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By a 'representation' we shall mean throughout a representation by n x n

matrices with entries from an arbitrary (commutative) field.

Clifford has constructed all representations of completely simple semigroups

[1; 4]. Munn has determined the representations of finite semigroups for which

the corresponding semigroup algebra is semi-simple [6]. It is noted by Clifford

and Preston [4] that if S is a semigroup satisfying the descending chain condition

for principal ideals and such that every 0-simple principal factor is completely

0-simple then all the irreducible representations of S can be expressed in terms

of those of subgroups of S. This statement is a consequence of work of Clifford

[1] and Munn [4]. Munn has determined the irreducible representations of

intraregular inverse semigroups [7].

In §1, we prove the following result:

Let S be a semigroup having a maximal group homomorphic image G. Then

there is a one-to-one correspondence between the representation of G and the

nonsingular representations of S which preserves equivalence, reduction and

decomposition (Theorem 1.2). An application of this result to inverse semigroups

is given. Stoll [11] gives some examples of semigroups with maximal group

homomorphic images.

In §2, we determine the representations of an important class of ¿¿-simple

semigroups by utilizing Theorem 1.2.

Let S be a semigroup satisfying the following conditions :

(Al) S is d-simple.

(A2) S has an identity element.

(A3) Any two idempotents of S commute.

It is shown by Clifford [2] that the structure of S is determined by that of its

right unit semigroup P and that P has the following properties :

(Bl) The right cancellation law holds in P.

(B2) P has an identity element, 1.

(B3) The intersection of two principal left ideals of P is a principal left ideal.

Condition (B3) implies that for any a, b in P there exists x and y in P such that
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xa = yb, i.e. any two elements of P have a common left multiple. We call this

property (B3)'.

We define a congruence relation n on P such that P=S/n satisfies (Bl), (B2),

(B3)' and the left cancellation law. Thus, as shown by Ore [8; 4, p. 34], P may be

embedded in a group G of "fractions." We show that there exists a one-to-one

correspondence between the representations of S and the representations of G

which preserves equivalence, reduction, and decomposition. We also give an

explicit formula for constructing the representations of S in terms of those of G.

In §3, we apply this formula to determine the representations of the bicyclic

semigroup and those of a more complicated semigroup.

We wish to express our gratitude to Professor A. H. Clifford for providing an

alternative treatment leading to our main result (Theorem 2.2).

This treatment, which we give here, considerably reduces the length of the

original paper. We also wish to thank Professor Clifford for making available

to us, before publication, Chapter 5 of his book [4].

1. Nonsingular representations. A semigroup is a set which is closed under

an associative binary operation. This, as usual, will be denoted by juxtaposition.

A nonvoid subset A of a semigroup S is an ideal of S if and only if SA s A

and AS ç A.

A semigroup S is simple if and only if S is its only ideal and it is not the null

semigroup of order one.

To each element a of a semigroup S let there correspond a uniquely determined

matrix T(a) with n rows and columns with elements in a (commutative) field

Si. If for all a, b in S

T(ab) = T(a)T(b)

then the correspondence T:a^> T(a) is called a (matrix) representation of S in £2

of degree n. A representation T of a semigroup S will be called nonsingular if and

only if T(a) is a nonsingular matrix for all a in S.

The notions of equivalence, reduction, and decomposition are defined exactly

as in the theory of representations of groups or algebras.

A representation T of a semigroup without zero is proper if and only if T is not

decomposed into two representations one of which is null and T is not the null

representation of degree one. There is no essential loss of generality in confining

our attention to proper representations.

Theorem 1.1. Let S be a simple semigroup with identity element 1. Then

every proper representation of S is nonsingular.

Proof. If T is a proper representation of S of degree n, then T(l) = In. If a

is in S, then there exists x,y in S such that xay = 1 [4; 9], since S is simple, and

from T(x)T(a)T(y) = In, it follows that T(a) is nonsingular.
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A semigroup S will be said to have a maximal group homomorphic image G if

there exists a homomorphism çb of S onto G such that if x is any homomorphism

of S into a group H, then there is a homomorphism t* of G into H such that

x*çb = x (first çb  then t*).

Since çb is onto, the correspondence t<->t* is one-to-one, each uniquely deter-

mining the other.

Theorem 1.2. Let S be a semigroup having a maximal group homomorphic

image G. Then there is a one-to-one correspondence between the iproper) rep-

resentations of G and the nonsingular representations of S which preserves

equivalence, reduction, and decomposition.

Proof. Taking H to be the group of all nonsingular n x n matrices over a field

SI, it follows that there is a one-to-one correspondence T<^T* between the

nonsingular representations T of S and the (proper) representations T* of G,

whereby, for each a in S,

Tia) = T*içbia)).

It is easily seen that this preserves equivalence. To show it preserves reduction,

let T<->T* be corresponding representations of degree n, and consider nx n

matrices as linear transformations of an n-dimensional vector space V. If W is

a subspace of V invariant under T*, then

Tia)w = T*içbia))w in  W (for all w in W and a in S),

so W is also invariant under T. The converse is true since çb is onto. If Tx and

T* are the representations of S and G respectively induced by T and T* in W

(namely just their restrictions to W) then trivially

Tyia)w = Ty*içbia))w    (for all w in W and a in S)

whence

Tyia) = Ty*içbia))        for all a in S, i.e. Tx <-> T*.

Let T2 and T* be the representations of S and G respectively induced by T and

T* in the factor space V — W; that is

T2(a) (t). + W) - T(a) y + W (for all t> in V and a in S)

and

T2*(a)(r + W) = T*ia)v + W (for all v in F and a in G).

We then have

T2ia)iv+ W) = T(a)i> + W= T*(0(a))» + If

= 7?iXa))(» + FF)        (for all » in F and a in S).

Thus,

r2(a) = T2*((p(a))       (for all a in S),

whence T2 +-► Tj.
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This shows that reduction is preserved and decomposition is similar (if not

actually a consequence) ; for if V = Wx © W2 with Wx and W2 invariant under T,

then they are invariant under T* (and vice-versa) and the representations T¡

and Tf induced in Wt (i, = 1,2) correspond as above, q.e.d.

A semigroup S is an inverse semigroup if and only if a in aSa for all a in S and

the idempotents of S commute [5]. Let S be an inverse semigroup and let a rela-

tion o be defined on S by the rule xoy, if and only if there exists an idempotent e

in S such that ex = ey. It follows easily from a theorem of Munn [7, p. 42] that

G = S/o is a maximal group homomorphic image of S. Thus, by Theorem 1.2

there exists a one-to-one correspondence T*<-yT between the representations of G

and the nonsingular representations of S which preserves equivalence, reduction

and decomposition, and T(a) = T*(a) where a-y ais the natural homomorphism

of S onto G. We note that not all proper (or even all irreducible) representations

of S are nonsingular. For let S be the semigroup which consists of the real interval

[0,1] with multiplication defined by

xy = max{x,y}.
Then,

(1 if x^a      (0<a < 1),
Ta(x) = \

(.0 otherwise

is an irreducible representation of S.

2. Matrix representations of ¿/-simple semigroups. We first summarize the con-

struction of Clifford referred to in the introduction.

Let S be any semigroup with identity element. We say that two elements are

right associate if they generate the same principal right ideal: aS = bS. Left

associate elements are defined analogously. Two elements a and b are called

¿¿-equivalent if there exists an element of S which is left associate to a and right

associate to b. (This implies the existence of an element of S which is right asso-

ciate to a and left associate to b.) We shall say that S is ¿¿-simple if it consists of

a single class of ¿¿-equivalent elements.

Now let P be any semigroup satisfying (Bl), (B2), and (B3). From each class

of left associate elements of P let us pick a fixed representative. (B3) states that

if a and b are elements of P, there exists c in P such that Pa C\Pb = Pc. c is deter-

mined by a and b only to within left associates. We define a \f b to be the repre-

sentative of the class to which c belongs. We observe also that

(2.1) • a\Jb = b\/a.

We define a binary operation x by

(2.2) (a x b)b = a V b

for each pair of elements a, ft of P.
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Now let P_1 oP denote the set of ordered pairs (a,b) of elements of P with

equality defined by

(2.3) (a,b) = ia',b') if a' = ua and b' = ub

where u is a unit in P (u has a two sided inverse with respect to 1 the identity of P).

We define product in P ~1 o p by

(2.4) (a,b)(c,d) = ((c x b)a,(b x c)d).

Clifford's main theorem states: Starting with a semigroup P satisfying (Bl),

(B2), (B3) equations (2.2), (2.3), and (2.4) define a semigroup P'1 oP satisfying

(Al), (A2), (A3). P is isomorphic with the right unit subsemigroup of P_1°P

(the right unit subsemigroup of P~1 ° P is the set of elements of P~1 ° P having a

right inverse with respect to 1. This set is shown early to be a semigroup). Con-

versely, if S is a semigroup satisfying (Al), (A2), (A3), its right unit subsemi-

group P satisfies (Bl), (B2), (B3) and S is isomorphic with P'1 °P. The follow-

ing results are also obtained:

The elements (1, a) of P_1 °P constitute a subsemigroup thereof isomorphic

to P. We have

(2.5) (1, a)(1,6) = (1, a/>) for a, 6 in P.

The ordered pair (1,1) is the identity of P~1°P, i.e.

(2.6) (a, b)(1,1) = (1, l)(a, b) = (a, b) for a, b in P.

The right inverse of (1, a) is (a, 1), i.e.

(2.7) (l,a)(a,l) = (l,l)   for a in P.

Finally

(2.8) (a,c) = (a, l)(l,c) for all a and c in P.

For the remainder of this section, we identify S with P~loP   and  P   with

{(l,a):ainP}.

Now, as noted in the introduction, P satisfies (Bl), (B2), and (B3)'. We now

introduce the following relation on P :

(2.9) anb if and only if there exists h in P such that ha = hb.

It is easily seen that n is an equivalence relation. We next show that anb implies

cancb for all c in P. Since anb, there exists h in P such that ha = hb. By (B3)',

there exists x and y in P such that xc = yh = k. Hence, ka = kb and xca = xcb.

Clearly, acnbc for all c in P. Thus, n is a congruence relation. Let a -*■ ä be the

natural homomorphism of P onto P, the semigroup of congruence classes. Clearly

P satisfies (Bl), (B2), (B3)' and the left cancellation law. We may rewrite (2.9) as

(2.10) á = b if and only if there exists n in P such that ha = hb.
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(The right-left dual of the above is given by Skolem [10].)

As shown by Ore [8; 4, p. 34], P may be embedded in a group G. We will

briefly review this construction.

Let à, b be in P. We consider the set G of all pairs of elements of P writing them

as fractions b/ä. The relation = between these fractions shall be defined thus :

(2.11) b/ä = d/c

shall mean that elements x and y exist in P such that

xä — yc and xb — yd.

The definition of the product is

b/ä d/c = ¡cd/hä
where hb =kc.

The multiplication is associative, Î/T (I is the identity of P) is the identity,

b/ä is the inverse of ä/b, i.e. G is a group. The isomorphism of P into G is given

by ä-* ä/\.
Since we have succeeded in embedding P in the group G, it is no longer necessary

to retain the quotient notation. The final result is that P is a subsemigroup of G

and every element of G is expressible in the form ä~ 1b with ä and b in P. For

future reference, we rewrite (2.11) as

(2.12) a-"15 = c_1d

if and only if there exists x and y in P such that

xä = yc and xb = yd.

Theorem 2.1. With S, P, P, and G as above, the mapping çb:ia,b)-> d~xb isa

homomorphism of S onto G, and G is thereby a maximal homomorphic image

ofS.

Proof. To show that çb is single valued, let (a, b) = (a', b'). Then, a' = ua and

b' = ub for some unit u in P by (2.3). This implies a" = üä, b' — üb, and hence

ä"1b' = ä-1ü-1üb = ä-1b.

To show that çb is a homomorphism, we first note that from (2.2) and (2.1)

we have

(b x c)c = b V c = c V b = (c x b)b.

Hence,

b x c-c = c x b-b

and so

(2.13) ex b_1i>xc = be"1

for any h, c in P.
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Hence, using (2.4) and (2.13) we obtain

4>l(a,b)(c,d)~¡= (¡)((c x b)a, (b x c)d)

= (c x b)a~l (b x c)d = ä~l c x b ~xb x c d

= a-1brld=<p(a,b)-<t>(c,d).

We next show that if t is any homomorphism of S into a group H,

(2.14) <i>(a,b) = <¡>(c,d) implies x(a,b) = x(c,d).

From, <j)(a, b) = 4>(c, d), we have

Hence, by (2.12), xä = yc and xb = ydTor some x, y in P. Therefore, xa = yc

and xb = yd, so fxa =fyc and gxb = gyd for some/, g in F by (2.10). Hence

(l,/)(l,x)(l,a) = (l,/)(l,j;)(l,c),

(l,¿j)(l,x)(l,b) = (l,¿7)(l)y)(l,¿¿),

and, applying x and cancelling t(1,/) and x(l,g),

T(l,x)T(l,a)  = t(1,3^)t(1,c),

t(1,x)t(1,&)  = x(l,y)x(l,d).

The foregoing are equations in the group H, and so

x(\,ay\(Lb) = x(\,cyxx(\,d).

From equation (2.7), (1, a) (a, V) = (1,1), we have

Ttf.a)-1« t(a,l)

and so the above becomes

T(a,l)T(l,ft) = T(c,l)T(l,¿¿)

or using (2.8),

x(a, b) = x\_(a, 1)(1,6)J = x(a, V)x(\, b)

= t(c,1)t(1,¿¿) = t[(c,1)(1,¿¿)]=t(c,¿¿).

This concludes the proof of (2.14).

If a is in G, we define x* by

r*(a) = x(a, b) where (¡)(a, b) = a

in order to make t*(/> = t. This definition oft* is single valued, for if a = (¡)(c,d)

then x(a, b) = x(c,d) by (2.14). Thus, x* is (uniquely) defined by

x*[4>(a,by] = x(a,b).
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This automatically makes x* a homomorphism of G into H:

x*[çbia, b) çbicdï] = x*{çb{ia, b)(c, d)}]

= r{(a, b) (c, d)} = r(a, b) r(c, d)

= T*[<Ha,b)]T*[<Kc,d)].

(Recall that çb is onto.)   q.e.d.

Since a d-simple semigroup with zero consists of zero alone we may eliminate

these semigroups from our discussion.

Theorem 2.2. Let S, P, P, and G be defined as above. Then there is a corres-

pondence T++T* between the proper representations of degree n of S and the

iproper) representations of degree n of G given by

(2.15) Tia,b)=T*iäy1T*i'b)

where a-*ä is the natural homomorphism of P onto Pgiven on p. 431. This corres-

pondence is one-to-one and preserves equivalence, reduction, and decomposition.

Proof. A representation of S is proper if and only if it is nonsingular by Theorem

1.1. Hence, by virtue of Theorem 2.1 the construction presented in the proof of

Theorem 1.2 is applicable. Thus, taking <p(a í>) = á~1b,

T[(a,fc)] = T*[çbia,b)-] = T^â~lB] - T*iä)~lT*ib)

where T, T* are the corresponding representations of S and G respectively.

Remark 1. A semigroup S is intraregular if and only if a is in Sa2S for all a

in S. The class of d-simple semigroups we consider are intraregular [3, p. 502].

It follows from (2.8), (2.7), and (A3) that they are inverse semigroups. Hence their

irreducible representations may be determined from the work of Munn [7].

Remark 2. We note that our paper is the first paper in matrix representations

of semigroups that makes use of the technique of embedding a semigroup in a more

special semigroup. We feel this technique may have further applications in the

representation theory.

3. Examples. We give two examples illustrating the application of (2.15).

Example 1. The bicyclic semigroup "C" [4, p. 43] consists of all pairs of

non-negative integers with multiplication given by:

ii,j)ik,s) « (i + k - minij, k),j + s - min(j,/c)).

A complete set of proper representations of "C" of degree n is given by

TAihJ) = A~l+J    ii,j are non-negative integers)

where 4 runs through all nonsingular matrices of degree n.
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Example 2. Let G be any group of order greater than or equal to two with

identity e. Let I0 be the non-negative integers under the usual addition.

Consider P = G x I0 under the following multiplication.

r(uv, k) if s = 0,
(u,s)(v,k)= \

l(u,s + k)       ifs#0.

P is a semigroup satisfying (Bl), (B2), and (B3) which is not left cancellative.

Let S be the semigroup corresponding to P in Clifford's main theorem (see intro-

duction).

A complete set of proper representations of S of degree n is given by

TAl(i,j),(k,s)} = A-j+s((i,j) and (k,s) are in P)

where A runs through all nonsingular matrices of degree n.
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