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1. Introduction.

1.1. Notation.   Let c€ be a  class  of groups.  Then tfë denotes the class

of those groups which are residually in eS(2), i.e., GeRtë if, and only if, for

each x e G (x # 1)  there is  an epimorph  of G in ^ such that the element

corresponding to x is not the identity. If 2 is another class of groups, then we

denote by %> • Qt the class of those groups G which possess a normal subgroup

N in # such that G/NeSi(f). For convenience we call a group G a Schreier

product if G is a generalised free product with one amalgamated subgroup.

Let us denote by , . _>
o(A,B)

the class of all Schreier products of A and B. It is useful to single out certain

subclasses of g (A, B) by specifying that the amalgamated subgroup satisfies some

condition T, say; we denote this subclass by

°(A,B; V).

Thus o(A,B; V) consists of all those Schreier products of A and B in which

the amalgamated subgroup satisfies the condition T.

We shall use the letters J5", Jf, and Í» to denote, respectively, the class of finite

groups, the class of finitely generated nilpotent groups without elements of finite

order, and the class of free groups.

1.2. A negative theorem. The simplest residually finite(4) groups are the

finitely generated nilpotent groups (K. A. Hirsch [2]). In particular, then,

(1.21) Jf c k3F.

Since the free product of residually finite groups is residually finite (K. W. Gruen-

berg [3]), the free product of any given pair of finitely generated nilpotent groups

is residually finite. Hence, if A,B eJf,

(1.22) o(A,B; trivial) c R&.
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(2) This term is due to P. Hall [1].

(3) We have here adopted the notation of Hanna Neumann [19].

(4) I.e., groups in RS'. Similarly G is residually a fé'-group if G e Rtf.
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This consequence of Gruenberg's theorem may be compared with the following

theorem for Schreier products.

Theorem 1.   Suppose A,BeJf. If both A and B are nonabelian, then

o(A,B)  q:  r&.

Theorem 1 compares unfavourably with (1.22). It serves to show, once again,

the complication of the Schreier product. Nevertheless, despite this complication,

we shall arrive at a fairly satisfactory description of c(A, B) for any given pair

of groups A,BeJ/~.

It is convenient, at this point, to recall that a group G is hopfian if every epien-

domorphism of G is an automorphism. Hopfian groups are connected to re-

sidually finite groups by virtue of the fact that finitely generated residually finite

groups are hopfian (A. I. Mal'cev [4]). So a finitely generated group which is

nonhopfian is certainly not residually finite.

These remarks facilitate the proof of Theorem 1. We first notice that as A

and B are torsion-free and nonabelian they both contain copies C and D, res-

pectively, of the free nilpotent group of class two on two generators. Now a(C, D)

contains a nonhopfian group, P, say (G. Baumslag [5]). Therefore a(A,B) con-

tains a group G which contains P. Since P$b^, G$r!F. So we have proved

Theorem 1.

It seems worthwhile, at this point, to place on record the following

Conjecture. Let A,BeJT. If both A and B are nonabelian, then a (A, B) con-

tains a nonhopfian group.

1.3. Statement of results. The following theorem, which answers affirmatively

a question of Graham Higman(5), plays an important role in this investigation.

Theorem 2.   If A, Be ^, then

a(A,B)cR&.

As an easy consequence of Theorem 2 we find

Theorem 3.   If A,Ber^, then

a (A, B; finite) c r&.

At this point let us recall that O is the class of free groups. By a theorem of

Levi [6]

(1.31) <P c R&.

This fact, repeated application of Theorem 2 and Hirsch's Theorem (1.21) may

be used to good effect. Indeed we shall prove that if A,Be Jr, then

(1.32) a(A,B) «= R&-R&.

(5) In a letter.
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Thus, despite the existence of Theorem 1, we have found, in (1.32), a pleasing

generalisation of (1.22); by Theorem 1 it is, in a sense, a "best possible" general-

isation of (1.22).

Nevertheless (1.32) is not the precise result we shall obtain. For we prove

Theorem 4.   Suppose A,BeJf. Then

(1.33) oiA,B) c $•#.

We recall that if G is a group, then a subgroup H of G is closed (in G) if a e H

whenever some nontrivial power of a lies in H (a e G). It turns out that it is

precisely the freedom which enables us to form Schreier products in which the

amalgamation is not closed in both A and B that makes the presence of <5 in

(1.33) essential. Indeed we shall prove, again employing Theorem 2, the follow-

ing theorem.

Theorem 5.   If A,Be JÍ, then

aiA,B; closed in A and B) <=■ rSP.

This theorem may be compared with

Theorem 6.   If A, Be Jf, then

oiA,B; cyclic) <=. rS^.

One might conjecture, on the basis of Theorem 6, that if we require only that

A, BeR&, then

o~iA,B; cyclic) c r3*.

It is easy to make counter-examples which refute this possible conjecture; in

fact Graham Higman [7] has even constructed a nonhopfian group as a Schreier

product of two finitely generated residually finite metabelian groups, amalgamating

a cyclic subgroup.

Theorem 6 has some connection with an earlier theorem of G. Baumslag [8].

To explain how this comes about, suppose now that A, Bef. Furthermore

suppose A and B are isomorphic. Let 0 be an isomorphic mapping of A onto B:

0:A-»B.

If a is an element of A which generates its centraliser in A, then (see [8])

(1.34) iA*B; a = aO)eR<ï>.

Let us now suppose only of A and B that they are free and let aeA, beB

ia + \± A). Suppose a and A generate their centralisers, in A and in B, respec-

tively. Then Graham Higman has proved the following partial generalisation

of (1.34):
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(1.35) iA*B; a = b) is residually a finite p-group.

Theorem 6 enables us to prove a generalisation (in a sense) of both these re-

sults (1.34) and (1.35).

Theorem 7.   If A,Be<5> then

oiA, B; cyclic) a r3*.

Theorem (1.35) is, as yet, unpublished. It is a consequence of another interest-

ing unpublished theorem of Higman, viz: If A and B are finite p-groups, if a

in A and A in S are of order p, then

iA*B; a = b)

is residually a finite p-group.

Our collection of theorems concerning (¡iA,B) ends in §6 with some rather

special results.

1.4. It is a pleasure to acknowledge that part of this work grew out of some

stimulating correspondence with Graham Higman.

2. The situation when the amalgamated subgroup is finite.

2.1. The proof of Theorem 2. Suppose that A and B are finite groups and

that Pisa Schreier product of A and B, with amalgamated subgroup H :

P = iA*B; H).

It is obvious that there is a finite group Py containing isomorphic copies Ax

and BL of A and B, respectively, with isomorphisms

O-.A^A^   tb-.B-vBi.

In fact Pt can so be chosen that the isomorphisms 6 and <j> coincide on H (cf.

e.g. B. H. Neumann [9, p. 532], B. H. Neumann [10]). Since P is a Schreier

product of A and B amalgamating H, it follows that 6 and cb can be simultaneously

extended to a homomorphism p of P into Pt. Let K be the kernel of p. Since

Pt is finite it follows that

\P/K\ < oo.

Since p is one-to-one when restricted to either A or B it follows also that

Kr\A = \ = KC\B.

So, by a well-known theorem of Hanna Neumann [11, p. 540] K is free. Since

K e rS^ (Levi [6]), F e rS^ for a finite extension of a residually finite group is

obviously residually finite. This then completes the proof of Theorem 2.

2.2. An important proposition. Let A be a residually finite group. Then

there exists a family {A¿}XeA of normal subgroups of A, each of finite index
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(in A), with a trivial intersection. We shall call such a family of groups a filtration^)

of A. So Abr^ if and only if A possesses a filtration. Let B be a second group

with a distinguished subgroup K and let H be a fixed subgroup of A which is

isomorphic to K under a given isomorphism <p. Now let

\4meA> \BxSXe\

be equally indexed nitrations of A and B respectively. Then we say {Ax}XeA

and {Bx}XeA are (H,K,tj))-compatible if $ induces an isomorphism between

HAX/AX and KBX/BX for each A in A ; in other words, the mapping

4>x : hAx -+ (h<j>)Bx

is to be an isomorphism between HAX/AX and KBX/BX for each Xe A.

It is useful to single out certain special nitrations of A which depend for their

definition on some given subgroup H, say, of A. Thus we call a filtration {Ax}XeA

of A an H-filtration if

f\(HAx) = H.
A eA

The following proposition indicates the practicality of these notions for our

purposes.

Proposition 1. Let A and B be a given pair of residually finite groups,

let H be a subgroup of A, K a subgroup of B and let tf) be an isomorphism be-

tween H and K:

<p:H-»K.

Furthermore, let {Ax}XeA be a filtration of A and let {Bx}XeA be a filtration

of B. Now suppose that {Ax}XeA and {Bx}XeA are (H,K,t¡))-compatible. Then

Proof.    We put

(A*B; H = K)(J)e9-R^.

P = (A*B; H = K).

Let, further, ae.4(a#l). Now {Ax}XeA is a filtration of A. So there exists peA

such that a $ A^ ; observe that

\AIAß\<co

since {Ax}XeA is a filtration of A. But {Bx}XsA is a filtration of B; so

|B/B„| < co.

(6) I.e. an ^"-filter, in the sense of Gruenberg [3]

Ç) Here (A * B ; H= K) stands for that gene

identified with AT according to the isomorphism tj>.

(7) Here (A * B ;H= K) stands for that generalised free product of A and B where H is
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Now {Ax}XeA is (77,7C,^)-compatible with {Bx}XeA. In particular, therefore,

<t>ß:hAß->(h<j>)Bß   (heH)

is an isomorphism between HAß/Aß and KBß/Bß.

We form now the Schreier product Pt of the finite groups A/Aß and B/Bß,

amalgamating HAß/Aß with KBß/Bß according to the isomorphism <j>ß :

Pi = (A/Aß*B/Bß;   HAß/Aß ts KBß/Bß).

Let v be the natural homomorphism of A onto A/Aß and let n be the natural

homomorphism of B onto B/Bß. Since the restriction of v<t>ß to 77 coincides with

the restriction of (¡>n to 77, the mappings v and n can simultaneously be extended

to a homomorphism 9, say, of P onto Px (cf. B. H. Neumann [9, p. 505]).

We observe that

ad = av = aAß ̂  Aß.

But Pi e r!F by Theorem 2. So there is a normal subgroup Nx of Pj of finite

index which does not contain a9. Now Pt is an epimorph of P; so we can also

find a normal subgroup N of P of finite index which does not contain a.

It follows from the above argument that if N is the intersection of the normal

subgroups of finite index in P, then

NnA = L

This argument is clearly symmetrical in A and B; so

NC\B = 1.

These two restrictions of N ensure that it is free (Hanna Neumann [11, p. 540]). So

P s O ■ RFr.

2.3. A second proposition. We assume here he notation and hypotheses of

Proposition 1. In addition let us assume that the filtration {Ax}XeA is an 77-

filtration of A and that the filtration {Bx}x e A is a TC-filtration of B. Then the

argument used to prove Proposition 1 can be utilised to prove a little more.

For suppose u e P (u # 1). If u e A or if u e B, then there is a normal subgroup

N of P of finite index which does not contain u. We shall show that this is also

the case when neither ueA nor ueB. For then we can write u in the form

m = UiU2---u„ (n> 1),

where the u¡ come alternately out of A and B but not out of both (cf. B. H. Neu-

mann [9, p. 511]). Since {Ax}XeA, {Bx}XeA are not only filtrations of A and B

respectively, but 77- and 7C-filtrations (respectively), we can find peA such that

(2.31) u^HAß,   u^KBß   (¿ = 1,2,--,«).
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Now either uxeA or ureB; for definiteness let us assume uteA. Then (cf. the

proof of Proposition 1)

(2.32) mo = (Mi^)(u2B„)-.

It follows from (2.31) and (2.32) that u9 is a product of elements coming alter-

nately from A/Ap and B/B^ but not both. Hence (cf. B. H. Neumann [9, p. 511])

u9 * 1.

But, just as before, Pt e«J, by Theorem 2. Hence we can find a normal sub-

group JVj of Pt of finite index which does not contain uQ. Since Pj is an epi-

morph of P we can also find a normal subgroup Ñ of finite index in P which

does not contain u. This means that the normal subgroups of finite index in P

have a trivial intersection, i.e., P e Re?. Thus we have proved

Proposition 2. Let A and B be given residually finite groups, let H be a

subgroup of A, and K a subgroup of B which is isomorphic to H:

çb :H—^K.

Let {Ax}XeA, {Bx}XeA be iH,K,cb)-compatible H- and K-filtrations of A and B,

respectively. Then

iA*B; H = K)eR&.

2.4. The proof of Theorem 3. The situation here is that A, BerS*, H is

a subgroup of A, K is a subgroup of B and çb is an isomorphism :

çb :H —» K;

in addition H (and therefore K) is finite. It is an easy matter now to find filtrations

RiheA of A and {Bx}XeA of B such that

Axr\H=l = Bxr\K iXeA).

Hence the filtrations {Ax}x e A, {Bx}x e A are not only H- and .K-filtrations, respec-

tively, but they are also (Z/,.K,(/>)-compatible. So we can apply Proposition 2 and

the theorem follows.

It is useful to state a corollary of Theorem 3. The proof of this corollary is

similar to the proof of Proposition 2; however, it relies on Theorem 3, whereas

Proposition 2 relies on Theorem 2. The argument thus follows closely the proof

of Proposition 2 and is left to the reader.

Corollary 2.41. Let A and B be given groups, let H be a subgroup of A

and K a subgroup of B which is isomorphic to H under the isomorphism çb:

çb :H—» K.
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Let {Ax}XeA, {Bx}XeA be families of normal subgroups of A and B respectively

satisfying the conditions

(i)    A/AxeRSF,   B/BxeRSf,

(ii)    \HAX/AX\ < co,    \KBX/BX\ < co,

P) fl^AÍí^ = H,   PI^aKBa = K-
Suppose that the families {Ax}XsA, {Bx}XeA are iH,K,çb)-compatible,  i.e., for

each XeA the mapping

çbx : hAx -> ihçb)Bx

is an isomorphism. Iff)XeAAx = f^AeA^ = 1. then

iA*B;   H = K)eR^.

3.    The proof of Theorem 4.

3.1. Preliminaries. Let p be a prime. Then a subgroup Y of a groupais called

p-closed (in X) if u e Y whenever upe Y (w eX). An obvious necessary and suffi-

cient condition for a subgroup Y, normal in X, to be p-closed (in X) is that the

factor group X/Yis p-free, i.e., there are no elements of order p in X/Y. If X is

locally nilpotent then the elements of finite order form a subgroup fiX) (cf. e.g.

Kurosh [12, vol. 2, p. 229]) of X. If A is any finitely generated nilpotent group,

then every factor group and every subgroup of A is a finitely generated nil-

potent group (K. A. Hirsch [13]); hence fiA) is finite.

If /i is an integer and X a group, then we define

X" = gpix"; xeX).

If X is nilpotent, then X" is the set of pth powers of elements of X, for almost

all primes p:

X" =  {xp | x e X) ;

this fact follows readily from the commutator collecting process of P. Hall [14]

(cf. e.g. G. Higman [15]). Hence

(3.11) Xpi = {x"'\xeX}       (I = 1,2,—)

for almost all primes p.

3.2. The proof of the following simple lemma will make use of some of the

above results, sometimes without explicit mention.

Lemma 3.21. Let A be a finitely generated nilpotent group and let H be

a given subgroup of A. Then H is p-closed in A for almost all primes p.

Proof. Suppose first that A is abelian. Then H is a normal subgroup of A.

Hence we can form the factor group A/H. Now fiA/H) is finite. Therefore A/H

is p-free for almost all primes p. So H is p-closed for almost all primes p.
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If A is nonabelian, say of class c> 1, then inductively we may assume the truth

of the lemma for all finitely generated nilpotent groups of class at most c — 1.

Now let Z be the centre of A. Inductively, 77Z/Z is p-closed in ^4/Z for almost

all primes p; say for all primes p in a set £J consisting of almost all the primes.

It follows then that if peQ, if u e A and if up e HZ, then u e HZ.

Now 77 is clearly a normal subgroup of 77Z. So by Hirsch's theorem [13]

/(77Z/77) is finite. Hence 77Z/77 is p-free for every p e P, a set consisting of almost

all the primes.

Then all but a finite number of primes belong to n.

Suppose peU, ueA and

u" e 77.

Then

up e HZ.

Since pen, it follows that

ue77Z.

Now

(u77)" = 77.

But p e P and 77Z/77 is p-free. Since uH e 77Z/77, we are forced to the conclusion

1/77 = 77; more conveniently,

u e 77.

So 77 is p-free for almost all primes p, as claimed.

3.3 It is easy to check that if n is an integer and A a group, then A" is a

fully invariant subgroup of A. In particular A" is always normal in A. So if p

is a prime, then the family

(3.31) {Ap'}r=l

of subgroups of A is in fact a normal family, i.e., Ap' is normal in A for every i.

Suppose now that AeJf. Then, by a theorem of K. W. Gruenberg [3],

00

(3.32) p| A"' = 1
¡=i

for every prime p. Therefore the family (3.31) of subgroups of A is a filtration

of A, since in this situation A/Ap' is finite.

Now suppose that 77 is a given subgroup of A. Consider

H C\ Api   (¿ = 1,2,—).

Let us suppose that p is suitably large; then Ap' consists of the p'th powers of the

elements of A (cf. (3.11)). Moreover 77 is p-closed for almost all primes p (Lem-

ma 3.21). It follows that for almost all primes p,
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(3.33) HnAp' = Hpt       (2-1,2,-).

Let us suppose next that B e Jf and, furthermore, that K is a subgroup of B

which is isomorphic to H under tj>:

4> : H —h» K.

Now the subgroups

(3.34) {B"'}%y

are a filtration of B for all choices of p (cf. (3.31), (3.32)). Moreover (cf. (3.33))

(3.35) K n Bp< = Kpi      (¿ = 1,2,-),

for almost all primes p. It follows that there is a prime p, say, such that (3.33)

and (3.35) are simultaneously satisfied. Clearly, then, for such a prime p (3.31)

and (3.35) are in fact compatible (í/,K,0)-filtrations.

The upshot of the above considerations is that we have proved the following

lemma.

Lemma 3.36. Let A,Be^¥, let H be a subgroup of A and K a subgroup

of B isomorphic to H under t/>:

tp : H — -» K.

Then

{A"%y,    {Bp'}r=i

are (H,K,tj>)-compatible filtrations of A and B respectively, for almost all

primes p.

The proof of Theorem 4 is now a triviality; we simply apply Proposition 1

(this is in order, since we can invoke Lemma 3.36).

4.   The proof of Theorem 5.

4.1. A crucial proposition. The proof of Theorem 4 required no more

than a verification that Proposition 1 was applicable, and Lemma 3.36 was

provided for just that purpose. Here we want to justify the use of Proposition 2;

but Lemma 3.36 is no longer of any use. We are therefore compelled to prove a

somewhat stronger form of Lemma 3.36. To do this we first prove a partial

generalisation of Gruenberg's theorem (Theorem 2.2 in [3]).

Proposition 3.   Le A e Jf and let H be a closed subgroup of A. Then

00

(4.11) fl HApi = H= i
for almost all primes p.

So when H is the trivial group we have the theorem of Gruenberg quoted

above.
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The proof of Proposition 3 is somewhat roundabout. Our argument will pro-

ceed via an induction. To start out with we consider the case where A is abelian.

It follows easily from the basis theorem for finitely generated abelian group

(cf. e.g. Kurosh [12, vol. 1, p. 149]) that a closed subgroup of a finitely generated

abelian group is a direct factor. So

A = HxJ,

for a suitable choice of J. Therefore, for every prime p,

H A"1 = H x Jpi.

So (4.11) follows immediately from the fact that

¡=1

We now assume that A is of class c > 1. Moreover we shall assume that the

proposition holds for all groups of class not exceeding c —1 in Jf. Under these

assumptions we proceed to a proof of a lemma.

Lemma 4.12. Let BeJf and let K be a closed subgroup of B. Let Z be the

centre of B and suppose that KZ/Z is a closed subgroup of B/Z. Then
CO

fi KB"' = K
1=1

for almost all primes p.

Proof. If B is abelian, then our introductory remarks (above) suffice. So

we assume that B is of class oí. Let us put

Lp=f\KBpi.
i— 1

Then the induction hypothesis of Proposition 3 yields

Lpú KZ

for almost all primes p. Hence

(4.121) K^Lp^KZ

for almost all primes p. We can therefore find a set Í2, say, containing all but

a finite number of primes, such that if peíí, then both (4.121) and

(4.122) Bpi = {v"'\veB}

hold simultaneously. Notice that KZ is closed in B since KZ/Z is closed in B/Z.

Now let peQ and suppose ueLp. Then, noting (4.122), for each i - 1,2,---

there exists b¡eB such that

u = bfki   ik¡eK).
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B*(4-121)' ueKZ.

But k,eKZ. So bfeKZ and as KZ is closed in B,

(4.123) bi e KZ (¿ = 1,2,-).

Clearly K is a normal subgroup of TvZ. Let us consider KZ/K; since K is a closed

subgroup of B, KZ/K is a finitely generated torsion-free nilpotent group, i.e.,

KZ/K e J/~. But every finitely generated nilpotent group satisfies the maximum

condition (Hirsch [13]). Consequently in a torsion-free nilpotent group on a

finite number of generators only the unit element has p'th roots for arbitrarily

large values of i. Now (cf. (4.123)) for each i = 1,2, •••

uK = bfK = (biKY1.
Therefore uK = K; i.e.,

ue K.

So

Lp = K.

This is precisely what is required and so the proof of Lemma 4.12 is complete.

We come now to the proof of Proposition 3. We are interested in the case

where A is a nonabelian group in Jf and 77 is a closed subgroup of A. Let Z

now denote the centre of A and consider the smallest closed subgroup 77Z (the

so-called closure of 77Z) of A containing 77Z. Thus 77Z is simply the intersection

of the closed subgroups of A containing 77Z. We consider

00

Lp = f| HA»' ,¡=i

where p is a prime. By Lemma 4.12

(4.13) 77 ̂  LpSHZ

for almost all primes p. Now HZ consists of precisely those elements of A which

have a positive power in 77Z (cf. e.g. Kurosh [12, vol. 2, p. 249]). So if

u e HZ,

then, for a suitable choice of n > 0,

u"e77Z.

Clearly then

u" normalises 77.

But the normaliser of a closed subgroup of a group in Jf is itself closed (cf.

e.g. Kurosh [12, vol. 2, p. 249]). So

u normalises 77.

In other words 77 is a normal subgroup of 77Z.
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We now form

HZ/H.

Since H is closed in A, HZ/H is torsion-free.

Let us now choose a prime p so that (4.13) holds and so that the product

of pth powers in A is again a pth power in A ; notice that almost all primes satisfy

the above two conditions. Consider Lp/H. Suppose veLp. Then there are ele-

ments a,eA such that

v = afh,   (h,eH)

for ( = 1,2,- . But veHZ (by (4.13)), h,eHZ and so afeHZ. Since HZ is

a closed subgroup of A it follows that

a,eHZ   (¿ = 1,2,—).
Hence

vH = (aH)pi   (¿ = 1,2,-).

Now HZ/H e Jf; so it follows from the fact that the groups in JT satisfy the

maximum condition for subgroups that vH = H. Therefore

veH.
So

Lp = H.

This completes the proof of Proposition 3.

The proof of Theorem 5 follows easily. For choose a prime p such that

00 00

f]A"'H = H,     f]B"'K = K.i=i ¡=i

Then {Api}^=1 and {Bp'}?= y are, respectively, an H-filtration of A and a in-

filtration of B; these nitrations are, moreover, (H,K,^-compatible. So Propo-

sition 2 applies, and this completes the proof of Theorem 5.

5. The proofs of Theorem 6 and Theorem 7.

5.1. We follow a now familiar procedure. Thus we suppose AeJT and that

H is a cyclic subgroup of A :

H = gp(u).

Now H, the closure of H in A, is also cyclic. To verify that this is indeed the

case we first observe that Ñ is abelian (Baumslag [16]). Now H consists of all

those elements of A which have a positive power in H (cf. e.g. Kurosh [12, vol. 2,

p. 249]). So H is locally cyclic. But H satisfies the maximum condition for sub-

groups (Hirsch [13]) and therefore is necessarily cyclic. Suppose then that

H = gp(a).
Consequently

u = am.
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Let Ut be the last term of the upper central series of A which does not con-

tain a. Then the succeeding term U2 of the upper central series of A does contain

a. We observe that U2/U1 is a finitely generated torsion-free abelian group and

that U2ejV(Hirsch [13]).

Now let n be any nonzero integer and let

Xy = Uf"

Then Xx is a normal subgroup of A; moreover

aXx is of order m2n

because even

aiXyUy) is of order m2n

by virtue of the fact that U2/U1 is a direct product of infinite cyclic groups. It

follows that

(5.11) uXt is of order mn.

Let us recall that Hx = gpiu'"") is p-closed in A for almost all primes p, by

Lemma 3.21. So we can choose a prime p such that the product of pth powers

in A is again a pth power, such that //x is p-closed in A and such that

OO

f)HApt = H,
i=l

by Lemma 3.21 and Proposition 3. We then define

Xl+1 = Xp   (¿ = 1,2,...).

Then the family {X^ t of subgroups of A possesses the following properties :

(i)     X¡ is a normal subgroup of A for i = 1,2, ••• ;

(iii)   uXj is of order mnp'~l for i = 1,2, ••■ ;

(iv) f\p.tHxt-n.
To verify this claim, we observe, firstly, that (i) is trivially true, and that (ii) is

a consequence of a theorem of Gruenberg [3]. Secondly, (iii) is a consequence

of (5.11) and our choice of the prime p. The verification of (iv) is a little more

involved. We have, by Proposition 3 and the choice of p,

OO OO OO OO

K = fi HX¡ ̂  fi HXt S H ffXi ̂  P| HAP' ̂ H.
(=1 ¡=1 ( = 2 ¡=1

Now

(5.12) \H/H\ = m.

Clearly K contains H. Let us consider | H/K \. Since a is of order m modulo

HXU it follows that
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(5.13) \H/K\ = m.

It follows immediately from (5.12) and (5.13) that K = H and so we have estab-

lished (iv).

The outcome of the above considerations is the following lemma.

Lemma 5.14. Let AeJf, let H be a cyclic subgroup of A and let 77 be of

index m in its closure H. Furthermore, let n be any positive integer. Then for

almost all primes p there is a family {X/\f=x of normal subgroups of A, with

a trivial intersection, such that
00

\HX¡/X,\ = mnp1'1 (i = 1,2,-) and f] HX¡ = 77.
¡=i

5.2. Proposition 4. It is now an easy matter to deduce the following some-

what technical proposition from Lemma 5.14.

Proposition 4.   Let A,Be Jf and let H be a cyclic subgroup of A, say

77 = gp(u).

Furthermore, let K be a cyclic subgroup of B, say

K = gp(v),

and suppose

(¡> :u -* v

is a given isomorphism between 77 and K. Then there exist families {Xt}^°-i,

{1¡}>* i of normal subgroups of A and B, respectively, satisfying the conditions

(a) \HX,/Xt\ < co,   \KYJYt\ < co;

(b) fpmlHXt = H,   fÇ.tKYt-K;
(c) ¡HXJXJ = \KYJYt\   (¿ = 1,2,-);
(d) n.-i*.- = i = rr=i^
Proof. Suppose |7?/77j = m and \K/K\ = n. It follows from Lemma 5.14

that we can find a prime p such that

\HZJXt\ = mnp1 = nmp1 = \KY,/Yt\   (¿ = 1,2,-),

where {Xt}J% j    and {Yj^i t are families of normal subgroups of A and B re-

spectively satisfying (b) and (d).

But now Proposition 4 entitles us to apply Corollary 2.31 and so the proof

of Theorem 6 follows immediately.

5.3. The proof of Theorem 7. The proof of Theorem 7 is an easy conse-

quence of Theorem 6. We recall first the data of Theorem 7. We have two free

groups A and B with subgroups 77 = gp(u) (u # 1) and K = gp(v) (v # 1) re-

spectively, and an isomorphism 0 of 77 onto K defined by

u<p = v.
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In addition

P = (A*B;   H = K).

It is well known that 3> c RJf (Magnus [18]); this helps us to establish that

P e r!F. Now suppose w e P (w ^ 1). Then we can express w in the form

w = XyX2-xn   (n> 1),

where the x, come alternately out of A and B, but not out of both. Now it fol-

lows from Magnus' theorem and the fact that the centraliser of any element

different from 1 in a free group is cyclic, that we can find normal subgroups M

and N, of A and B, respectively, such that

(i)     MnH = 1 = N r\K;

(ii)    A/MeJV,   B/NejV;

(iii)   If x,eA-H, then x,M$HM (¿ = 1,2,— ,n);

(iv)   If x,eB-K, then x,N$KN (¿ = l,2,-,n).

Now let p be the natural homomorphism of A onto A/M and let v be the natural

homomorphism of B onto B/N. It follows from (i) that p and v can be simul-

taneously extended to a homomorphism 0 of P onto

Py = (A/M * B/JV;   J7M/M = KN/N),

where </> is the isomorphism defined by

(uM)tf = (ut¡>)N.

It is important to observe that

wO = (xy9)(x20)-(xn0)

is a product of elements coming alternatively out of A/M and B/N but not out

of both. So

wO jt 1.

But Theorem 6 applies and therefore Py e R&. Since w6 # 1 the argument that

we used before applies and so PeR&; this completes the proof of Theorem 7.

6.   Miscellaneous results.

6.1. We end this discussion of Schreier products of nilpotent groups by

stating some of the theorems that can be proved by using the same basic idea

that we have employed throughout.

Theorem 8.   // A and B are polycyclic, then

a(A,B: in the centre of B) c RiF.

Theorem 9.   If A and B are polycylic, then

tx(A,B; normal in both A and B) c r¿F.
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Theorem 10.   If AeRlF, if H is a subgroup of A and if çb is an isomorphic

mapping of A onto a group B then

iA*B;   H = Hçb)e$>-R$*.
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