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1. In the present paper the nonintegrated form of the second fundamental

theorem is proved for arbitrary Riemann surfaces and a general test is given

for regular exhaustability.

In his theory of covering surfaces L. Ahlfors [1; 2] gave the second fundamental

theorem for simply connected Riemann surfaces. The defect relation was generalized

to parabolic Riemann surfaces by K. Noshiro [5], and the main inequality of the

theory was extended to certain plane regions by K. Kunugui [4] and Y. Tumura

[11]. Using this extension and Klein's fundamental domain, J. Tamura [10] gener-

alized the second fundamental theorem to an important class of Riemann

surfaces and to functions with at most two Picard values. Specifically, he obtained

the interesting result that the Ahlfors condition S(r) (1 — r) -» oo for regular

exhaustability can be carried over to the disk of uniformization and also gives

the functions whose defect sum does not exceed 2.

To study a general class of functions on arbitrary Riemann surfaces we shall

separate these two properties. For regular exhaustability alone the Tamura

condition can be sharpened by endowing the domain surface W with a conformai

metric dp with compact sets ßp of points at distance p from a fixed point. This

metric can easily be formed on an arbitrary W. The condition

(A) ^(«fli)- QO.

where R = sup p and l(p) is the length of ßp, then suffices for lim inf (L(p)/S(p))=0.

For the second fundamental theorem we replace the customary process by

three steps: first we remove the peninsulas separated by cross-cuts, then those

separated by cycles, and finally all islands. This leads to the main inequality

(in No. 14) for an arbitrary Riemann surface. For the number P of Picard values

we then obtain the bound

(B) P = 2 + limsup|^,
p-»R     ¿(Pf

Presented to the Society, October 27, 1962; received by the editors January 28, 1962.

(0 Sponsored by the U. S. Army Research Office (Durham), Grant No. DA-ARO(D)-31-

124-G40, University of California, Los Angeles.

521



522 LEO SARIO [March

where e is the Euler characteristic. The Tamura functions with P ^ 2 are those

for which S grows more rapidly than e.

The essence of bound (B) is that it is sharp. The testing of the sharpness is

possible because the quantities involved can actually be computed. This is the

main advantage of dealing with the surface itself rather than with its universal

covering surface.

For further illumination we will also estimate limsup(e/S) directly, without

invoking the first fundamental theorem, and arrive at the same bound for the

number of Picard values.

§1. The Ahlfors theory

2. For our purposes it will suffice to consider covering surfaces of the ex-

tended w-plane W0 and the stereographic metric

| dw\
S1\ J_

The area in this metric of W0 is n.

Let Whe an arbitrary open Riemann surface, represented as a covering surface

of W0. We consider a compact bordered subsurface Q c W and, decomposing

Q in the usual manner into sheets, define the area A of Q in metric (1) as the sum

of the areas of the sheets. The mean sheet number S of Q over W0 is, by definition,

S — A/n. The length L of the boundary of Q is defined in the same fashion, as

the sum of the lengths of the boundaries of the sheets constituting Q.

3. On W0 we choose a region A and denote by S(A) the area of the subset

of Q covering A, divided by the area of A. Should Q have no relative boundary

above W0, we would clearly have S = S(A) for any A. The greater L, the more

deficient can the coverage of A by Q be. This is the meaning of Ahlfors' [1] well-

known

Covering Theorem. For every A there exists a constant k, independent of

W and Q, such that

(2) \S- S(A)| g kL.

4. The subset of Q above A consists of two kinds of components : islands D¡

that have no relative boundary above A, and peninsulas Dp possessing such

relative boundary. The mean sheet number n(A) of (JD¡ is, by definition, the

area of {JD¡ divided by the area of A. The mean sheet number p(A) of \^)Dp

is defined analogously. Obviously S(A) = n(A) + /¿(A), and the covering theorem

(2) gives what could be called Ahlfors' [1]

First fundamental theorem.   For every Q and A,

(3) n(A) + p(A) = S+0(L).
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The analogy with the Nevanlinna-type first fundamental theorem [8] is clear:

«(A) and p(A) correspond to the (nonintegrated) counting function N(o,a) and

proximity function m(o,a), respectively.

5. In a triangulation of Si we denote by V, E, and F the numbers of interior

vertices, edges, and faces, and by e the Euler characteristic —V+ E — F. If

some interior vertices and edges are removed, the resulting subregions Sij have

Euler characteristics e(Si¡) in the original triangulation, with

(4) e = Ie(Q,) -V + E.

Here V and £ are the numbers of remaining vertices and edges.

We consider the case where these vertices and edges form only (disjoint)

cross-cuts y, with end points on the border of Í2, and cycles <r inside Í2. The con-

tribution to —V + E from every y is 1 and from every o is 0:

(4)' e = Ie(Sij) + n(y),

where n(y) is the number of cross-cuts.

On setting e + = max(c?,0), and on denoting by Nx(Sij) the number of simply

connected regions Q, we obtain the following equivalent formulation of (4)':

(5) e = 2V(fi,) + »(j) - Nx(Qj).

6. To evaluate «(7) — Nx(Sij) we first consider the influence of crosscuts y.

A cross-cut divides Si into at most two Sij, and these are simply connected if

and only if Si is simply connected. We infer that in any subdivision by only cross-

cuts the number of resulting subregions exceeds «(7) at most by one. We shall

consider separately the cases e ^ 0 and e = — 1.

If e ^ 0, the number Nx(Sij) of simply connected subregions does not exceed

«(7). We now assume, and this gives us more generality than we shall make

use of, that every cycle o produces only multiply connected subregions. Then

the introduction of cycles has no effect on «(7) — Nx(Sij) S; 0, and it follows that

e+ ^ He+(Sij). If e = — 1, all Sij are simply connected, Nx ^ «(7) + 1, and it

follows from (5) that no e+(Sif) can be positive. We conclude that again

e+ ̂  2>+(fi,.).

Lemma. // a compact bordered surface Si is subdivided by n(y) cross-cuts,

and subsequently by cycles that do not create simply connected subregions,

then the Euler characteristics e(Sij) of the resulting subregions Sij satisfy the

inequality

(6) e+ ̂  T,e\Sij),

where e is the Euler characteristic of Si.



524 LEO SARIO [March

7. Let Í2 be a complete covering surface with N sheets of a compact sub-

region Í20 c: W0. Let V0, E0, F0 be the numbers of vertices, edges, and faces in a

triangulation of Í20, and denote by V, E, F the corresponding numbers for Q

when the triangulation of Q0 is lifted to £1 Clearly £0 and F0 remain unchanged

on each sheet of Si, hence £ = NE0, F = NF0. The number V is reduced from

NV0 by the sum £i> of the orders of branch points of Si. This is the content

of the Hurwitz formula

(6)' e = JVe0 4- £o,

where e0 is the Euler characteristic of C20. A simpler version reads: e+ ^ JVe0.

If Si does not completely cover Í20, an increasingly long relative boundary of

Si can cut down e+ with an increasing amount. This is the essence of the follow-

ing far-reaching extension [1] of the Hurwitz formula:

Ahlfors' inequality. For any region Si0 of the plane there exists a constant

k, independent of the covering surface Si of Si0, such that

(7) e+ ^ e0S - kL.

Here S is the mean sheet number of Si above Si0 and L is the length of the rel-

ative boundary of Si above Si0.

§2. The second fundamental theorem

8. We resume the notations W, W0, Si, S of No. 2 and let Av, v = !,■■•,q,

q 7î 3, be disjoint simply connected subregions of W0. We remove from Í2 all

peninsulas Dp above all Av's and denote the components of the remaining part

of £2 by £2'. From each Si' we remove all islands D, above all Av's and denote

the components of the remaining part of Í2' by Í2. Since only cycles are removed

from Si' in decomposing it into {D¡} and {£i}, we have by (4)

(8) Ie(D,.) = Ie(i2') - Ie(£2) = Ny(Q) + Ie(i2') - !e+(Si),

where Ny(SÏ) is the number of simply connected Si.

9. We shall first estimate Ny(Si). To this end we decompose the process of

removing the Dp from Si into two steps. First we cut Si along those cross-cuts y

that lie above the boundaries of the Av and remove from Si those peninsulas Dp

that have thus become separated. We denote these peninsulas by Dpy. The re-

maining part of £2 consists of components Siy, say. Second, we cut each Siy along

the cycles o that lie on the boundaries of the remaining Dp and above the bound-

aries of the Av. On removing these Dp, which we shall denote by Dpa, the regions

Si' remain.

For the number Ny(Siy) of simply connected Í2,, we have

(9) Ny(SÏ)   S   Ny(Siy).
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In fact, if an Í2y is multiply connected, it may give rise to a simply connected

Q' when a cut is made along a a. But since the number of Av's > 1, the subsequent

removal of islands D¡ must make the resulting Q multiply connected. We con-

clude that every simply connected Q is a simply connected fir Inequality (9)

follows.

10. We proceed to estimate Ze(íí') in (8). Since only cycles a are used in

dividing Í2y into Dpa and Í2', we have by (4)'

Ze(f2y) =   Ze(Fv> +   ZeííT).

Every Dpais a peninsula and was separated from Qy by a cycle a; we infer that

Dp, cannot be simply connected, eiD^) ^ 0, and

(10) Ze(O') ú Ze(i2y).

11. From (9) and (10) one obtains

NyiQ) + Ze(íí') ^ Ze+(Qy).

In the subdivision of fi into {Q7} and {Dpy} only cross-cuts y were used. Lemma 6

applies and (6) gives

Ze +(Oy) z% Ze+(£2r) + Ze+(Dpy) ̂ e+(ii).

We have arrived from (8) to

(11) Ze(D,) ̂  e+iQ) - Ze+(ñ).

12. To estimate e+(Q) we apply (7). The Euler characteristic of W0 = W0

— (JiAv is g — 2. If the mean sheet number of (Jiî above W0 is denoted by

SiW0), one obtains

Ze+(£2) ^ iq-2)SilV0) + OiLo),

where L0 is the length of the relative boundary of Q above W^. Clearly OiL0)

can be replaced by OiL), where L is the length of the relative boundary of Q

above W0. By (2), S(JF0) differs by OiL) from the mean sheet number S of Q

above W0 and we conclude that

(12) Ze+(ñ) ^ (g - 2)S + OiL).

13. The first term Ze(ü¡) in (11) is evaluated by Hurwitz' formula (6)'. The

Euler characteristic of Av is —1, the total number of sheets in the union of all

islands D¡ covering Av is denoted by n(Av), and the sum of orders of branch

points in this union, by ft(Av). Then

(13) Ze(D,) = - Zn(Av) + Z&(AV).

By the first fundamental theorem (3), n(Av) can be expressed in terms of S and



526 LEO SARIO [March

the mean sheet number p(Av) of the union of all peninsulas Dp covering Av. We

obtain an alternate form of (13):

(13)' He(D/) = Zp(Av) - qS + Ib(Av) + 0(L).

14. It remains to substitute (12) and (13)' into (11). In analogy with other

notations let e+ stand for e+(Si). We have established the

Second fundamental theorem.   On an arbitrary Riemann surface W,

(14) Ip(Av) < 2S - Zb(Av) + e+ + 0(L).

An equivalent formulation is obtained by using (3):

(15) (q  - 2) S <   Sn(Av) -   If>(Av) + e++ 0(L).

The analogy with the Nevanlinna-type second fundamental theorem [7] is

again clear. Our present result applies to arbitrary Riemann surfaces (cf. No. 16).

§3. M er om orphie functions

15. It will be assumed henceforth that the covering surface we have discussed

is the image under a meromorphic function w of an open Riemann surface.

Changing our notations slightly, we shall denote the latter by W, and the former

byWw.

Significant conclusions can be drawn from the second fundamental theorem

(14) only if La Ww is negligibly small compared to S. Our immediate task will

be to give a precise formulation to this property and to find a sufficient con-

dition for w to possess it.

16. On an arbitrarily given open Riemann surface W let

(16) ¿¿p = A(z)|¿¿z|

be a conformally invariant metric. Here X(z) ̂  0 is continuous in each para-

metric disk | z | < 1, and

dz
(17) X(z2) = X(zx) j±

under change of parameter. The distance p(z, 0 between two points z, £ is defined

as inf fa dp over all rectifiable arcs a from z to Ç. We assume that, for a fixed Ç,

(18) limp(z,Q= R = const. ^ oo
z->ß

for every approach of z to the ideal boundary ß of W. Then the regions Wp bounded

by

(19) ßp= {z|p(z,0 = p},

0 < p < R, exhaust W as p -> R.
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There is a metric with these characteristics and with R = oo on every W. For

instance a conformai mapping of the universal covering surface W00 of W onto

the disk |x| < 1 gives the hyperbolic metric dp = |ax(z)|/(l — |x(z)|2) with the

desired properties. The degenerate case where H"30 is conformally equivalent

to the plane x ^ oo only occurs if Wis simply or doubly connected and of para-

bolic type. But then the capacity metric directly on W can be used [8]. We con-

clude that our metric dp can always be formed.

In case W is the interior of a compact bordered Riemann surface, then also

a metric dp with R < oo can easily be found and is perhaps the more natural

choice. For this reason we shall cover both cases R ^ oo.

17. Let wiz) he a meromorphic function on an arbitrary open W. We denote

by Lip) the length, in the stereographic metric of the w-sphere, of the image

under w of ßp. Similarly, Sip) shall stand for the area of the image of Wp divided

by n. To answer the question raised in No. 15 we shall study when the condition

(20) lim inf m = 0

is satisfied.

On setting

we have

P-.R Sip)

dw  i dp
w   ■

aw  i  ap y

Iz-IVdJ] = ^

(21) Lip) =  I     -
Ji>p    l

M
+ |w|

dp

and

-A2
(22) S(p)=-fdpf

nh  Php  d + |w|2)2^

We set lip) = ¡ß dp and state :

Theorem.   For 0 < p < R,

(23) Tp)únLW2-

This is a direct consequence of Schwarz's inequality:

L(p>   =     7,—T~i^Idp '      dp = it ——
V1 + M2)2     \ dp

Up).
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18. We are now ready to establish a criterion for (20). It is in the nature of

the problem to exclude the degenerate case of a bounded S(p).

Theorem. Let w be a meromorphic function on an arbitrary Riemann sur-

face W. Then lim inf (L(p)/S(p)) = 0 if S(p) increases so rapidly that

,24) »^(*)(|)-»'

Proof. Suppose the conclusion were not true : lim inf (L/S) > 0. Then there

would exist constants q > 0 and 0 < p0 < R such that L(p) > qS(p) for

Po<p <R. It would follow that

f« dp ^   ¡RdS(p)     n r*

J    l(p)=   JL(p)2      q*).
dS(p) ^ n     1

Hence
,9S(pY - q* S(p)

which contradicts (24).

19. To illustrate the meaning of condition (24), we consider some concrete

cases of Riemann surfaces W of increasing generality. First let W be the finite

or infinite disk |z| <R ^ oo. We choose the metric dp = \dz\, p = r, l(p) = 2nr,

and find that J* l(p)'1 dp diverges for R = oo and dominates (R — p)/2nR for

R < oo.

Corollary 1. The condition lim inf (L/S) = 0 is satisfied by all meromorphic

functions in the plane and by those meromorphic functions in the disk \z\ <R

for which

(25) lim sup (S(r)(R - r)) = oo.

20. More generally, we consider Riemann surfaces Wp characterized by the

property that the capacity function pß(z) (see e.g. [3; 8], or [9]) tends to a

constant kß^co for any approach of z to the ideal boundary ß of W. Here the

logarithmic singularity of pß(z) is taken in a fixed parametric disk. The capacity

of ß is defined as cß = e~kP. It is known [3] that Wp is parabolic, WpeOG, if

and only if kß = oo. We choose the capacity metric [8; 9]

(26) dp = — | grad pß\  \dz\

and set p = pß = k with 0^k<kß. The exclusion of values k < 0 is for con-

venience and has no bearing on our conclusions, which concern a boundary pro-

perty. We can even allow several logarithmic singularities as in No. 26. We have

l(p) = (2k)-1 ¡ßkdp* = 1 and ftKpT'dp = kß-k.
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Corollary 2. The condition liminf (L/S) = 0 is satisfied by all meromorphic

functions on a parabolic Wp and by those meromorphic functions on a hyper-

bolic Wp for which lim sup (S(k) (kß — fe)) = co.

The first part of this corollary continues to hold on arbitrary parabolic W

for   they   can   always   be   endowed   with   a   ¿¿p-metric   with   a  divergent

FKpY'dp.
21. Somewhat more generally, consider a Riemann surface Ws [8] with a

¿¿p-metric ds satisfying the additional condition l(p) = 1. On setting p = o we

again have $pl(p)~1dp = oß — o.

Corollary 3. All meromorphic functions on a W, with oß = co and those

meromorphic functions on a Ws with oß < oo that satisfy the condition

lim sup (S(o) (oß - o)) = co have the property lim inf (L/S) = 0.

22. In the trivial case of the plane or the punctured plane Corollary 2 applies

and we exclude this case in the sequel. For all other Riemann surfaces W the

universal covering surface W °° can be conformally mapped onto the disk | x | < 1

and IFcan be endowed with the invariant hyperbolic metric dp = |¿¿x(z)|/(l — |x(z)|2).

The surface W is represented by a fundamental region Wx bounded by circular

arcs perpendicular to | x | = 1, identified, by pairs, by linear transformations. The

level line ßp appears as the intersection ßpx of a circle | x | = r and Wx. Its Euclidian

length is le(p) = $ßpxdx and its hyperbolic length is

Jfpx    l-|x|2     1-r2

We conclude that dp/l(p) = | ¿¿x |/ le(p). Consequently we can express our cri-

terion (24) in Euclidian metric:

Corollary 4. A meromorphic function on an arbitrary Riemann surface W

has the property lim inf (L/S) = 0 if, in the uniformization into \x\ < 1,

(27) lim.up  (S(p(r))¡^) = oo.

For a parabolic surface it is known that \lle(r)~xdr = oo and we again have

no restriction on w(z).

§4. Consequences of the second fundamental theorem

23. We are now in a position to draw conclusions from the second funda-

mental theorem (14)—(15). First we obtain a bound for the number P of Picard

values. To this end let each Av contain at least one Picard value. Then there can

be no islands Df above Av. We denote by e(p) the Euler characteristic of Wp, set

(28) e^iimsup!^.,
p-R S(p)

and obtain from (15) the following extension of Picard's theorem (cf. [8]):
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Theorem.   Let W be an arbitrary Riemann surface. The bound

(29) P z% 2 + £

for the number P of Picard values is valid for every meromorphic function w

on Wwith property (24) or its analogues in Nos. 19-22. In particular, the bound

holds for all w on a parabolic W.

24. To arrive at the analogue of Picard-Borel's theorem let Av shrink to

a point av and denote by niav) the number of points, counted with their multi-

plicities, covering av. Then (15) implies

(30) (g - 2)S < Zn(av) + e+ + OiL)

and one obtains:

Theorem. Under the assumptions of the preceding theorem, the number of

Picard-Borel points a characterized by lim sup (n(a)/S) = 0 cannot exceed

2 + e.

25. Relax further the condition on the deficient coverage of A by permitting

limsup(n(A)/S)>0. Set

(31) 0(A) = 1 - lim sup ^ = lim inf ̂ -,
S o

where the latter form is a consequence of the first fundamental theorem (3)

in the case lim inf (L/S) = 0 under consideration. Formula (14) gives the fol-

lowing generalization of the classical defect relation to arbitrary Riemann sur-

faces W:

Theorem. Under the conditions of Theorem 23, ifte defect sum has the

bound

(32) Z<5(AV) Ú 2 + e.

Here the sum is extended over any finite or infinite number of disjoint simply

connected regions Av of the w-plane.

26. We proceed to show that the bound 2 + e is sharp at least for even num-

bers. (For odd numbers we refer to a surface constructed by B. Rodin in his

doctoral dissertation [6].)

Theorem. For any integer n > 0 there exists a Riemann surface W and a

meromorphic function w on W such that

P = 2 + £ = 2n.

Proof. Consider the n-sheeted Riemann surface W above the z-plane whose

branch points are at Zj = iin/2+jn), j = 0, ±1, ±2, •••, all of multiplicity n.
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Choose on If the metric dp = \dz\/2nn\z\ and set  p = (27tn)_1 log|z | (see

No. 20). Then ßp is the n-sheeted circle | z | = e2"*pand lip) = (2nn)~ l¡„ d arg|z| = 1.

We have J"/(p)_1 dp = oo, and condition (24), hence also (20), is always satisfied.

This is directly implied also by Corollary 2.

Consider on W the meromorphic function

(33) wiz) =

Because lim inf (L/S) = 0, we find

e+ e+ . e+
£ = lim sup — = lim sup —ry--yr-. < lim sup ——-,

*S v n(A) + p(A) - y n(A)

where we choose for A a small disk about w = 0. Then n(A) is the number of

zeros in w. Exhaust If by n-sheeted disks Wm:\z\<2nm, m = 1,2, •••, and

indicate quantities referring to Wm by the subindex m. Then

e+ e+
(34) lim sup —— = lim sup

«(A)     —"*nm(A)   *

When bounded terms are disregarded, one finds from Hurwitz' formula that

em ~ 4m(n — 1). The zeros of w are at ez = — i, z, = /( - 7t/2 + ; • 2n),

j = 0, ±1, ±2, •••, and therefore nm(A) ~ 2m. It follows that £ ̂  2(n - 1). By

(29) the number of Picard values cannot exceed 2 + £ _ 2n. But 2n is exactly the

number of Picard values, equidistantly distributed on | w| = 1. This proves the

theorem.

27. The significance of £ is perhaps best illustrated by also estimating S directly,

without invoking the first fundamental theorem, and by comparing the results.

We shall do this for the slightly more general function

(35) niz) = wiz? = i^if1",

which has 2n/ft Picard values, ft being an integral factor of 2n (cf. [8]).

Let RmJ <zz Wm he the n-sheeted rectangle

|x| <2n sjm2 -j2 ,

ij-l)-2n<y<j -2n,

j'< - l,2,".,m - 1. If the contribution of Rmj to Sm is denoted by Smj, then clearly

(36) Sm > 2  I Smj.



532 LEO SARIO [March

Under the mapping s = ez the rectangle Rmj becomes an n-sheeted annulus with

outer radius

(37) R = cxp(27tN/w2 - j2)

and inner radius R ~1. The function t = (s 4- i)/ is — 0 maps the annulus onto the

n-sheeted complement of two Steiner circles encircling t = 1 and — 1 respective-

ly, symmetrically placed about the real and imaginary r-axes and intersecting

the real axis at the images of s = + iR, ± iR~\ that is, at distances

« '■ - ̂ 4
and ty ' from t = 0. The function w = $t maps the n-sheeted complement of

the two Steiner disks onto the 1-sheeted complement of the 2n images of

the disks, which appear as distorted disks encircling points w = e'*v,

<p, = vn/n, v=l,---,2n, and are located in the annulus

(39) #i_1<|w|< vV

The function n = wh gives as the final image n(RmJ) of RmJ the ñ-sheeted comple-

ment of 2n/h distorted disks encircling points*/ = e,a\av = vhn/n, v = 1, ■■■,2n/h,

and located in the annulus

(40) ry = tyhln<\n\<tHyln=ry1.

By definition, the mean sheet number Smj of the image of Rmj in the stereo-

graphic n-metric is the n ~ '-fold area of n(RmJ). By omitting the annulus (40) we

obtain

mJ> n    U0   Jo    (1+r*)* +  J0    Jrl(l + r2)2J

.-* f_I_ _ i - _L-\ - J*L
\l4-rf 1 + rrV     1+ rî

On setting

(41) V/   =-
exp(27i7m2-;2)-l

one obtains it = 1 4- em;- and

2n(l 4- em7)      "        , .-2h/n
s-,j> iHl + emj)-2h/„>n(l + Bmj)       .
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Here

«W   ̂  - = £„
exp(2n^/2m — 1) — 1

and we find by (36) that

m-l

S,„ > 2 Z ft(l + emy2hln = 2(m - l)ft(l + emy2">".
j-i

For the Euler characteristic we have as before e,„ ~ 4m(n — 1). Hence

Urn 5„n e>» < lim ™               2m(-n - 1}                      2(" - *>lim sup — è um sup ;-,. , ,,,-.   „.,   =-;-.
,„-.ro p Sm       „_„ F im - 1) ft (1+ O"*"/» ft

In the special case ft = 1 the value is 2(n - 1), in perfect agreement with our

result in No. 26.

28. Whether or not there are functions on a given W with P = 2 + e, or with

P = 0 but Z<5 = 2 + £ are open questions. Further problems of possible

interest in the theory of meromorphic functions on Riemann surfaces were listed

at the end of [8].
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