4. Let A be an ideal of L, assume that A is of order r and that 0(1), 0(2), •••,0(s)

is a base of A. For at least one i the order of 0(,) is r and ord 0O) 2: r for all 7'.

Let ¥rJ\x) be zero if ord 9U) > r and let 9°r\x) be the leading form of 9U) if

ord 9U)=r. These elements generate a homogeneous ideal dA) in 0 which will

be called the characteristic ideal of A. It is clear that if 0 e A then either ord 0 > r

and 9rix) is zero by definition or else ord 9 = r and 0^.(x) is a linear combination

of W\x)> 9(2)ix), •••,0¡:s)(x) with coefficients in k. Since c(.4) is homogeneous, it is

quasi-equal (in symbols: x) to a power product of homogeneous prime ideals of

0 or else dA) is irrelevant. If ciA) x pl'p*2 •••Pg", the prime ideals p¡ are called the

directional ideals of A, and the points C¡ of V defined by the ideals p¡ will be called

the directional foci of A.

Lemma 4.1. Let A be an M-primary ideal of order r in L and let veQ0-

Ifp is the prime ideal in 0 that corresponds to the focal point C of v, and if

viA) > u(Mr), then p=> ciA) so that dA) is not irrelevant and p is a directional

ideal of A.

Proof. This follows from Lemma 3.1.

Corollary. If A is a complete ideal of L such that ciA) is irrelevant then

A = Mr, where r is the order of A.

Proof. Since A and Mr are complete, and A ç Mr, the stipulation that A # Mr

implies that there is a valuation v such that viA) > ¡;(Mr). Since it can be assumed

that v e fi0, the assertion follows, q.e.d.

Lemma 4.2.   // A and B are ideals ofL then ciAB) = ciA) ■ c(5).

Proof. Clear.

If A is an ideal of order r and LiC) is the quadratic transform of L correspond-

ing to focal point C, then Af L'(C) = u\LiC), and u\LiC) r\L = Mr, so that

AL'iQ = u\A', where A' is an ideal of LiQ. This ideal A' will be called the local

quadratic transform of A under the extension L -* L'iC).

Lemma 4.3. Let A be a complete M-primary ideal in L of order r, and let p"

be the highest power o/p, (Ae ideal of C, that occurs in the quasi-factorization of

cL4) into a product of prime ideals. Then: (a) TAe order r' of the transform A'

of A is not greater then a, but is positive if a is positive. In particular, A' = L'iC)

if and only if CÍA) d: p.  (b) If A' =£ LiC) then A' is primary for M'.
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Proof. Use the same notations as in §3. There must exist an element 9 in A

such that 9r(x)erf, 9r(x)4p"+1- Hence as in the proof of Lemma 3.4, 9r(x)/x[

= h(x2/xy,---,x„/xy)''F(x)/G(x),'whsiz F(x) and G(x) are forms of like degree

p, neither Fnoi G is divisible by p, and h(x2/xy,---,x„/xy)isauniformizingpara-

meter at p. It follows that

(4.1)   u'y9r(uy,--;un)G(uy,---,un)-urygo(Ui,--,unyF(uy,—,un) = H(uy,-,un),

where H is a form of degree ta + r + p + 1 with coefficients in L, and since an

equation like 4.1 with 9r(uy,---,un) replaced by 9 and H(uy,---,un) replaced by a

similar form H y is also valid, we have

0       L,    , ,   v,   F(u) Hy(u)
-   =   Ku2/Uy,.,UjUyT-^+UyG(u)^r+l.

The element 9/u\ belongs to A', and since F(u)/G(u) is a unit in L(C), 9/u[ does

not belong to M'a+1. Hence we have r' %. a. Similarly, if a > 0 then each element

ofy4' is in M' so that r' > 0. Since high powers of g0(uy, ••-,«„) and Uy belong to A

it follows that high powers of g0/u[ = h(u2/uy,...,u„/uy) and Uy belong to A'.

Hence A' is primary for M' if A' # L'(C), q.e.d.

If c(A) ~ pl'p22 • • • Pj" is a quasi-factorization of the homogeneous ideal t(A),

then c(A) = p{ai)n ••• np^^na is a primary decomposition of c(A). Here

p(e) stands for the symbolic eth power of p, and a is an irrevelant ideal. Let y(A)

=p1(0[l)n ••• r\pg"\ so that c(A) çy(A) and y(A) = (c(A)X = (c(A)~1)~1- A set

of forms </>!,</>2, •••,</>« of degree s(^ r) in o is called a quasi-basis for cG4) in

case c(A)ç zZo$, Ç y(A).

Lemma 4.4. (a) For any ideal A ofL, c(Aa) s (c(^4))0 and y(Aa) = y(A). (b) If

A = M'B where t is an integer ;> 0, then c(A) ç c(B) and y(A) = y(B).

Proof. We note first that A and Aa have the same order r. If 9 is an element

of Aa with a nonzero leading form 9r(x), then an equation expressing the integral

dependence of 9 upon A becomes an equation that exhibits the integral depen-

dence of 9r(x) upon c(.4) if each coefficient is replaced by its leading form. Hence

c(Aa) ç (c(A))a. Now (c(A)\ c (c(Aa)\ £ ((c(^))a)„ = (c(^))„, in view of the fact

that for any o-ideal o, aav = a„. Hence y(Aa) = y(A). Since c(M'B) = c(M') • c(B)

and since c(M') is irrelevant it follows that y(A) = y(B), and the inclusion c(A)

ç c(B) is clear, q.e.d.

Proposition 4.5. // A is a complete M-primary ideal of L and if c(A) has a

quasi-basis of forms of degree s<r (=ord^4), then there is a complete M-

primary ideal B such that A = Mr~sB. If c(A) has no quasi-basis of forms of

degree less than r, then A does not admit M as a factor.

Proof. We fix a form ä(x) of degree s in y(A) and write oâ(x) « c(^)-o. Fix

an element a of order r in A such that the leading form Sr(x) is such that oär(x)
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x ciA) • b, where ciA) + b and a + b are both irrelevant. Select a form A(x) of

degree, say r, from the ideal b such that oä + ob is irrelevant. The product

ä(x)A(x) must then admit är(x) as a factor; say û(x)A(x) = är(x)c(x), where c(x)

is a form of degree p = s + t — r. We then have c(w)a e MPA, and the leading

form of c(u)a is a(x)A(x). We define two sequences of polynomials {F¡ix)} and

{Qiix)} inductively, in such a way that the conditions

Piiu) = fl(a) (modMs+1), 0¡(u) = A(u) (modM,+1),

c^a-P^ß^eM^^^1'

hold for all values of i. To do this we take P0(«) = a(u), ß0(w) = A(u). If we

assume that F¡ and Ö< have been defined for a given i, we can express the

leading form of c(w)a — P;(m)0¡(m) as a linear combination ví(+¡+1(x)a(x) +

2?s+1+1(x)A(x). This follows from the fact that oä + ob is irrelevant in view of the

assumption in §2. If P(+1(u)=P¡(u) + Ps+i+1(w) and 0¡+i(") = o¡(«) + ^t+¡+i("),

it is easily seen that Pi+1 and Qi+1 satisfy (*) with i replaced by i + 1.

Since c(u)ae Mpy4 it follows (since ^4 is M-primary) that if i is sufficiently large

Piiu)Qiiu)eMpA. Let B be the complete M-primary ideal A : Mr~s. We assert

that if i is large then P¡iu) e B. To see this let v e £20, and assume first that viQ¡iu))

= viM1). Then since viPi) + u(0¡) ^ t<Mp) + c(i4),we have r(P£) + i;(Mr_s) ^ i<¿).

If on the other hand viQ¡) > f(M'), then by Lemma 3.1 ¿(x) must belong to the

ideal p of the focal point C of v. If this is so, then ä(x)<£p so that p $ ciA).

Hence in this case viA) = viM1), and t>(P¡) 2: ^(M5), so that again d(P() + viM'~s)

2ï f(^4). Since ^4 is complete and v is an arbitrary element of Q0, Pi(w)Mr_s Ç ^4, so

that P, e B. Thus if ^(x), •••, çbhix) is a quasi-basis of ciA) consisting of forms of

degree s, then there exist elements ßy,ß2,---,ßh in B such that p\(x) = <¿>,(x),

i = 1,2,-, A.
Let 0 be an element of A, and assume first that ord 9 = r. Then 9rix)eciA)

so that 0r(x) = E<ji(x)^i(x), where (/¡(x) is a form of degree r - s. Let 0* = 0

- G2(u)j82-Ghiu)ßh. It is clear that 0* eA and 0*(x) = Ö1(x)^1(x). Select a

form (j(x) of degree r - s such that G -Gy and ^x together generate an irrel-

evant ideal in o. Let 0t = 0* — Giu)ßy. Then 9teA and

0\(x) = (^(x) - GixMyix).

By the same argument as used above we can construct sequences of polynomials

{Ptiu)} and {q¡iu)} such that

Piiu) = çbyiu) (modMs+1), q¡iu) m G,(u) - Giu) (modMr_s+1)

If i is large we have Mr+i+1£ BMr~' so that 0! - p{q¡eMr~sB. By an argument

similar to the one above we find p¡iu)eB and therefore 0, eMr~sB. This shows
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that 9eMr~sB also. If ordo > r, fix 60eA so that ord0o = r. Then both 60 and

0+ 90 belong to Mr~sB so that 6 e Mr~% and A = Mr~sB.

If A admits M as a factor, say A = MC, then the order of C is r — 1 and a basis

for c(C) consisting of forms of degree r — \ would be a quasi-basis for c(A). This

proves the last assertion, q.e.d.

Corollary 1. 7/B is a complete M-primary ideal then M'B is complete when

t is sufficiently large.

Proof. Let A = (MtB)a. Then y(A) = y(M'B) = y(B), and if t is large, cU)

Ç c(B) £ y(A). In fact, c(B) = y(B) ni = y(M'B) ni = y(A) ni, where i is an

irrelevant ideal. Now if t is large c(M') E t, and since t(A) s c(M') it follows that

c(/4) £ c(B) as asserted. Thus A is of degree í + r and c(/l) has a quasi-basis con-

sisting of forms of degree r, where r is ord B. Hence A = M'^'^'B^where Bt

is a complete ideal. Since u(B) = v(Bi) for all p e Q, it follows that B = Bt, q.e.d.

Corollary 2. A sufficient condition that M'B be complete for all values of t

is that c(B) = y(B).

Proof. Under the present hypothesis the irrelevant ideal t above will not occur,

so that in the proof of Corollary 1 no restriction need be placed on t, q.e.d.

5. If u is an element of order one and A is an ideal of order r in L, then the

extended ideal ALU is of the form ur A' where A' is an ideal of Lu that is not

contained in uLu. The ideal A' is called the transform of A and will be denoted

by TU(A).

Lemma 5.1. If A is a complete M-primary ideal in L then TU(A) is a complete

ideal of Lu.

Proof. Let 9 be an element of L„ that depends integrally on A', 9' + fitjö'-1

+ ■•• + a, = 0, with a¡eA''. If we multiply by urt we find (ur9y + u'a^d)''1

+ ••• + ur'a, = 0, so that the coefficients ur'a¡ are elements of (ALU)'. Hence there

is an integer s such that u"a¡ = Z(wy/us)au, with wi}eL, ord w(j ^ s, and

atJe A\ Thus if u"a¡ = wjus, then w¡eMsAl. It is clear, that we can take s arbi-

trarily large here. Now we have (ur+s9)' + w1(ur+s9)'~1 H-h ws'"X = 0, and

usl~sw¡e(MsA)1. If s is large enough to ensure that MSA is complete we have

ur+s9eMsA, and hence 9e A', q.e.d.

Lemma 5.2. If A and B are complete M-primary ideals of L then TU(A x B)

= TU(A) x TU(B).

Proof. Assume that A and B are of orders r and s respectively and that A'

= TU(A), B' = TU(B). Since A x B = (4B)0 it follows that the order of A x B is

r + s, so that if TU(A x B) is the complete ideal C we have (A x B)LU = ur+sC.

On the other hand, (AB)LU = ur+sA'B', and clearly A'B'ç C. If t; is any valua-
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tion such that Rv => L„ then v(AB) = v(A x B) so that also v(A'B') = v(C). It

follows that C is the completion of ^4'B', q.e.d.

If A is M-primary then M' c A for some integer t. It follows that u'~re TU(A)

so that m e Rad TU(A). On the other hand TU(A) d: uLu so that Rad Tu(4l) d: uLu.

Since uL„ is prime it follows that if TU(A) is not the unit ideal then Rad TU(A) is

an intersection of maximal prime ideals My, M2, —,M, of L„ each of which lies

over M. A valuation v, such that RVi => Lu and M0l CiLu = M, must belong to the

set £20, and v,(Tu(A)) > 0 so that v,(A) > v^M1). By Lemma 4.1 the focus of v,

defines a prime ideal p¡ of o such that p, => y(A). The quotient ring of Lu at M, is

the ring L'(p¡) introduced in §3, and it is clear that Tu(A)L(p,) is precisely the

local quadratic transform of A described at the beginning of §4. On the other hand,

if p is any prime ideal of y(A) and if the leading form ü(x) of u does not belong

to p, then Lu c L'(p) and the center of L'(p) in L„ is a maximal ideal M„ of L„ that

contains Rad TU(A) in view of Lemma 4.3. These remarks can be summarized as

follows.

Proposition 5.3. If the leading form ü(x) does not belong to any prime ideal

ofy(A) then there is a 1 : 1 correspondence between the prime ideals ofy(A) and

the maximal ideals of Lu that divide Rad TU(A). Moreover, TU(A) is an inter-

section of zero-dimensional primary complete ideals of L„.

Proposition 5.4. Under the same hypothesis as Proposition 5.3, urTu(A) C\L=A.

Proof. Let B = urTu(A) n L, so that BLU = uTTu(A) and thus BLU = ALU, and

AçB. If yeü, then either v(A) = v(Mr) = v(B), or v(A) > v(Mr). In the latter

case the focus of v is at a prime ideal of y(A) and v e Sl0. Hence Lu ç Rv so that in

this case also v(B) = v(A), and since A is complete B s A, q.e.d.

6. We now consider the case in which a zero-dimensional complete ideal

A' of L„ is given and we look for ideals A in L such that TU(A) = A'.

Proposition 6.1. // A' is a zero-dimensional ideal of Lu such that u e Rad A',

then there exist integers f such that t/A' is the extension of an ideal of L.

If e is the least such integer, let A, = ue+'A' C\L. Then A, is an M-primary

ideal of order e + i, and A,LU = ue+lA' so that for all i, TU(A¡) = A'. Moreover,

if A' is complete so is A,.

Proof. Each element of A' is a polynomial in the ratios uju with coefficients

in L. If /is an integer that is not less than the maximum of the degrees of the

elements of a basis of A', then/will satisfy the requirements of the first assertion

of the proposition. Since u e Rad A' there is an integer t such that u'e A', and then

u'+e+iLunLç ue+i A' C\L= A,. Thus M'+e+i s A, so that A, is M-primary.

Since A, çue+'Lur\L we have A, £Me+l. Since uc+,A' is an extended ideal it is

the extension of its contraction with L, so that ue+lA' = A,LU. Thus A, $ Me+,+1
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since A' $ uLu. Hence the order of A¡ is e + i and TuiA¡) = A'. If A' is complete

so also are ue+lA' and .4,-, q.e.d.

Lemma 6.2. // A0, Ay, ■■■ is the sequence of ideals introduced above, then for

all non-negative integers i and j we have MJAt^ Ai+J, MJA¡^ MJ~1Ai+1.

Moreover, there is an integer i0 such that yiAi+l) = yiA¡) if i ^ i0.

Proof. Since iMJA¡)Lu = ue+i+JA', it follows that MJA-t s Ai+J, and by in-

duction on;', MJA¡ Q M1~1Ai+1. Now ciAi+1) 2 ciMA¡) = c(M)-c(y4¡), and since

c(M) is irrelevant it follows that yiAl+1) 2 yiA¡). The existence of i0 follows since

0 is noetherian, q.e.d.

Lemma 6.3. If yiA/) = p(1<',)n ■•• np^'V'Aen j ^ i0, íAen ö^p,-, where ä(x)

is íAe leading form of u.

Proof. Since u is of order one, ii(x) is a linear form in Xy,x2, •■•,x„. Since k is

infinite there is a second linear form w(x) such that the ideal où + ovP is irrele-

vant. Let Rad A' = M¡ C\M2 C\ ■■• C\MS, where M¡ is a maximal ideal of Lu such

that M¡r\L = M. Since LJM¡ is algebraic over k there is a polynomial giX)

in k[X~\ such that g/iw/u)eM¡. Hence there is a polynomial gf(X) in L[X~\ with

leading coefficient a unit in L such that giw/u) e A'. If í = deg giX) let p be an

integer such that pt 2: e + i0, say pt = e +f, f^.i0. Then u'V(w/u)eue+-04'

n L = Ay. Since uptgpiw/u) is a form </>(w, u) of degree pi in Af, it follows that

the corresponding form <¡>iw, ü) is an element of ciAf) and hence of yiAf). Thus

we have cbiw,ü)epi, i = 1,2, ■•-,#, and the coefficient of wtp is not zero. Heneé-

is e p¡ implies vv e p¡ and this is not possible since p; is a relevant prime ideal, q.e.d.

Lemma 6.4.   // i S: i0, íAen (M-Í4¡)0 = Ai+J.

Proof. If v e Q. and i;(M¿4¡) > t»(Me+i+-') then v e Q0 ar>d the focal point of v

is at one of the ideals pf in view of Lemma 4.1. It follows that Rv >: L„. The same

remarks hold if viAt+J) > viMe+l+J). For such valuations v we have viMJA¡)

= viLuMJAt) = vil^Ai+j) = viAi+J), and for all other veil, viMJA¡) = viMe+i+J)

= viAi+J), so that the lemma follows from the fact that Ai+J is complete, q.e.d.

Two complete M-primary ideals of L will be said to be M-equivalent (in sym-

bols A ~ B) in case non-negative integers i and j exist such that (MU)a = iMJB)a.

(In view of the cancellation law of Krull [2], one of i and j can be assumed to be

zero.) The relation thus defined is obviously an equivalence relation, and we

denote the class of ideal A by A*. In view of Lemma 6.4 we have A* = A*+1 for

all fçï i0, so that with the zero-dimensional complete ideal A' of L„ we can

associate the class A* (i >r i0). The class will be called the inverse transform of A '

and denoted by SuiA'). Since it is clear from the definition of T„ that if A ~ B

then TjiA) = TU(B), we can regard Tu as a function T* defined on the set of

classes A*. Moreover, if A ~ B, then yiA) = y{B) so that we can regard the ideal

yiA) as a character of the class A*, and denote it by yiA*).



220 H. T. MUHLY AND M. SAKUMA [February

Proposition 6.5. If A' is a zero-dimensional complete ideal of Lu such that

ue Rad A', then T*SU(A') = A'. If A* is a class of M-primary complete ideals

such that y(A*) : oü = y(A*), then SUT*(A*) = A*.

Proof. The first point is clear. To prove the second point let A eA* and let

TU(A) = A'. If A is of order r, then by Proposition 5.4 we find urA' C\L= A.

Since y(A) : où = y(A), the argument of Lemma 6.4 will show that for i ^ 0,

ur+iA' r>L = (M'A)a, so that A belongs to the class S„(A'), q.e.d.

7. If A ~ B and C ~ D then A x C ~ B x D, so that if Y* is the set of equiva-

lence classes of M-primary ideals then a binary composition is defined on T* by

the rule A*°B* = (A x B)*. Under this composition T* is a commutative semi-

group with identity in which the cancellation law holds. In view of Lemma 5.2,

we have T*(A*°B*) = T*(A*) x T*(B*). It should be noted at this point that

since the quotient ring of Lu at any maximal ideal Mu that lies over M is a two-

dimensional regular local ring, Zariski's results [4] apply, and hence T*(A*)

x TU*(B*) = TU*(A*)TU*(B*).

Proposition 7.1. If A' and B' are complete zero-dimensional ideals ofLu such

that ueRadA' and ueRadB', then S„(A'B') = SU(A')°SU(B').

Proof. We fix ideals A and B in L such that SU(A') = A* and SU(B') = B*.

Then SU(A') ° SU(B') = (Ax B)*. Since y(A x B) » y(A) ■ y(B), and since ü(x) does

not belong to any prime ideal of y(A) or of y(B), it follows that û(x) does not

belong to any prime ideal of y(A x B). Hence by Proposition 6.5, SUT*((A x B)*)

= (A x B)*, and since T*((A x B)*) =A'B', our result is established, q.e.d.

Proposition 7.2. If A is a complete M-primary ideal of L such that A* is an

irreducible element of the semigroup (V*, °) and if u is an element of degree

one such that y(A*) : où = y(A*), then T*(A*) is an irreducible element of the

semigroup of complete Lu-ideals.

Proof. Let T*(A*) = A', and assume that A' is reducible, say A'=B'C.

Since ueRadA', it follows that ueRadB' and ueRadC, and B' and C are

zero-dimensional complete ideals. By Proposition 7.1 we have Sfß'C) = SU(B')

o SU(C), so that A* = SU(B') ° SU(C). Since A* is irreducible either SU(B') or

SU(C) is a unit, so that there is an ideal D in L such that say D*°SU(C) = M*.

Hence if E is an ideal of the class SU(C), there exist integers i and j such that

(M'DE)a = MJ. It follows that both c(D) and c(£) are irrelevant ideals so that

D and E are powers of M. In particular, C' = TU(E) = Lu, and this is a contra-

diction, q.e.d.

Proposition 7.3. If A* is an irreducible element of(T*,°) it is also a prime

element.
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Proof. Assume that E* ° F* = A* ° B* and pick u so that m(x) is not in any

prime of y(E*), y(F*), yiA*), y(B*). If £', F', A', B' are the ^-transforms of E*,

F*, A*, and B* then E'F' = A'B'. Each of these ideals is zero-dimensional and

A' is irreducible by Proposition 7.2. Hence A' must be primary for some maximal

ideal M', and since the quotient ring of Lu at M' is a regular two-dimensional

local ring we can apply the results of [4] to conclude that A ' is a prime element

of the multiplicative semigroup of complete L„-ideals. Hence either E' =A'C

or F' = A'D'. If say the former is true, then E* = A* » S„(C), q.e.d.

In view of the fact that (T*, o) obviously satisfies the divisor chain condition,

this proves that (T*, °) is gaussian. In closing we note that if k is a field, z2= x2

+ y2, and iL,M) is the quotient ring of k [x, y, z] at the origin, then (x, y — z, M2)

x ix,y+ z,M2)= M x ix, M2), while M is not a factor of either of the first two

ideals. Thus even in this simple case, the irreducible ideal M is not a prime element

of the semigroup (T, x ).
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