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Introduction. 1. A continuous real valued function / of the reals Tis said to

be uniformly almost periodic [3] if for each s > 0 there is a relatively den se

subset S <zzT such that

|/(i + S)-/(f)|   <£

for t e T and seS. This definition can be restated in equivalent ways in terms

of particular flows. A flow (X, T) is a transformation group [8] where X is a

topological space and Tis the additive group of the reals. We designate the action

of te Ton xeX by x -*xt. A point xeX is said to be almost periodic if for

each neighborhood U of x there is a relatively dense set S c: T such that xseU

if seS. We let B he the Banach space of uniformly continuous bounded real

valued functions of the reals. The norm of an element of B shall be the supremum

of its absolute values. We let (B, T) be the flow defined by x -> xt where xt(s)

= x(i + s). Uniformly almost periodic functions may be defined in any one of

the three following ways.

(1) A function x in B is uniformly almost periodic if x is an almost periodic

point of (B, T).

(2) A function x in B is uniformly almost periodic if its orbit closure in iB,T)

is compact.

(3) A function x in B is uniformly almost periodic if it may be extended to

a continuous function on the Bohr compactification of the reals.

The fact that these three statements are equivalent may be found in [3; 12].

For many notions of functions being recursive under translation the compact-

open topology is more natural than the topology of uniform convergence. With

this in mind we let C be the set of continuous real valued functions of the reals

with the compact open topology. This topology is equivalent to the topology

induced by the metric

p(x, y) = sup {min { sup | x (f) - y it) |,   1/s}}.
0<s l'|<s
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With this metric C is complete and (C,T) is a flow where Tacts by translation.

This is also called the dynamical system of Bebutov [10].

The previous definitions suggest that we investigate the following classes of

functions.

1'. Let W be the set of all xeC whose orbits in (C, T) are almost periodic.

2'. Let /1(c) be the set of all x e W whose orbit closures in (C, T) are compact.

3'. Let A(P) be the set of all xe C which come from a universal minimal set

with property P. (In the body of the paper P will represent different properties.)

The purpose of this paper is to study these classes of functions. We prove

that W properly contains A(c). If A(M) is the class of all functions coming from

the universal minimal flow we prove A(M) = A(c). We will give examples to

show that neither of the preceding classes are vector spaces. If A(D) is the set

of functions coming from the universal distal minimal flow then A(D) is a lattice

algebra of functions and is properly contained in A(M). It is known that the

set of uniformly almost periodic functions is the same as A(E), where A(E) de-

signates the set of functions coming from the universal equicontinuous minimal

set (see Chu [4]). We also show that some functions of A(M) do not have mean

values, that is, there is an xeA(M) for which lims_ + 00(l/2s) J^ x(t)dt does not

exist. It is known [3] that the functions of A(E) do have mean values. To the

best knowledge of the authors this question is not answered for A(D).

The authors would like to take this opportunity to acknowledge many helpful

conversations with G. A. Hedlund.

2. The almost periodic points of (C, T). A point x of C is said to be almost

periodic if for each £ > 0 there is a relatively dense set S c T such that p(x, xs) < £

if seS. We let W be the collection of all almost periodic points of (C, T). It is

easy to see that W is invariant under T. The set W is distinguished by its lack

of regularity. To show this we construct some examples of functions in W which

illustrate the pathology of this set.

Example 2.1. We first show that there exists in W two bounded uniformly

continuous functions x and y such that x + y $ W. These functions are obtained

by a modification of the Morse bisequence [9]. If m is an integer the values

x(m) and y(m) shall be restricted to bring either 1 or zero. If we let B„ be a finite

sequence of zeros and ones, then B'„ shall be that sequence obtained from B„ by

replacing one by zero and zero by one. If Bx and B2 are two finite sequences

then BXB2 = B3 is the sequence obtained by writing first Bx and then B2. We

now define the Morse bisequence (see also [8, Chapter 12; 9]). The definition

is inductive and is given as follows

B0 = 0

Bn+1 = BnBn'-

We let B = \J =0 Bn- We define B to be the reflection of B. The bisequence
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{x(n):n an integer} is then defined by BB. We also define the bisequence

{y(n) : n an integer} by B'-B where prime again means interchanging zero and one.

These bisequences are now extended to real valued functions as follows: let

x(n + 1/2) = y(n 4- 1/2) = 0 for integral n. Now make the functions linear be-

tween the points on which they are already defined. These functions are uni-

formly continuous since any linear piece has either slope zero or + 2.

It is known that the bisequences {x(n) : n integral} and {y(n) : n integral} are

almost periodic under the shift transformation [8; 9]. We notice that x(n) + y(n)

= 1 for n negative. Since both x(n + 1/2) and y(n + 1/2) are zero for each

n we see x(n + 1/2) + y(n + 1/2) = 0. On the other hand if n is positive then

x(n) + y(n) = 2 or 0. In particular x(l) 4- y(V) = 2. Since p(x,y) < e if and only

if sup |,| < 1/s | x(t) — y(t) | < e we see that p(x + y, (x + y)t) > 1/2 if t is an integer

less than —2. Thus x + y is not almost periodic for integral values of t and con-

sequently is not almost periodic for real values of t [8, p. 31].

Example 2.2. In this example we give a method for the construction of two

functions in W. One of these functions is not uniformly continuous, is not bound-

ed and does not have a mean value. The other function is bounded, non-negative,

but not uniformly continuous. The construction of both these functions depends

on the existence of a certain subset B of the reals.

The idea of this construction is not too difficult but the details are laborious.

A brief outline of the idea is in order. We begin with a continuous function /

defined on a finite symmetric interval about zero and/vanishes at the endpoints.

To the original interval adjoin two intervals of length < 1/2 on each end so

the new interval is symmetric. We now extend / to the larger interval such that

the modulus of continuity is decreased by more than 1/2 and the extension van-

ishes at the endpoints. The next step is to translate the previous interval to the

right and left so we have three adjoining intervals. The function is extended

by taking its translates. We now repeat the first step adjoining intervals of length

ess than 1/22. We then repeat the second step. We continue inductively alter-

nating these two procedures. The fact that at each odd step the modulus of con-

tinuity is decreased by more than 1/2 says that the function cannot be uniformly

continuous. The function is forced to be in W because of the translation of the

even numbered sets and the fact that the sum of the lengths of the new intervals

added is finite. We choose to use this inductive procedure to describe a

discrete subset B of the reals. We then define a polygonal function whose zeros

contain B.

If B, is a finite subset of the reals let m, be the maximum element of B¡. Let

B0 be any finite symmetric subset of the reals which has a nonzero element.

Let By = {-a0} UB0 U {a0} where 0 < (a0 - m0) < 1. Suppose we have de-

fined B, for j < 2n. Let

B2„ = (-2m2n_y + B2n_y)UB2n_y U(2m2„_1 4- B2n_y)
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and

B2n+i   =   {-a„}UB2nu{an}  where 0 < (a„ - m2n)   <   1/2".

Let B=\^?=oBi and notice that   Z¡" 0(a¡ — m2i) converges absolutely.

Proposition 1.   B is symmetric.

Proof. B0 is symmetric and we see by induction that B¡ is symmetric for

each i and therefore so is B.

Proposition 2. Let s„= Z"=o(a¡~ m2¡)- There is a sequence of non nega-

tive numbers bn such that bn + B0 and —b„ + B0 is contained in B2n and in

B2n+1 and m2n - (i>„ 4- m0) < s„ and m2n+1 - (b„ + m0) < s„.

Proof. We prove this by induction on n. If n = 0 we choose b0 = 0 and our

result holds. Suppose the result is true for nz%p. Since B2p+2 = (—2rn2p+i

+ B2p+i) u BzP+i u (2m2p+1 + B2p+y) we need only let bp+1 = bp + 2m2p+1

and we see that m2p+2 - (bp+1 + m0) = 3m2p+1 - ibp + 2m2p+1 + m0) < sp

< sp+1. Since B2p+3 = {-ap+1} U B2p+2 U {ap+1} we see that m2p+3 - (ftp+1

-I- m0) < sp + ap+y < sp+1. This concludes the proof.

Proposition 3. There is a relatively dense discrete set S such that if se S

then s + B0<= B, and if s and t e S such that s^t then s + B0 O t + B0 = 0.

Proof. We will construct the set S by induction. We wish to define an in-

creasing sequence of sets S¡ having the following properties :

1. S i is discrete and symmetric.

2. For each i the number b¡ of Proposition 2 is the greatest element of S2i

and S2i+1.

3. If se Si then s + B0<zzB2i<z B2i+1.

4. If s and t e Sif s # t, then s + B0r\t + B0 = 0.

5. If s and teS2i or S2i+1 are adjacent elements then the distance between

s + B0 and t + B0 is not more than 2$^ + 2m0.

Clearly if we let S ={J^=oS¡ then S satisfies the theorem. We proceed with

the construction of the S/s.

Let S0 = Sy — {0}. Suppose S is defined satisfying 1 thru 5 for n < 2p. Let

S2p = {-2m2p_1 + S2p_i} u S2p_! U {2m2p_! + S2p_y} and S2p+1 = S2p,

where m2p_1 is the maximum element of B2p_y. If is clear that 1 holds for S2

and S2p+1. Since bp = bp-y + 2m2p_i we see that 2 holds for S2p and S2p+1.

Since

B2p = {-2m2p_1 4- B2p_y} U B2p_y U {2m2p_1 + B2p_,},

B2p+i = {-ap} UB2pU{ap},

it follows that 3 holds.

Proposition 2 says that m2p-i   -  (6p_1-m0)  <  sp_y, therefore 2m2p-y
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— 26p_i < 2sp_! + 2m0. Since the largest element of S2p-X is bp^x and the

smallest element of 2m2p_x + S2p-i *s 2m2p-1 — bp-x we see that 5 holds. We

see inductively that (2m2p_1 — bp-x) — bp-x = 2(m2p_1 — bp-x) > 2m0. From

this the validity of 4 follows.

Proposition 4. For each n there is a relatively dense discrete set Sn such

that if seS„ then s + B2n c B and if s and teSn such that s # t then

s + B2nnt + B2n = 0.

Proof. We let A0 = B2n and Ax = { — a„} UB2nU {a„}. In general we let

Ail = {2May-t + ¿2,-1} U 42j-i U {2M2j_! + ¿j^} ¿2j + 1 = {-a,„}
U A2J U {ajn}, where M,- is the maximum element of A¡. We have thus made

B2n — A0 play the role of B0 and Propositions 1, 2, 3 give our result.

Suppose now we have the set B. We let a„ be any sequence of numbers and

let /„ be the closed interval spanned by B„. We define a function x as follows.

Let x(t) = 0   i e J0.

This defines x(t) on /0. Let c0 = (m0 + a0)/2 and on Ix we extend x from I0

to Ix such that x is symmetric, x(c0) = a0, x(a0) = 0 and the graph of x is linear

on the remainder ofIx.

Suppose x has been defined on I2p-X such that x vanishes at the endpoints

of the interval. Since B2p = -{2m2p_x + B2p_t} U B2p_x U {2m2p_1 + B2p-i}

we extend x to /2p by translation to the right and left of the function x on 72p_ x.

Let cp = (mp + ap)/2 and on 72p+1 extend x from /2p to 72p+i such that x is

symmetric, x(cp) = <xp, x(ap) = 0 and the graph of x is linear on the remainder

of I2p+X. The function x is then defined on the reals and Propositions 1, 2, 3, 4

tell us that x is an almost periodic point of (C,T).

By induction we easily estimate the following integrals

Í.
I

x(t)di = 0,

x(i) dt = a0(fl0 - m0),

n-l

f   x(t)dt =   I 3"~'<xi(ai-mi),

1 x(t)dt =   Z 3"~iai(ai - m¡)

for n > 0.

It is simple enough to pick the a¡ such that (l/2m„) ¡Inx(t)dt -» + oo as

n -> + oo. This shows that x(t) is neither uniformly continuous, bounded, nor

does it have a mean value.

If we let the a¡ = 1 for all i then x(t) is bounded, non-negative and not uni-

formly continuous. ;-':•;■ .  •  : • ■



420 L. AUSLANDER AND F. HAHN [March

3. The totally bounded orbits of (C, T). Since C is a complete metric space the

orbit of a point x in C is totally bounded if and only if its orbit closure is com-

pact. We shall make use of the following theorem.

Theorem 3.1. The orbit closure of x in C is compact if and only if

1. x is uniformly continuous and,

2. x is bounded.

Proof.    [8, p. 10, 1.65].

Corollary 3.2. There exist almost periodic points of (C,T) whose orbit

closures are not compact.

Proof. In Example 2 we constructed an almost periodic point x of (C, T)

which was not uniformly continuous. Apply Theorem 3.1.

We also see that if x(t) = arc cot t (taking the principle values only) then the

orbit of x has compact closure. However, x is asymptotic to 0 in the negative

direction and is asymptotic to % in the positive direction. Thus we see that there

exist functions with compact orbit closures in (C, T) which are not in W.

We also point out that there are functions whose orbit closures in (C, T) are

compact but which are not almost periodic in the sense of Eberlein [7]. The

function x(t) = arc cotí is such a function. Let us identify x with its extension

to the Stone-Cech compactification ß(T) of the reals. There is a point seß(T)

such that x,(s) = n for each t in T. Let / be the linear functional defined on B

as follows. f(y) = y(s) for y e B. Thus we see that f(xt) = n for all t e T. Let g

be the linear functional defined on B by g(y) = y(0) for each v e B. As n -> 4- oo

we see that a(x_„)-+0 and f(x_„)->• n. Consequently x_„ can have no subset

which converges weakly. Thus the orbit of x is not precompact in the weak to-

pology. This is the negation of almost periodicity in the sense of Eberlein.

Since we are predominantly interested in recursive properties we make the

following definition.

Definition 3.3. Let A(c) be the set of all functions in W whose orbit closures

in (C,T) are compact.

We see that ^4(c) is a subset of W and we have already remarked that this in-

clusion is proper.

In number 3 of the Introduction we defined a uniformly almost periodic func-

tion in terms of the Bohr compactification of the reals. We will show here that

the set .4(c) can be described in terms of the universal minimal set.

The Bohr compactification of the reals may be looked upon as being the largest

compact solenoidal group. That is, L(T) (the Bohr compactification of T) is a

compact group which has a dense one parameter subgroup and if G is any other

compact group with a dense one parameter subgroup then there is a homomor-

phism n of L(T) onto G (see [4]). We generalize this as follows: A flow (X, T)
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is said to be minimal if each orbit is dense in X. A compact minimal flow (M, T)

is called universal if M is compact and if whenever (X, T) is a compact minimal

flow then there is a continuous mapping n of M onto X, which commutes with

the action of T. Such a mapping n will be called a homomorphism(2).

The following theorem (see Chu [4]) is the analogue to the existence and

uniqueness of the Bohr compactification.

Theorem 3.4. There is a unique compact universal minimal flow.

We will say that a function xeC comes from a compact minimal flow iX, T)

if there is a point peX, and a continuous real valued function / with domain X

such that fipt) = x(i) for all t e T.

Definition 3.5. We let AiM) be the set of all functions of C which come

from the universal minimal flow (M, T).

Lemma 3.6. // a function x of C comes from any minimal flow iX, T)

then it is in AiM).

Proof. Let f:X-*Tand peX such that/(p() = x(i). Let n be a homomor-

phism of M onto X and let q e n'1 (p). It follows that x(f) =/(p,) =/° rc(a().

Theorem 3.7.   AiM) = Aie).

Proof. Let x e Aie). Since the orbit closure of x in (C, T) is compact and x

is an almost periodic point it follows that the orbit closure of x is a compact

minimal set [8, p. 31]. Let iY,T) be the flow restricted to this orbit closure.

Define/: Y-> T as follows fiy) = yiO). We see that x(f) = xr(0) =/(x(). Thus

xeAiM) and Aie) c= AiM).

Suppose now xe AiM), peM and f:M->T such that /(p,) = x(i). Since M

is compact, we will see that x is uniformly continuous. For let e > 0 be given.

If we let v(a,t) = qt for (a, i) e M x T then we see that v restricted to M x [ — 1,1]

is uniformly continuous since M is compact. Since / : M -* T is uniformly con-

tinuous it follows that there is a <5,0 < ô < 1, for which |/(a) —fiq,)\ < s for

all qeM and 0^|t|<¿. In particular we have |x(s + i) — x(s)j = |/((i>s)r)

— f(Ps) | < e whenever seT and 0 S 111 < ô. The image of M under / is com-

pact so x(T) has compact closure. It follows from Theorem 3.1 that the orbit

closure of x is compact. We must now prove xeW.

Let J be any compact interval of real numbers containing zero and let e > 0

be arbitrary. Since / is uniformly continuous and (M, T) is continuous in both

variables there is a neighborhood Vof p in M such that if q e F then |/(p() —fiqt) |

< s for tel. Since (M, T) is a compact minimal flow the orbit of p is almost

periodic and thus there is a relatively dense set S = {s} such that xs e V for s e S.

From this we conclude that xeW and thus AiM) a Aie).

(2) Since there is little chance for confusion we use the phrase "a homomorphism of X onto

Y" instead of the customary "a homomorphism of (X, T) onto ( Y, T)."
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The set A(M) again has the lack of structure noticed about W. The two functions

x and y of Example 2.1 are in IF and have compact orbit closure. Thus they are

in A(M). Their sum x + y is not in W and thus not in A(M).

The fact that the functions of A(M) need not have a mean value was first

shown by Markov. Here we modify Oxtoby's construction. In [11, p. 134] Oxtoby

constructs a compact set X which is minimal under an action of the integers L

He also finds a point pex and a continuous non-negative function f:X-*T such

that if x(n) = /(p„) then x does not have a mean value over the integers. We

now generalize this example by using the standard technique of embedding

(X,I) in a flow (Y,T). We let Y= X x [0,1] with the following identification

(q, V) = (qx,0). The compact flow (Y, T) is defined by (q,s), = (q,s + t). We

notice that since (X, I) is minimal so is (Y, T).

We now define g : F-» T as follows g(q,s) = f(q) (1 - A(s - 1/2)2), (q,s) e Y.

Noticing that g(q,l/2)=f(q) we see that lim^a^rt) ¡n_ng((p,l/2)/)dt ̂  (1/2)

lim(l/2n) Z"=-n/(p,)- Since f(p¡) = x(i) does not have a mean value over the

integers it follows that y(t) = g((p,\/2)t) does not have a mean value over the

reals.

4. Functions which come from distal transformation groups. The uniformly

almost periodic functions form an invariant subalgebra of C. We have seen that

the invariant subsets Wand A(M) are not algebras. Our desire is to find invariant

subsets of W which are algebras and are not contained in the set of uniformly

almost periodic functions. These thoughts bring our attention to distal flows

as possible generators of such algebras.

Definition 4.1. A flow (X, T) is called distal if for any three points p,q,reX

and any net {t„ : n e D} a T for which t„p-yr and t„q^r then p = q.

If (Xx, T), a e A, is a family of flows we define the product flow

(n*..r)
y  a e a I

as follows: if x = (xa) then the a coordinate of x, is (xx)t. We make constant use

of the following theorem due to Ellis [6].

Theorem 4.2. // (X,T) is a flow and if each orbit has compact closure then

the following statements are equivalent:

(a) The flow (X, T) is distal.
(b) For every cardinal a the flow (Xa, T) is pointwise almost periodic. (Xa

is the cartesian product of X taken a times.)

(c) (X x X, T) is pointwise almost periodic.

Definition 4.3. We let A(d) be the set of all functions which come from

compact distal flows.
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We see easily that A(d) c A(M) since the orbit closure of an almost periodic

orbit is a minimal set.

Theorem 4.4.   A(d) is a lattice algebra of functions.

Proof. It is clear that 4(d) is closed under scalar multiplication. Our result will

follow immediately if we can prove the following statement: Let Xy and x2eA(d)

and let h:Tx T-+ T be continuous in both variables then h(xy(t), x2(t)) is in A(d).

To prove this, we let (X„T) be two compact distal flows and let f,:X,-yT

and p,eX, for which x,(t) =/i((p¡),). The flow (Xy x X2, T) is compact distal.

We define g :Xy x X2-> Tas follows g(qy,q2) = h(fy(qy),f2(q2)). We see that

h(xy(t),x2(t)) = h(fy((pi)t),f2((p2),)) = g((py)„(p2)t). This completes the theorem.

We remark that we have proven more than the theorem states. We have shown

that any continuous combination of functions in A(d) is again in A(d). Since

A(M) is not an algebra we observe that the inclusion A(M) => A(d) is proper.

The next problem is to see if we can find a universal flow with which we can

characterize A(d).

Definition 4.5. A compact distal minimal flow (D, T) is called a universal

compact distal minimal flow if for any other compact distal minimal flow (X, T)

there is a homomorphism of D onto X.

Theorem 4.6.    There is a unique universal distal minimal flow (D,T).

Proof. We may prove the existence and uniqueness of (D, T) in the same

manner as Chu [4] proves the existence and uniqueness of the universal minimal

set. We give here, however, a shorter proof suggested by Kakutani which takes

advantage of the distal property. Let (Xa, T), a e A, be the collection of all com-

pact distal minimal flows. This leads to no contradiction since the cardinality

of Xx is bounded by a fixed cardinal. For each aeA and peXa we let XXtP = Xx.

The flow (naj,X,i(„ T) is compact distal. The point qeUxpXxp whose a,pth

coordinate is p, is almost periodic and thus determines a minimal set D. It is

easy to see that (D, T) is universal. In fact D contains a point q such that if (X, T)

is a compact distal minimal flow and peX then the homomorphism n may be

so chosen that n(q) = p. We call q a distinguished point of D.

Suppose (X, T) is another compact universal distal minimal set. There is a

homomorphism \¡/ of X onto D. Let pe\j/~ x(q) and choose n a homomorphism

of D onto X such that 7t(p) = q. Since \p ° n is the identity on the orbit of p it is

the identity on D. Thus n is one-to-one and is a homeomorphism. Consequently

(D, T) and (X, T) are isomorphic.

Theorem 4.7. Let (D,T) be the universal compact distal minimal flow. If p

and reD then there is an isomorphism n of (D, T) onto itself such that n(p) = r.

Proof. Here we make use of the results of Ellis [5]. Let E(D, T) be the en-

veloping semi-group of (D, T). We first observe that the flow (E, T) is distal.
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Suppose {tn,neN} is a net in T and/, a, n are in E such that t„if) -* h and

trig) -* h. This means for every point u in D we have i„(/(w)) -» n(w) and

'»(#(")) -* «(«)• Since (D, T) is distal we see that /(«) = g(u) for each w e D and

thus /=a.

Let a be a distinguished point of D. Clearly it suffices to show that for each

peD there is an isomorphism n of (D, T) onto itself such that 71(a) = p. Let I

be a minimal left ideal in F(D, T). In [6] it is noted that (/, T) is a minimal set

and since (F, T) is distal so is (/, T). Let \¡/ :/-» D be defined by ^(/) =/(<?).

The map i/r is a homomorphism of (/, T) onto (D, T). Let rc be a homomorphism

of (£>, T) onto itself such that 71(a) = p. Since (D, T) is universal distal and (/, T)

is distal there is a homomorphism çb of (D, T) onto (/, T). The composition

çbonoij/ is a homomorphism of (/, T) onto itself and is thus an isomorphism

[5, Lemma 5, p. 279]. It follows that n is an isomorphism.

Definition 4.8. We let AiD) be the set of all functions which come from the

universal distal minimal flow.

Theorem 4.9.   AiD) = Aid).

Proof. We clearly have AiD) c Aid). The proof that Aid) <zz AiD) is the same

as that given in Lemma 3.6.

In §3 we were able to say that x was in AiM) if and only if its orbit closure

in (C, T) was a compact, pointwise almost periodic invariant set. That is, we

could characterize AiM) by properties of the flow iC,T). The next theorem

does this for AiD).

Theorem 4.10. The function x is in AiD) if and only if its orbit closure

in iC,T) is a compact distal minimal set.

Proof. Let X he the orbit closure of x in (C, T). Suppose (X, T) is a compact

distal minimal flow. Define f:X-*T as follows fiy) = >>(0). We see that / is

continuous and x(i) = x,(0) = /(x,) so xeAiD).

Suppose now that x e AiD). There is a function f:D^>Tand peD such that

fipt) = x(f). Let ijt : D -» X be defined as follows (^(a)) (t) = /(a() for a e D and

t e T. \[t is a continuous homomorphism of (£>, T) onto (X, T). If we can show

that iX x X, T) is pointwise almost periodic then the result would follow from

Theorem 4.2(3). If F is a neighborhood of y in X x X and a e D x D for which

\]/ x ipiq) = y then there is a neighborhood If7 of a such that ^x^(lf)cr'.

Since (D, T) is distal it follows that (£> x £>, T) is pointwise almost periodic.

There is a relatively dense set S <= T such that qse IF for se S. Thus ys =

i\j/ x \¡/iq))s = \¡/ x i¡/iqs) e V for s e S and the theorem is completed.

In proving Theorem 4.4 we made use of the fact that if iX, T) was a compact

(3) The remaining part of the proof is essentially a reiteration of Lemma 2(4), Ellis and

Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc. 94 (1960), 258-271.
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distal flow then the product flow (X x X, T) is pointwise almost periodic. The

fact that the converse holds gives us the following theorem.

Theorem 4.11. Let A <= AiM) and let A be invariant under translation.

Let A contain the orbit closures of any points in it. If iA x A, T) is point-

wise almost periodic then A c AiD).

Proof. Since A c AiM) it follows that the orbit closure in (C, T) of each point

of A is compact. Since iA x A, T) is pointwise almost periodic it follows from

4.2 that 04,T) is distal. Define /:4-> T as follows fiy) = j(0). If xeA then

x(i) = fix,) and we see that x comes from the compact distal minimal flow de-

fined on the orbit closure of x in (C, T) and the function / restricted to this flow.

The proof is completed.

We remark here that the usual method of proving that the uniformly almost

periodic functions form an algebra is to show that two such functions have a

common relatively dense set of translation numbers [3]. This amounts to show-

ing that the product flow, induced by translation on uniformly almost periodic

functions, is pointwise almost periodic. The previous theorem tells us essentially

what restriction is put on a family of functions if every pair of its members has

a common relatively dense set of translation numbers.

5. Functions which come from equi-continuous transformation groups.

Definition 5.1. If (X, T) is a flow and X is a uniform space then we say that

that the flow is equi-continuous if the set of functions n' :X -> X (defined by

7i'(x) = x,) is an equi-continuous set.

Definition 5.2. We let .4(e) be the set of all functions xeC which come

from a compact equi-continuous minimal flow.

Kakutani and Baum [2] have shown that 4(e) is contained in the collection

of uniformly almost periodic functions. (Also see [8, 4.67].) In (B, T) each uni-

formly almost periodic function x has an orbit closure X which is compact. In

(B, T) we see that T acts as a group of isometries and thus (X, T) is an equi-con-

tinuous minimal flow. The mapping f:X-* T given by/(y) = j>(0) shows us that

x comes from the equi-continuous minimal flow {X, T). We have proved

Theorem 5.3.   Aie) is the set of uniformly almost periodic functions.

Chu [4] has shown that there is a unique compact universal equi-continuous

flow (F, T) and that F is the Bohr compactification of the reals. If 4(F) is the

set of all functions coming from the flow (F, T) then we have the following :

Theorem 5.4.   4(F) = 4(e).

Since each function x in 4(F) is uniformly almost periodic we see that its

closure in uniform norm topology is compact. Thus its orbit closure in the com-

pact open topology is the same as its orbit closure in the uniform norm topol-
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ogy and the two topologies are equivalent on the orbit closure. We thus have

the following theorem.

Theorem 5.5. The function xeA(E) if and only if its orbit closure X in (C,T)

is compact and (X,T) is an equi-continuousflow.

Kakutani's theorem [2] says that if all the functions which come from a min-

imal flow (Y,T), on a compact metric space Y, are uniformly almost periodic

then the flow (Y, T) is equi-continuous. The authors along with L. Markus [1]

have shown the existence of distal minimal flows (Y, T), Y compact metric, which

are not equi-continuous. Thus there is a function x which is not uniformly

almost periodic and which comes from a distal minimal flow. We thus have

Theorem 5.6.   A(D) ̂  A(E).

We owe to the referee the following remark, the observations [§§3, 4, 5]

carry over with little or no change to more general transformation groups and

to functions which have values in a uniform space.

Added in proof. H. Furstenberg has pointed out that there is an example of a

function in A(D) which has no mean value. This example may be found on p. 584.

H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J.Math.

83(1961), 573-601.
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