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1. Introduction. We shall study a certain class of discrete branching processes

with a finite or infinite number of types—a generalized branching process. We

shall take as the mathematical representation of such a process a given analytic

mapping of the unit sphere of a complex Banach space—a generalized proba-

bility-generating function. For a thorough probability-theoretic discussion of

general branching processes we refer to the works of Harris [10; 11] and

Moyal [17].

A generalized branching process is a generalized, temporally homogeneous,

Markov process Z„, n = 0,1, •••, where the range of the Z„ is a set of nonnegative

integer-valued set functions, and Z0 is a given nonrandom function. An important

classification of branching processes can be made in terms of the spectral radius

ct(M) of the expectation operator M for one generation (assumed to be a bounded

operator), according to whether aiM) < 1, <r(M) = l, or er(M) > 1. For a large

class of processes, ct(M) is in the point spectrum of M with multiplicity 1, and the

expected value of Z„ behaves like [<r(M)]" as n -» oo . Except when u(M) = 1,

limiting properties of Z„ have been extensively studied [3;7; 10; 14;24].

When ct(M) = 1 for a process, it is said to be critical. It is known that except

in certain special cases, such a process dies with probability 1 after a finite number

of generations. Even so, the expected lifetime is infinite, and it is interesting to

investigate population size at the nth generation, given that it is not zero.

Population size has been determined for critical discrete processes of one type

by Yaglom [24] and for continuous time processes of a finite number of types by

Sevast'yanov [23] and Cistyakov [2]. It has been shown that the population

(if not empty) of the nth generation, or at time t, tends to contain n, or t, particles

which are distributed among the various types in a definite ratio. Random fluctua-

tions from this expected behavior are measured by certain conditional probability

distributions defined for the nth generation. Each of these distributions has a

limit of exponential type.
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The purpose of this paper is to extend these results to a class of branching

processes for discrete time with a finite or an infinite number of types. The nth

generation is described by the «th iterate of the analytic mapping alluded to above.

With enough assumptions about this mapping, the results we seek follow from

an investigation of the iterates of this mapping near a fixed point.

In §2 we define the branching processes we shall study and discuss the notation

to be used. Properties of generating functions are extended in §3 to generating

functionals. In §4 we study the iterates of the analytic mapping that defines a

critical process. In §5 we give probabilistic meaning to the results of §4. Finally,

in the last section we discuss two applications which illustrate why the class of

processes studied is neither void nor uninteresting. One of these applications is

concerned with processes having k types of particles, and the other with the study

of the neutron population in an idealized model of a spherical reactor, where

the type of a neutron is the spherical shell in which it was produced by fission.

2. Critical, positively regular, branching processes. It is relatively easy to

define and analyze a branching process when there are only a finite number of

types of particles. In generalizing to processes with an infinite number of types,

we select a Banach space and take a particular type of mapping of the unit sphere

as the natural extension of the concept of a generating function. We avoid the

delicate questions concerned with the derivation of this function from a given set

of probabilities [10; 11; 17].

To obtain results analogous to those for a finite number of types, we shall

assume compactness and positivity of various mappings. For any specific branching

process it may well be that the Banach space we choose here is not the natural

one in which to prove compactness. At least we shall attain a certain degree of

generality and give a method of proof which can perhaps be modified for other

Banach spaces.

Let X denote an abstract set—the set of types—and let 2 denote a er-field of

subsets of X. We designate by C(X,2Z) the complex Banach space which is the

closure of the linear space of finite combinations of characteristic functions

(indicator functions) of sets in S with the norm

(2.1) ||s||=sup|s(x)|.
xe X

This is just the space of all bounded S-measurable functions.

The conjugate space to C(X,I) is characterized by the bounded and finitely

additive set functions defined on £ (p.258, Chapter III of [6]). That is, for each

continuous linear functional i* on C(X,Ti) there is a unique bounded, finitely

additive, set function p such that i* evaluated on the function s, written t*(s), is

given by

(2.2) f*(s) = [ s(x)du(x).
Jx



1963] CRITICAL MULTITYPE BRANCHING PROCESSES 471

We refer to Chapter III of [6] for a development of the appropriate integration

theory.

We denote by R(X£) the real Banach space consisting of real-valued functions

in C(X, S). This is a Banach lattice under the obvious partial ordering,

(2.3) s = t if and only if s(x) = t(x) for all x in X.

We adopt the following notation :

(2.4) s>0,     if s ^0     and s ^0,

and

(2.5) s >0,     if s(x) ^ £ > 0     for all x in X.

The positive cone P in R(X, I) consists of those functions which are nonnegative.

The dual cone P* in R*(X, 2) is characterized by nonnegative and finitely additive

set functions defined on E. We adopt in P* the following notation :

(2.6) t* ^ 0 if t*(p) ̂  0 for all p in P,

(2.7) /* > 0 if t* ^ 0 and t*(p) > 0 for some p in P,

and

(2.8) i* > 0 if t*(p) > 0 for all p in P, p j= 0.

A bounded linear operator T on R(X, I) to R(X, S) is said to be positive, and is

written as

(2.9) T > 0, if Tp = 0 for all p in P.

It is strictly positive, written

(2.10) T > 0, if Tp > 0 for all p in P, p^0.

Some of the theory of positive operators to which we shall appeal depends

upon the fact that P has an interior, namely, those functions satisfying p > 0,

and the fact that, by the Jordan Decomposition Theorem [6, p. 98], P* spans

R*(Z,2).

The open unit sphere in C(X, £) is defined by

(2.11) S = {s|sisinC(Z,Z)and ||s||<l}.

For a function s, we define the function | s | in the obvious way :

(2.12) |s|(x) = |s(x)|, all xeX.

The absolute value \s\ of a function should not be confused with the norm || s |.

There is also the possibility of confusion of the unit scalar 1 with the constant

function 1 in C(X, I). To avoid this, we reserve the symbol 1 for the function

(2.13) l(x) = 1, for all x in X.
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There is little possibility of confusing the zero function with the scalar 0, so we

use the same symbol for both.

We consider now a mapping F of the unit sphere S into S. We require that the

following conditions be satisfied:

(a)   F maps E-measurable functions into Z-measurable functions,

(2.14) (b) limF(s) = l,        |s||<l,

(c)   F is analytic in S, and all variations computed at s = 0 satisfy

ôttFiO;py,-,pn)^0, all PieP,   8 = 0,1,   •.

We refer to Hille and Phillips [13] for a treatment of analytic functions defined

on a Banach space. The assumption of analyticity implies a power series

expansion

(2.15) Fis) = Z H „is),   Hnis) = g"f(°;s),    || s || < 1.
B = 0 n!

Here ¿nF(0;s) is a bounded, homogeneous polynomial of degree n in s, defined

recursively by H0is) = F(0) and

(2.16) ôn+iFiO;s) = lim ¿"f^5;$) ~ ¿"f(°^)> x a complex scalar.
A->0 X

A continuous, symmetric, n-linear form is defined by

(2,7, «,(*„.,„,) .**V.K~M.

This means that H„ is linear in each term, is unchanged by permutations of the

hh and for some constant K„,

(2.18) \\Hnihy,.:,hn)\\iK„ n   II «ill-¡=i
If hy = ••• = hk = s and hk+1 - ■■■ = h„ = t, we shall often abbreviate with the

notation
k n-k

(2.19) Hnisk,t"-k) = ^(C^Ts.Z^Ti).

The series (2.15) can be differentiated term-wise to give

(2.20) SkFis;h) =   Z   ,   " '   ,Hnis"-\hk) for II s II < 1.
„=k in - k)\

It should be remarked that Fis) and H „is) are functions in C{X,T). We denote

the value at the point x in X of Fis), for example, by

(2.21) Fix,s) = Fis)ix).
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We consider F as defining a generalized branching process for particles with

types specified by points in X. This is to be a temporally homogeneous Markov

process Z„, n = 0,1, •••, where the range of the Z„ is a set L of functionals in

C*(X, I) defined by additive, nonnegative and integer valued set functions on I.

The initial state Z0 is a nonrandom functional which is a finite sum of positive

integer multiplies of functionals ex defined by

(2.22) ex(s) = s(x).

The functional F(x,s) defined on S for fixed x in X is the generating functional

for the first generation of progeny of a particle of type x.

To clarify the concept of a generating functional we take

k

*  =    I klAs
¡ = 1

where X, are complex numbers, |A,| < 1, and Xa¡ are characteristic functions for

disjoint sets A, such that(J*=1 A, = X. Then

00

F(x,s) =   Z Hn(x,s)
(2.23) n=0

CO

=   2* F„(Xy, •••,Xk),
11 = 0

where the P„ are homogeneous polynomials of degree n in Xy,---,Xk, with coef-

ficients which depend only on the %At and which are easily seen by use of (2.14)

to be nonnegative. Since for Xt = ■■• = Xk = 1, s = l and F(x, 1) = 1,

F(x, £;*= y X, Xa,) is a generating function which, we assume, describes the progeny

of a particle of type x by distinguishing types of progeny only to the extent that

they fall in the sets Ay,---,Ak.

It is further assumed that if Z„ = Z/Li r,eXi for positive integers rly---,rk and

distinct points xlt ■■■,xk, then Zn+1 is the sum of rt 4- •■• 4- rk independent random

variables with generating functional

(2.24) IllFiXi,*)}"-
¡ = i

With these assumptions it is natural that the generating functional for the

nth generation of progeny of a particle of type x should be given by the nth

iterate of the mapping F, i.e.,

(2.25) F„(x,s) = F(x,Fn.y(s)),

where Fn-y(s) is of course a function.

With additional assumptions it will follow that F„ satisfies the conditions im-

posed on F so that it qualifies for defining a generating functional, but we shall

not justify its defining the generating functional for Z„.
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The mapping F need not be analytic at 1; however we do require that F satisfy

the condition that

(2.26) Um ökF(Xl,l) exist for k = 0,1,2, and 3.

We show in the next section that this implies

(2.27) F(s) = l-M(I-5) + X(l-s)+0(||l-s||3),    ||s||<l.

The operator M, the expectation operator, is bounded, linear and nonnegative.

The operator K is a nonnegative, continuous and homogeneous polynomial of

degree 2 [13], i.e.,

(2 28) K(X h) = X2K(h),

K(h + Xk) = P0(h,k) +XPx(h,k) + X2P2(h,k).

where X is any complex number and P0, Px, and P2 are bilinear operators inde-

pendent of X.

In infinite-dimensional Banach spaces the closed unit sphere S is not compact

in the norm topology, and this vitiates an immediate extension of proofs of

results in finite dimensions. For some spaces a weaker topology makes the unit

sphere compact, but none is known for general C(X, £). For this reason it will

be necessary to make certain assumptions about the mapping M.

We first of all assume continuity of M on bounded monotone sequences.

If {s„} is a sequence of functions in R(X,1Z) and sn+x ^ s„, || s„ [| g A, then, since

£ is a ¿7-field, s„ will converge pointwise to a bounded measurable function s in

R(X,I.) [9]. We assume that

(2.29) M(s)(x) = lim M(sn(x)) for all x in X.
n-»oo

This is not an unnatural assumption since we are considering F(x, ■) to be a

generating functional. If F(x, s) is derived from a set of probabilities on the range

L of Zx in C*(X, £), then M(s) (x) is an expectation, and (2.29) simply states the

interchange of limit and expectation. It is perhaps possible to prove (2.29) from

the assumptions (2.14), although we have been unable to do so.

The bounded linear transformation M is positive in that it maps the positive

cone P into itself. It can be shown, using positivity of M and the fact, noted

earlier, that P* spans R*(X,H), that the spectral radius of M is determined by

the least upper bound o(M) of the spectrum of M on the positive real axis [15].

Without further conditions on M it is not possible generally to determine ad-

ditional properties of o(M). Therefore, we make two additional assumptions

on M:

(a) For some integer «0, M"° is a compact operator.

(2.30)
(b) For some integer nx, M"1 is a strictly positive operator.
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Here M" denotes the nth iterate of the operator M.

These properties of M are sufficient for cr(M) to be in the point spectrum of M

with unit multiplicity [16, Theorem 6.3]. In addition, for <r(M) eigenfunctions çb

of M and çb* of M* can be chosen to be strictly positive, i.e., çb is uniformly

positive and çb*ip) >0 for all p in P, p > 0. The eigenvalue <r(M) dominates the

modulus of all other eigenvalues of M, and by the functional calculus [13],

(2.31) M" = [<j(M)]"P + Q„.

Here, if çb*içb) = 1, P is a projection given by

(2.32) Ps = çb*is)çb,   P*s* = s*içb)çb*,

and Qn is an operator satisfying

(2.33) || Q„ || g Aa" for some fixed A ^ 0 and a, Og a < 1.

We shall say that the mapping F defines a positively regular branching process

—a PR process—provided that F is not a linear mapping and that F and M satisfy

the conditions (2.14), (2.26), (2.29) and (2.30).

Certain limiting properties of the process Z„ as n -> oo are determined by the

sequence of mappings {F„}. As is well known, the behavior of this sequence de-

pends primarily upon whether <r(M) < 1, <r(M) = l, or oiM) > 1. Limiting dis-

tributions for various functions of Z„ have been rather thoroughly investigated

when aiM) ^ 1. The main results of this paper are given in §4, where we shall

consider only the critical case <r(M) = 1 and extend to critical, positively regular,

branching processes—a CPR process, a result known for discrete time processes

of one type [24] and for continuous time processes of a finite number of types

[2; 23].

3. Properties of generating functionals. In the next section we shall need

various properties of generating functionals that are obvious extensions of prop-

erties of ordinary probability generating functions. We derive these in the fol-

lowing sequence of lemmas and theorems, the validity of which seems obvious

even though some proofs are lengthy.

We first establish some properties of symmetric n-linear forms of which

5"FiO;hy, ••-,«„) are examples.

Lemma 1. Let H„ be a symmetric n-linear form, continuous on the product

space r{?= ! C(.Y, E) to C(X,I). If H„ is nonnegative on nonnegative functions,

then it satisfies

(3.1)    \Hnihy,-,h„)\ sHni\hy\,-,\hn\) ¿(n i*ii)ff.a-,D
and

n

(3.2) H„ihy,-,h„)-Higy,--,g„) =  Z Hn(gu-,9i-u h¡-g¡,hl+1,--;hn).
¡=i
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Proof. Suppose first that each function h¡ is a finite linear combination of

m¡ characteristic functions. Since H„ is linear in each argument, Hn(hx,...,h„)

can be viewed as an «th degree polynomial in the fl"=i m¡ coefficients of the

characteristic functions. Since the coefficients of the polynomial are nonnegative

functions such as H„(%Ai, •••,Xa^), (3-1) follows immediately for such functions «..

These functions are dense in C(X,£), and H„ and the norm are continuous func-

tions so that (3.1) follows.

To prove (3.2), we observe by linearity that

(3.3) Hn(hx,-,hn)=H(hx-gx, h2,-,hn) + H(gx,h2,-,hn).

Repeating this « times, we obtain (3.2) and the proof is complete.

Consequences of assumptions about the behavior of F near 1 are given in the

following theorem.

Theorem 1. Let F satisfy (2.14) ¿inc¿ suppose that in C(X,I,) the functions

ôkF(Xl; 1), 0^A<1, fe=0,l,2,3, have limits as X increases to 1. Then the

functions ökF(s;h), k =0,1,2, for h e C(X,£) have limits as s ->1, || s || < 1, and

(3.4) lim     ôkF(s; «) = E -—-H„(l-k, hk).
f-»i;|*|<i n=k(n — k)\

If the limit of ôF(s;h) is denoted by M(h) and that of ö2F(s;h) by 2K(h), then

(3.5) F(s) = i_M(l-s)+K(l-s)+0(|l-s||3),       |«| < 1,

where 0(\\ 1 -s|[3) is in CLY,£) and satisfies |0(||l-s|j3) || £¿|l-s||3 for a

constant A independent of s, ||s|| < 1. ( The operator M is nonnegative and

linear with bound || M(\) ||. The operator K is a nonnegative, continuous, and

homogeneous polynomial of degree 2.)

Proof. The function SkF(Xl; 1), where A is a complex scalar satisfying |X\ < 1,

is given by (2.20) as

(3.6) ¿5*F(AI;1) =  f-JiL-H^A»-*.
n=k\n ~ KJ-

The coefficients in the power series are nonnegative functions, and an application

of Abel's lemma shows that divergence of £"=* [«'./(n-fc)!] H„(x, 1) for any

xeX denies the existence of a limit for dk F(Xl;l) as A approaches 1 through real

values. It follows readily that
00     n'

(3.7) lim<5*F(A1; 1) = I -.--p-.H^l),   fc = 0,1,2,3.

We need also the fact that the sequence of partial sums

{s^= £[«!/(« -k)!]H„(l)}



1963] CRITICAL MULTITYPE BRANCHING PROCESSES 477

converges uniformly as JV -» oo, since (3.7) guarantees only that it converges

pointwise to a function sw in C(X,H). We prove this for k = 0,1, and 2 by ob-

serving that with the series representations of s(k) and SkF(Xl;l), we have

„(*) 5^1 = Ils»' —5*F(A1;1)[|  4-
n!

N

.So« Hn(l)(l - Xn~k)

+
=N+i(n-k)\

■HMX"

(3.8) ni
^||s'^F(Al;l)i|4-(l-^)    I H„il)

;H„(Ï)X
n-k

ll„-+1(n-/c)!

The coefficient of (1 — X) in this last expression is bounded because of (3.7) and

the restriction of k to 0, 1, or 2. Now for any given e > 0, we can choose A0(e)

so that the first term on the right of (3.8) is less that e/3 for 1 ¡£ k> X0(e) because

of (3.7). The second term can be made less than e/3 by choosing X sufficiently

close to 1. Having chosen a X0 < 1 satisfying these two conditions, we can make

the last term less than e/3 for all JV > N0(e,X0) by virtue of the convergence of

the power series. Therefore s"' -♦ s<k) uniformly.

For arbitrary n in C(X,T) and k = 0, 1, or 2, we have proved, by Lemma 1

and the uniform convergence, that

(3.9)

M

I-
n!

:Hn(l-k,hk) 11*11  v      «! -,#.(» Oas N,M -* oo.
|L,r„(«-*)•'   -     -'l-i-i  «„-(n-fc)!'

Therefore, the partial sums ^=knl/(n-k)\H„(ln~k,hk) form a Cauchy sequence

in C(X, Z) and the series converges.

Finally, by the series representation (2.15) of SkF for || s || < 1 and by the in-

equalities in Lemma 1, we have

(3.10)
.     2. n!

-,#„(!)^    1-s for fc = 0,1,2.
ii |..7+1(B_k_-l)!

This proves (3.4).

To prove (3.5) we observe that, by analyticity of F, the function defined on

0 ^ X < 1 by F(s + 1(1 - s)), || s I < 1, is twice continuously differentiable, and

by definition of the variations of F,

(3.11) dXk
F(s 4- X(l - s) s SkF(s; 1-s),   k = 1,2.



478 T. W. MULLIK1N [March

With the standard notion of the Riemann integral of vector valued functions

[13], the result (3.4) proved above, and the definition of the operators M and K,

Mil -s)- ÔFis + pH -s); I - s)

(3.12) =    f   (52F(s + A(I - s);   1 - s)dX

= (l-p)2K(l-S)+0(||l-s||3),

where 0(||l- s||3) denotes a function in C(X,S) such that

(3.13) ■     ¡i_~/n!   - úA< + co, A independent of s, \s\< 1.

By (3.10) with k = 2 and n = 1 — s, the last statement in (3.12) is possible; a pos-

sible constant A in (3.13) is simply || Z"= 3 n !/(n - 3)! Hn(i) ||. If we integrate

(3.12) from p = 0 to p— 1, we obtain (3.5) and thus complete the proof.

It is an immediate consequence of Lemma 1 that F satisfying (2.14) is a mono-

tone mapping on positive functions. That is,

(3.14) 0 ^ s ^ t implies 0 ^ Fis) S Fit).

Many of the results that follow depend upon other inequalities which are

extensions of properties of generating functions.

Theorem 2. Let F satisfy the conditions of Theorem 1. Then for || s || g 1

(3.15) |F(s)|áF(|s|)

and

(3.16) l-F(|s|)£M(l-|s|)-K(l-|S|).

For || s || < 1 and f * || £ 1,

(3.17) |F(í)-F(S)|<¡M(|í-s|),

and if \s\ < \t\, equality is possible in (3.17) only if F is linear.

Proof. Directly from Lemma 1 and the series representation (2.15) of F,

we get (3.15).

For real-valued s, 0 ^ s z% 1, the function <52F(s + A(l - s); 1 - s), 0 £ A £ 1,

is nondecreasing with increasing A because

ô2Fis + A(l - s); 1 - s)

(3'18) =  Z «(»- l)H„([s + A(l - s)]-2, [I - sf),

and H„i[s + A(I - s)]"~2 , [1 - s]2) is a polynomial in A of degree n - 2 with

nonnegative coefficients. Therefore from (3.12) we obtain
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(3.19)      M(l-|s|)-«5F(|s|4-Kl-|s|); \ - \s\)^(l - p)2K(l - \s\),

and an additional integration on p from 0 to 1 gives (3.16).

The results of Lemma 1 give

|F(r)-F(s)| ^   £ | H„(t)-H„(s)\
n = 0

oo n

=   I    IlH„(\t\--i,\s\l-1,\t-s\)
n = 1    ¡ = 1

(3.20)
oo n

=   I    I|s|||-1||f|"-i/í„(ln"1.|í-H)
n = 1    ¡ = 1

=   ínHn(f-\ |í-s|)=M(|l-s|).
n= 1

If I s I < I f I, then equality in (3.20) implies

(3.21) 0 = Hn(\"-\ \t- s|) = H„(f- \ \t\ - \s\) ^ 0, lor n = 2,

since factors appear in (3.20) which are powers of || s|| < 1. But since | /1 — |s| > 0

this implies that H„(l"~\h) =0, n=2, for all h in C(X£), and hence that F is

linear. This completes the proof.

In the investigation of iterates of generating functionals which define positively

regular processes we shall need the following result.

Theorem 3.   Let F define a PR process. Then

(3.22) f F(s) || < \for \s|| < 1.

Iterates F„ of F are then analytic on S, continuous on S, and satisfy conditions

imposed on F. For n^n¡ of (2.30) we have

(3.23) I Fn(s) || <1 for ||s||gl,   s#l.

Proof.   By Theorem 2, the monotonicity of F, and the quadratic nature of K,

we have for 0 ;£ X ̂  1

l-|F(s)| = l-F(|s|) = l-F(|s|4-A(l-|s|))

(3'24) =0 -X)[M(l- \s\)-(l-X)K(l- |«|)].

Now if 1— |s| > 0 there is ana > 0 such that 1 — {s | __ atj> > 0, Mtp~ o(M)tj>, by

assumption (2.30). Since K(l - |s|) is bounded, there clearly exists a X<\ such

that

(3.25) 1 - | F(s) | = (1 - X)[ao-(M)<f> - (1 - X)KQ - \ s |)>0.

This proves (3.22).
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The mapping F takes the open sphere S into itself and hence into the domain

of analyticity of F. It follows readily that

Fx(s) = F(s),
(3.26)

Fn+X(s) = F(Fn(s))

defines a sequence of analytic mappings of S satisfying the assumptions made on F.

In particular, we have the expectation operator M„ given by

(3.27) M„(h)=Mn(h).

The mappings F„ are analytic on S, and by Theorem 1 and (3.15) of Theorem 2,

continuous on the closed sphere S. If, for F„, we denote the limit of ô2F„(s;h) at

s=I by Kn(h), then as in (3.24) we have

(3.28) 1- \Fn(s)\ £(1- A)[Mn(l - \s\)-(l - X)K„(l-\s\)l

By (2.30), M"(l - | s |) > 0 if « ^ nx, and hence there exists a A < 1 such that

(3.29) 1 - | F„(s) | ► 0 for || s || ^ 1,       s # I.

This completes the proof.

4. Iterates of generating functionals. We shall now prove several results about

iterates of the mapping F of S into S, where F satisfies the conditions required

to generate a CPR process as defined in §2. One of these results is known and

others are motivated by the treatment of branching processes of one type de-

scribed in Harris [11], where techniques of Fatou [8] are used.

Throughout this section we reserve the symbols </> and cb* to denote strictly

positive eigenfunctions of the operators M and M* respectively. Normalization

of tb and ¿/>* will be specified subject to the condition that (/>*(</>) = 1.

For completeness we now prove a wellknown result for branching processes

[7; 11; 21; 22].

Theorem 4.   For a CPR process,

(4.1) lim F„(s) = 1, uniformly in s,    || s || = 1.
n-»GO

Proof.   We first show that there is no solution to

(4.2) s = F(s),    || s I < 1.

For if such a solution exists, then by Theorem 2 and nonlinearity of F,

(4.3) |l-s| = |l-F(s)| <M(|l-s|).

From (4.3) and the positivity of <p*, we have

(4.4) <p*\M(\\-s\) - |l-s|] > 0.
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But in fact equality must hold in (4.4) since M*çb* — çb*, and we are led to a

contradiction.

In particular, we note that

(4.5) FÍO) > 0,

and since F is monotone, the sequence {F„(0)} is monotone in the positive cone

in S. The functions F„(0) are bounded by 1, and so they will converge pointwise

on X to a unique nonnegative function p, p # 0, in C(X, £). The monotonicity

of F and the inequality p ^ F„(0) gives Fip) ^ p. By this and (3.17) of Theorem 2,

iterated n0 times, we have

(4.6) p-F,+,a(0)|M>-f,(0)).

If n0 is defined by (2.30), M"° is a compact operator, and a subsequence of

{M"°ip — F„(0)} converges uniformly to a limit a. We have assumed in (2.29) that

M, and hence M"°, is continuous on monotone sequences. Since p - F„(0) con-

verges pointwise to 0, so does Mn\p — F„(0)), and therefore the limit function a

must be 0 for any uniformly convergent subsequence.

This shows that F„(0) converges uniformly to p, and since Fn+1(0) = F(F„(0)),

the continuity of F gives

(4.7) Fip) = p,       0 < p Ú I

We have already shown that p cannot satisfy (4.7) and p <^ 1. It follows readily from

(4.8) I - p z% Mil - p)

that equality must hold and that 1 — p = açb, a ^ 0. But çb is uniformly positive

and p(x) = 1 for some x in X so that a = 0 and p = 1.

By Lemma 1, we have the inequality

00

(4.9) | Fis) - F(0)| 5¡  Z H.(| s |) Í Fi\ s \) - F(0) S I - FÍO).
n = l

A similar result holds for each F„, so that

(4.10) 11 - F„is) | ¿ 11 - F„(0) | + | F„is) - F„(0) | z% 2 | I - F„(0) |.

This proves uniformity of convergence in s and completes the proof.

We now show that the sequence F„(0) tends to 1 along a given direction.

Theorem 5.   For a CPR process

(4.11) 4>*il - F„(0)) > 0 for n ̂  0,

and

<4-12) !¡™*4ra)-*' **<«-'•
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Proof.    For brevity we define A„ by

(4.13) A„ = 1 - F„(0).

By monotonicity of F and (3.22) of Theorem 3, we have

(4.14) 0«A„+1^A„,

and hence (4.11).

With s = F„(0) in (3.16) we have, by (4.14) and the homogeneous quadratic

nature of K,

By assumption (2.30) M"° is a compact operator for some integer n0^l. Since

M"° is also a nonnegative operator, we can apply it to (4.15) to obtain a sequence

of nonnegative functions {p,,},

(4.16) pn=Mn°t~^~

,A
which satisfy (by (4.15))

(4.17) Mpnfzp„+ || A„ || M
»0 HM

and which lie in a compact subset of S.

Every subsequence of {p„} has a convergent subsequence with a limit p which

satisfies

(4.18) MpúP,    | p| — 1.

since in (4.17) ||A„ || ->0, by Theorem 4, and

KHi£t)]I
is ¡Af||"°||¿f(l)||. As shown several times before, equality must hold in (4.18) and

therefore

(4.19) \imM"° (pnr)=*.    1^1 = 1.   M<¿> = <¿>-

Now by (3.5)

(4.20) A„+, = M(A„) - K(A„) + 0(| A, |3),

or by iteration
no- 1

(4.21) A„+/I0 = M"0(AB)-   Z   Ai"°-'-I[A(A11+i) + 0(||A(1+l|3)].
i=0

Dividing by || A„ ||, we get from (4.14), (4.19), and the quadratic nature of K,

m2) 'zttr*- '♦'-t
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Therefore

(4.23) liml^L=l,
n-oo       || an ||

and finally

(4.24) lim -A. = </>,       101| = 1,       M<t> = <t>,
«->»   || An ||

as well as

(4.25) xxmJ^ = <p,       «Í>*(¿» = 1.

This completes the proof.

We are now in a position to prove a more refined result. By applying the linear

functional (j)*, we reduce the function sequence {Fn(s)} to a scalar sequence to

which the techniques of Fatou can be applied [11].

Theorem 6. For a CPR process,

(4.26) lim «(1 - Fn(s)) =   ,     *   ,-,<£

for I s I <l,<p*(<p) = l.

Proof. Recalling (4.13), we set s = F„(0) in (3.5) and apply the linear functional

<f>* to obtain

(4.27) 0*(An+1) = </>*(A„) - (t>*(K(An) + 0(\\ An ||3)).

Since K is quadratic this gives

(4.28) lim Äfr = L
„-00 <P    (\)

Also by Theorem 5, the quadratic nature of K, and (4.27), we have

(4-29)        S"„?4i[1-J9èif]-**^»
We consider the identity

(4 30) 1        = _J_ + _i_ [i _ üí^lill    ¿*(A»)
1 ■   ; </>*(A+1) - </>*(A„)      tf>*(A„) L 4>*(A„)   J   ¿p*(An+1) •

For brevity, we denote the last term in (4.30) by An and observe from (4.28) and

(4.29) that

(4.31) lim An = <p*[K(<t>)-\.
«-►OO

Adding (4.30) for values of n from 1 to N - 1 and dividing by JV, we obtain

1 1 1   N~1(4 32) _-_=_1       + _L   y  a
y-   ' N<j>*(AN)      Ncb*(Ax) + N ntxA-
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In view of (4.31), we have

(4-33) £ TO"*W»

Combining this result with (4.12) we find that

(4.34) hm nA„ = i™ -^ lim n^(AJ = -^g-*.

which proves our result for s = 0.

Next consider real-valued functions s, 0 < s < 1. Since lim„^ ^ F„(0) = 1. there

is an integer m for which

(4.35) FJ0)7>s.

Then

(4.36) 1 - F„+m(0) S I - Fnis) S 1 - F„(0)

proves (4.26) for positive real-valued s.

Finally, for any s, Il s || < 1.

<t> _/,     w.vJ^I <t>- n(l - F,,(S))¿*[K(0)]        v        "v " I * I çb*[Kiçb)-] nA„

(4.37) , 1        çb .   i
nAj + n

+ n|F„(0)-F„(5)

Fn(|s|)-Fn(0)= I 0*[K(0)]

-» 0 as n -» co,

where we have used the inequality |F„(s) — F„(0)| g F„(|s|) — F„(0) discussed

in (4.9) and (4.10). This completes the proof.

We have now shown that the sequence of analytic mappings n (1 — F„) tends

to a constant in the limit. In the next section we shall give probabilistic interpre-

tations to this result. We shall also determine certain limiting distributions

by Laplace transform techniques.

In preparation for this, we let p be a nonnegative function in C(J£,I) and we

let Af, i = 1, •••,&, be disjoint sets in S such that |J* =, At = X. We denote by p¡

the function p xÁ¡, i.e.,

A sequence {s„} is defined in S for complex scalars X¡ by

(4.39) s„ = exp I" - i-Z XiP],   n è 1,   Re(A¡) > 0.

To avoid cumbersome notation in the following theorem, we shall often denote

the vector (Ax, • • -, Xk) by X and the function Zf= i X¡p¡ by kp.
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Theorem 7.   For a CPR process, the function G„ defined by

(4.40) Gn(p,X) - n(l - F„(stt))

is for n^ny of (2.30), an analytic function of the k complex variables, Xy, ■■•,Xk,

in the domain Rc(X¡) > 0. Also

I Wild
(4.41) lim Gn(p, I) =-i=l-¡-tt> ;    <p*(<j>) = 1

1 4- riW)} I W(J>,)

uniformly in any compact subset ofRe(X,) > 0.

Proof. Since (4.41) is trivial for p = 0, we consider p > 0. We select a bounded

¿-domain A by requiring

(4.42) 0<£<Re(A¡) and \X,\ < R,       e<R<oo,       i = \,---,k.

Since p is a fixed nonnegative function, there is a constant c independent of

X in A and n such that

(4.43) n|| 1-s., f ="C< oo,       n = 0.

For brevity, we define the function Aj¡n by

(4.44) Ao,n = n(l-s„),

Aj,H = n(l - Fj(s„)),       0<j = n.

By Theorem 3, Fn¡(s„) is interior to S and hence in the domain of analyticity of

all Fj, j S: 1. To conclude that G„, or A„„, is an analytic function on A to C(X,1)

for n ^ »i, it suffices to show that Fni(e~Ap), \p = Zf=i X,p„ is analytic in Re(X¡)

> 0 for any p > 0. If we let H, stand for SJFni(0) and take s = exp(— Ef=i/l¡p¡),

th:n by Theorem 3 and Lemma 1,

GO OO

(4.45) Z;|H/5,"1,-W)|á   I;r/J(l!P¡) = M"'(pi).
y=i j=i

This series on the left converges absolutely and uniformly. It follows easily from

Lemma 1 and Theorem 1 (restated with F replaced by FB1) that, with

t = e~Ap's, Re(Af 4-A) > 0,

(4.46)

m=Z&-i JE*-'.-*,
J-l

= |A| JVf'ip,) 4- 6 Kni(p¿)]-0 as | A | - 0,

where Kn¡(p¡) is the limit at s = 1 of S2Fni (s;p¡). Therefore the partial derivatives

of Fni exist for Re(A¡) > 0 and p, ^ 0, and F is analytic in the complex variables
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Xx,---,Xk [13, p. 107]. Actually, the same argument applies for any Fj(s„) and

it is not necessary to appeal to (2.23) of Theorem 3.

By Theorem 2 and properties (2.31), (2.32) and <r(M) = 1 of M, we have

(4.47) I A;> II = II » mJ(\ ' - snD II  =  II » **d - s»W + "Ô/1 - O ||

S n\\\-sn\\ (¡<p*\\+A a'),

where A and a are independent of n and A, 0 g a < 1. Therefore on A we have

a double sequence {A,-,,,} of analytic functions, and by (4.42),

(4.48) ¡AjJZB,

where B is a constant independent of X in A, and 0 ^ j :£ n.

By a generalized theorem of Vitali ([13, §3.15] and [1, p. 41]), the convergence

of {A„ „} on A will be proved if convergence is demonstrated on a real neighbor-

hood in A. Therefore we enlarge A, i necessary, so that A restricted by

k

(4.49) 4»*[K(0)] I A ¿p*(p¡) < 1,       0 < s < X, < R,
¡ = i

defines a relatively open real set in A. We shall prove (4.41) on this set N.

We first of all show that c/>*(Am„) is positive on the set (4.49) for « sufficiently

large. By Theorem 2, with s = Fj(sn), and by the quadratic nature of K,

(4.50) A/+, ,„ ̂  MA,,. - ÍJC[M^(A0,„)].

Applying the positive functional </>*, summing on j from 0 to m — I, and using

n(l — .?„) < X p (recalling that Xp = T,k=x X¡ p¡), we obtain

(4.51) 4>*(K,n) è 4>*(Ao,„) - - S cb*(K[MJ(kp)l
"      j = o

where the upper limit on the last sum has been increased from m — 1 to «.   Now

by (2.31) for o(M) — 1 and by the quadratic nature of K, the sequence

{<j>*(KlMJ(kPy])}

has the limit [c/>*(^p)]2^*[X(t/))], and so does the average appearing in (4.51).

Therefore, since A0n -* ï.p as n -» oo, we have (by (4.49) and <j>*(kp) > 0)

(4.52) lim inf tf>*(Am,„) ^ </»*(^p) (1 - <¿*[K(<¿>)]) > 0.
ÏI-+00

Since the right-hand side of (4.51) is independent of m, </>*(Am„) can be bounded

away from 0 for n sufficiently large, independent of m.

By repeated application of (3.5) we obtain

(4.53) A;.+ 1„ = Mj(A0J - 1 Z Mj-k[K(Akt„)--0(\\ A,,„|3)].
n k = 0 n
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We apply (2.31) and (2.32) with <r(M) = 1 and Q0 = M - P, and identify the

terms containing çb as simply </>*(Ay+1>„) to get, from (4.53),

AJ+y,„      =    Çb*iAj,y,n)cb   +   Ô/A0,„)

(4.54) i    ; r i i

-^Coß7.-^[(AM)-io(||At,„||3)j.

Therefore we have

||A,+ 1,n- cb*iAj+Un)cb\\

(4.55) A   j
z%AzJ\\Ao„\\ + -  Z aJ~k |At,„||2X(l) + -0(||Ak,m|3)

Since a < 1, we have, from (4.48) and || A0,„ || ^ R \\p (|,

(4.56)
A,+ ,,„- çb*iAJ+ lt„)çbI ÍAajR || p || +

1 - a

This shows that, for all 0 z%j ̂  n,

(4.57) lim ||A,,„-</>*(Ai>n)4>|  = 0.
-►00

Or, since çb*iAJn) is positive and bounded below, by (4.52) we have

A.,
(4.58)

and by (4.56)

(4.59)

Urn
n-^> 0*(A;„)

= çb,    çb*içb)= 1,    allO^^n,

çb + OiaJ) + 0{^)'

4>*(Aj.n)

where ||<x~-'0(a'')|| and ||nO(l/n)|| are bounded independently of j and n.

To determine the behavior of (/>*(An>„), we apply çb* to (3.5) with s= Fjisn).

We then get

(4.60) çb*iAJ+ y,„) = r(Aj,„) -„■<!>*[K(AjJ + 0{\)]>

where 0(l/n) = (l/n)(0||Ai>n||3) and, by (4.48), satisfies

(4.61) ¡nO(l/n)| ^ D< oo, with D a constant independent of n,j, and A in A.

By (4.52), (/>*(A„+lB) > 0 for n sufficiently large, independent of ,/'. Therefore

we can consider the identity

(4.62)
1

+
riàj+y,n)   ~ çb*iAjt„)     çb*iA

1        \y      <b*(AJ+í.

Çb*iàj,n)    [ <t>*(\;n)

) 4>*(Ay,„)
¿*(A,+ i.„)



488 T. W.  MULLIKIN [March

For brevity, we denote the last term in this identity by Ajt„. Using the homo-

geneous and quadratic nature of K, we compute AJt„ from (4.60) as

Aj.  =   -<f>*
1        n

(4.63)

Or, using (4.59),

(4.64)

JC!-A- +
0(l/n)

t¡>*(AJ¡n)J      [4>*(Ay(-(v))-

= -4>*(k 04-0(04-0(1)]) 4-0(^)2.

Now K is a continuous quadratic polynomial, and hence

(4.65) K 04-0(^)4-0^)] =k[<A4-0^) +0(as).

If we now sum (4.62) on j from 0 to n — 1 and divide by n, we obtain by the two

previous equations

1 1

»0*(A„,„)     ntj)*(A0J     n J = 05 + -  2   Aj,l il •» *

(4.66)
1

4>*Ckp)+o
(;)

+ </>
í'[<<)])

Therefore, since K is continuous,

(4.67) limn</.*(A„,,) =

!Kr^)+H-
4>*(M_   ,„_  y -

l + tp*(lp)4>*[_K(tb)}' Kp- ¿yÁiPi-

In combination with (4.58) for j = n, this gives (4.43) for X in the set (4.49)

and hence in all of A. Since any X = (X„---,Xk) with Re(.V) > 0 is contained in

some such compact set A, we have completed the proof.

5. Limiting distributions. We have interpreted Fn(x,s), x in X, as defining a

probability generating functional for a random variable Z„ with range in the set

of functionals in C*(X, 2) defined by additive, nonnegative and integer-valued set

functions on Z. In certain cases, this is defined for each n jg 1 and x in X, by a

measure on the range of Z„ [11]. If X is partitioned into disjoint sets A„

U'= i A, = X, and s = £*= t X, x \„ | X, \ g 1, then F„(x, s) is a generating function

in the X,. The coefficient oi' Art' ••• X? in a series expansion of F„(x,s) is the proba-

bility that Zn(y4¡) = r¡, i = 1, •••, k, given that Z0 = ex. In particular, F„(x, 0) is the

probability that Z„ is the zero functional, given that Z0 = ex.

With the independence condition (2.24) we have

(5.1) Pr (z„ = 01Z0 =  I r,eXi) =   ft [F„(x„0)]"' .
\ '=1 / i=l
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From Theorem 4 we have

(5.2) limPr (z„ = 0|Z0 =  I r¡ex¡) = 1,
n—oo \ i = l /

and the process tends to die.

We are interested in Z„ with the condition that Z„ + 0. Since finite linear com-

binations of characteristic functions are dense in C(X, £), it follows that for given

Z0 = Y!¡=xriext and h in C(X,£), Z„(n) is a complex-valued random variable.

We study Z„ by investigating its values Z„(/i) on C(X, £).

Theorem 8. For a CPR process the expected value of Zn(h), h in C(X, £),

given that Z„ # 0, satisfies

(5.3) lim S (ZÊL I z„ # 0 )  - <¿*[K(¿/>)]4>*(«)
n-*oo       \      ^ /

/or ¿j/¿ Z0 of the form Z0 = Zí=i »"je,,, w/iere M<p = t/>, M*c/>* = cj>*, t/>*(t/>) = 1.

Proof.   For a given Z0, the generating functional for Z„, given that Z„ ^ 0, is

(5.4) ft

r
i = l

i - n [*•.(*,. <>)]'

To compute (5.3), we take the variation of (5.4) with differential h and let s tend

to I. This gives

I riMn(h)(x/j

(5.5) <?(Zn(n) |Z0^0)-

1 - El IU** 0)P¡ = i

The numerator in (5.5) is just Z0(M"(h)) and approaches Z0((¡>)<¡)*(h) as n-y oo.

Dividing (5.5) by « gives

(5.6) limW^-IZ^o)   =_/  ZoW't*)_-.
»-»     \   " /      lim n(i_ n[fnfeO)J')

»-♦oo       \ i = l /

From Theorem 6 we have

<">       ^•°>-i-ni4]-~H1)-
where «o(l/«) -» 0 as n -> oo. Substituting from (5.7) in the denominator of (5.6),

we get
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(5.8) lim<f
n-*oo

(^|z..o).
Z0içb)çb*(h)<P*[Kiçb)]

k

Z
1 = 1

K

Z r¡cbix/)

Since  Zf= i r¡ cbix¡) = Z0içb), this gives (5.3) and completes the proof.

This theorem suggests that ZJn, given that Z„ # 0, tends to a random scalar

multiple of the given linear functional çb*, independent of the initial state Z0.

If the process is alive at the nth generation, it tends to have a population size

proportional to n with the distribution among types being determined by the

value of çb* on characteristic functions.

We investigate this more thoroughly by considering the conditional distribu-

tions for the nonnegative, vector-valued, random variables, defined for p in

CÍAM), p ^ 0, and for disjoint sets A¡, \Jk=1 A, = X, by

Vip) = ((Z"(Pi)'""'Z"(^))(5.9) WJ Z„^0
j»  Pi

PXa¡
rçb*[Kiçb)-]

Theorem 9.   For a CPR process, it follows that if p¡ = pxA¡, (J; = i A = x>

p ^ 0 in C(X,2), then for real constants a^aj, •••,xk

2„ÍP¡)
lim Pr I -

çb*[Kiçb)-]
¿a» /=!,••■, fc|Z„#0J

(5.10) 0 if some a, < 0,

1 - expi —y/k min       .'       J   if all a,-2:0,
L 0*(p<)

for any Z0 of the form Z0 = Z'¡"=i '*¡ex-,>'*¡ positive integers.

Proof. This result is trivial for p = 0. For p?:0, p # 0, we compute the k-

dimensional Laplace transform of the distribution of the nonnegative, vector-

valued random variables W„ip) defined by (5.9).

For Z0 = Z/li^e.*., the continuity of F„ and the density of finite linear

combinations of characteristic functions in C(X,S) leads to

(5.11) Sie-W"ap)) =
\\[uxi,sn)T- niAfeoxr

i- nw^oiri=i
with s =e\p[-kp/nçb*[Kiçb)]],%.p= lUt^Pi, and Re(A,-) > 0.   With  G„ de-
fined by (4.40), this can be written as

(5.12) <f(e-w''.'^) = l

fir      G„(s„p¿)j'-'

m
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From Theorem 6 and Theorem 7, with Xp replaced by Xp/tj>*[K(tj))}, we have

after expanding the products in (5.12)

I xl^(Pi)Zo(4>) ...
(5.13) Um / (e "™ ) = 1-p—^-       -- - ^1 •

[l +  I A>*(Pi)</>«</>)]
or

(5.14) lim ^(e^"'^1) =--!-,   Re^) > 0.

1+ lA^nP.)
¡ = i

The last term in (5.14) is the fc-dimensional Laplace transform of the expo-

nential distribution given in (5.10). This is most easily seen by realizing that this

exponential distribution puts unit mass on the ray a(tf>*(px),---,tp*(pk)), a ^ 0,

with a distribution 1 — e~". Since (4.14) holds for all Re(X) > 0, it follows easily

from standard theorems on Fourier transforms of probability distributions

[4, p. 102] that (5.10) is true. The proof is thus complete.

For the finite dimensional subspace Ck of C(X, S) having as basis the functions

p&i,, .d,-disjoint and [JJ=1-4¡ =X, and p_0 in C(X£), Z„ defines a random

positive vector in the dual space to Ck. This last theorem shows that Z„/n0*[K(0)],

given Z„ ^0, has a distribution in C* which converges with n -> oo, to a random

scalar multiple of the given functional (0*(x,(,),---,0*(X/it)X expressed relative to

a basis in C* dual to that in Ck.

6. Applications.

I. Finite types. Let X be a finite set and I the set of all subsets of X. Then

C(X, 2) is simply a fc-dimensional complex vector space, and F is defined by k

generating functions of k complex variables. The range of Z„ is the set of non-

negative /c-vectors with integer components, a subset of C*(X, ¡S). Theorem 9

characterizes the limiting distribution of ZJn, given Z„ # 0, as n -» oo.

II. A nuclear reactor model. We consider a homogeneous sphere of fission-

able material. We assume that the velocity of neutrons in this sphere is

constant and that motion is interrupted only by a collision with a nucleus. Upon

collision, a random number of neutrons is produced with an isotropic angular

distribution. The collision process is described by a probability generating function :

(6.1) f(X) = I ojL\
n = 0

where A is a complex parameter and a„ is the constant probability that n neutrons

are produced.

A branching process is defined in which a neutron is typed according to the

spherical shell in which it was produced by fission [11; 12; 18]. The

random variable Z„ is defined by the number of neutrons which can be traced
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back to a trigger neutron through n fissions. The discrete time of this branching

process is related in a complicated manner to physical time.

We parametrize the spherical shells by a real variable x, 0 :§ x ^ R < oo,

where R is the radius of the reactor. Then the set of types X is the interval [0, Ri],

and we take the a-field of Borel sets as the set £.

With the assumption of homogeneity and isotropy, a neutron born at s will

have a first collision in the spherical shell between y and y + Ay with probability

K(x, y)Ay, where (see [5])

(6.2) K(x,y)=    2. f       e   dt,       0<x,y^R.
ZX J\x-y\     '

The unit of length has been chosen as a mean free path.

The generating functional of our process is

f K(x,.
Jo

(6.3) F(x, s) = 1 -      K(x, y)[l- f(s(y))]dy,
Jo

where s is any Borel-measurable function in C(X,lZ) with | s(x) | ^ 1 for all x in X.

The term 1 — $oK(x,y)dy in (6.3) measures the probability of escape without

collision.

Since / is a continuous function it is Borel measurable, and hence f(s) is a

Borel-measurable function on X for measurable s, and so is F(s). It follows

easily then that conditions (2.14) are satisfied by F.

The expectation operator M is given by

(6.4) M(h)(x) =/'(1) f K(x,y)h(y)dy.
Jo

The operator M can be derived from an operator defined for functions on three-

dimensional real space, and the results of [20, p. 29] show that the third iterate

of M is defined by a continuous kernel. It follows readily that this is a compact

operator in C(Z,£). (See [6, p. 260].) Therefore (2.30) is satisfied. By the Lebesgue

Dominated Convergence Theorem [6, p. 151] it follows that (2.29) is satisfied.

So F satisfied the conditions imposed in § 2 as long as / is not linear and its first

three derivatives have limits at A = 1.

For a given value of/'(l) > 1, there is a unique R for which o(M) = 1. (See

[18].) A good approximation to R is given [19] by solving for R in

1

/'(I)
(6.5)

= 1 -sin y + R
'(?)

In - \-Ci(2n) + Ci(2y)

(n\       „ n
y~~2~)  = ~ ^y-n-

2
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Good approximations to çb and çb* are given [19] by

=iiM, W)=cj>(H).(6.6) çb =

with

(6.7) - - -M*!+ô
R(R4-V(R2+y2))  •

Theorem 8 shows that any critical reactor which is described by this mathema-

tical model will produce a finite number of neutrons when initated by a finite

number of trigger neutrons.

Fluctuations in the number produced are measured by Theorem 9. For ex-

ample, let A he any Borel set in [0,R] with nonzero Lebesgue measure. Then

4>*ÍXa) > 0 determines the importance of this set to the branching process. The

probability P„iA,a) that in the nth generation the number of neutrons produced

in the spherical shells defined by A exceeds an(J"il)/2f'il))çb*içb2)çb*ixA), given

that this number is not 0, satisfies

(6.8) lim P„iA,a) = e~x,       0 ^ a < co.
n~*co

Here we have used the explicit expression for X, i.e.,

(6.9) X(Ä)-/'(D  f Kix,y)h\y)dy.
Jo

The results of this paper will apply to more complicated reactor models. In a

trivial manner, the assumption of homogeneity can be replaced by the assump-

tion that the reactor is stratified into spherical shells. This will simply result in

/of (6.1) being dependent upon the variable x, after a proper scaling of x by the

total cross section. Of course, the characterization of criticality and of the eigen-

functions çb and çb* will be different. (See [19] for a treatment of core and reflec-

tor.)

A problem of considerable interest and difficulty is that of relating the charac-

terization of neutron population by generation to its characterization in real

time.
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