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Part I

1.1. Let fc be a function belonging to L, of Euclidean N-space EN and satis-

fying fc( — x) = fc(x) ; let Í2 be a subset of Es of finite but positive measure ; let

t > 0 be a parameter. The integral operator on L2(fQ) with kernel fc(x —y) is

self-adjoint and completely continuous, so its spectrum is a discrete set of eigen-

values whose only possible limit point is zero. Denote the positive eigenvalues,

if any, by

Hl,t  ^  02,1  ^

We are interested in the behavior of pmt (for fixed m) as t -» oo.

Denote the Fourier transform of fc by K,

KiO =    (e^-xkix)dx.

Set M = max K(£) and assume M > 0. Then there are positive eigenvalues for

sufficiently large t, each is less than M, and pmt-*M for each m. The proof

of this is simple and is given in Part V. However in many cases much more can

be said.

Assume K(£) = M for exactly one value of £, which we may take to be £ = 0,

and assume that as i^Owe have

(1) K(£) = M-|£|*cp(£/|£|) + o(|É|«)

where a > 0 and <5 is a positive function defined on the unit sphere which is

bounded and bounded away from zero. (In the simplest cases a will be 2 and <D

will be a positive definite quadratic form.) We shall associate with the triple

(oc,<ï>,C2) a certain unbounded self-adjoint positive definite operator on L2(Í2),

the inverse of a completely continuous operator, such that if its eigenvalues be

denoted by Xy ;£ X2 z% •■• then for each m

pm¡t = M-Xmr' + oir"), t-*co.

To give the idea of how this is done let us consider, instead of the operator

with kernel fc(x — y) on tQ, the operator with kernel tNkit(x - y)) on P_. It is just
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a matter of changing variables; the eigenvalues are still pm,. Now we have a

sequence of operators on the same space L2(fi) and we can also consider limiting

properties of the eigenfunctions. The Fourier transform of tNk(tx) is K(i/t) and

for this reason we shall denote the operator by AX(i;o. The corresponding bi-

linear form is

(2) (A*(í/0/,*)=   í     í tNk(t(x-y))f(y)g(x)dydx,       f,geL2(il).

To AK(i/() there corresponds in a natural way an operator AKii/l) on L2(Q.), the

space of Fourier transforms of L2 functions vanishing almost everywhere out-

side SI. The operator is determined by the bilinear form

(3) (ÀW.G) = (m/t)F(OGÏÇ)dZ, F,GeL2(iï).

If

f(® =OrN/2 je^-xf(x)dx,

Kö= (2nym je«-xg(x)dx,

then we obtain from (2), (3), and Parseval's identity

(K((/t)f'g) - (¿mit) f,g)-

Of course the operator AK(i/t) is just multiplication by K(Ç/t), which results in a

function of L2(EN), followed by projection onto the subspace L2(SÎ) of L2(EN).

For any bounded measurable function K we may similarly define the operator

AK on L2(Q) as multiplication by K followed by projection onto L2(Q). The cor-

responding operator AK on L2(Q) is then defined by the bilinear form

(AKf,g) = (AKfg), f,geL2(Q).

Now

A,«[Af-««/<)] = t iM ' I — -^Ktí/oJ '

where I is the identity operator. Therefore the numbers t"(M — pmt) are the

eigenvalues of At.[M_X(4/t)] and the eigenfunctions of AK((/t) are the eigenfunctions

of A,«[M_K(?/()]. What happens when i-> co? It follows from (1) that

f»[M-lí«/0]-»|§|"«(«/|í|)

for each £,. There is therefore reason to hope that the eigenvalues and eigen-

functions of A,«rAÍ_K(í/()1 approach those of A^^^^^i). This is what we shall

show.

Now that the problem is stated this way one is naturally led to a more general

question. If Jt-*J pointwise, do the eigenvalues and eigenfunctions of AJt con-

verge to those of Aj? We shall show that this is true under certain conditions,

which will be easily seen not to be superfluous.
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The observant reader will have noticed that the J in which we are mainly inter-

ested, namely J(Ç) = | ¿; |"í>(^/| Ç |), is certainly not bounded, so that we have not

defined Aj. Part of our task will be to define Aj for a general non-negative func-

tion J, and to ensure the validity of the theorem we must do this correctly. For

example if J(Ç) = | £ |2 and £2 is smooth Aj will be the negative of the Laplacian

on the functions on fi with zero boundary values.

1.2. Given a function <peLy( — n,n) with Fourier coefficients c¡, the matrix

(cj-k)jyk = yt...j is called the rth truncated Toeplitz matrix associated with tj>.

Similarly let </>(£) = (t,1,---,^1) be a function integrable on the iV-torus with

Fourier coefficients c¡ (j e A, the lattice points of EN). Let Q be a bounded set

in EN. Then we may consider the "N-dimensional Toeplitz matrix" (Cj-k)Jtk9a.

This is the operator which sends the vector [xj}j6Ana into the vector

I     Cj-kxk\ , je Ann.
UeAOfi I

If, as we shall assume, tp is real, then the matrix has only real eigenvalues. Denote

the positive eigenvalues, if any, of the matrix associated with the set IÍ2 by

^1,« = ^,! è "••

We are interested in the behavior of pmt for fixed m as t -* oo. Just as in the case

of integral equations discussed in §1.1 we have ¿um,-> \\4>\«> and we are interested

in the next approximation.

Again it is convenient to consider not truncations, associated with iQ, of a

single infinite matrix, but rather a family of matrices associated with the single

set Í2. Let us set £2, = Q n t~1 A. We consider the operator which sends the vector

{"„}Pen, into the vector

S  i«,,-,) «, , peCl,.
\ «eilt J

The positive eigenvalues of this operator are the pmt. To show the connection

with the situation discussed in §1.1 (not only the analogy, which is clear), we

generalize. Let us assume that with each value of í > 0 we have a real-valued

function tpt(£,) = ^(¿j1, • •■,£") which is of period 27ir in each of its variables and

integrable over the cube | ̂ ' | = nt. Denote by L2(£2() the space of vectors

« = {"p}pent with norm

HI = r"/2{S|«|2}1/2-

We set

c(>p = (2nr)~N I        e-*>MMZ

and define the operator T, on L2(£2f) by

(T,u)p =   ¿Zc,iP-quq, peu..
qent
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(If 0t(£) = <t>(í/t) then T, is the operator described above.) The associated bi-

linear form is

(T,tí,t)) = rÍV   Z cttP.quqvp.
p,q

This can be written

(4)    (Tt«,t>)=   f        <ptiH){i2nt2yNI2ye*pup}  {(27rt2)_*/21*-** v¿ dÇ.

Now suppose that as t -* oo the functions tbt converge to a function çb and that

u and v are restrictions to Q, of functions / and g defined on all of fi. Then the

limiting form of the right side of (4) is

[</>(£>/(£> m)Tdt,

the integration being extended over all of EN. (The bar following the bracket

in the above integral denotes complex conjugation.) Thus at least in some formal

sense the operators Tr will converge to the operator A^ discussed in §1.1. We

may therefore hope that the eigenvalues and eigenvectors of Tt will converge

to the corresponding eigenvalues and eigenfunctions of A^. We shall show that

this is the case under certain conditions. This will be enough to show that, with

a smoothness condition imposed on Q, the following holds for N dimensional

Toeplitz matrices: Let çb and pmt be as in the first paragraph of §1.2. Assume çb

assumes its maximum M at £, = 0, that the essential supremum of çb outside

any neighborhood of £, = 0 is smaller than M, and that as ¿j -* 0

<K£> = M-|£|*a>(É/|£|) + 0(|£|*)

where a > 0 and <t> is bounded and bounded away from zero on the unit sphere.

Then for fixed m as t -* oo

pm<t = M - xmt-" + o(f a),

where Xy ;£ X2 z% •■■ are the eigenvalues of A|{|« ®«/|ç|).

1.3. An outline of the paper is as follows. In Part II we discuss the operators

Aj and prove the perturbation theorem described in §1.1. In Part III we consider

a technical question which is of interest for two reasons. It will allow us to re-

place (1) by the more general condition

Kií) = M-\í\x^/\í\)Li\í\) + oi\i\xLi\0)

where L is slowly varying near | Ç \ = 0. More important, it is needed in Part IV,

our discussion of Toeplitz matrices. The content of Part V was already mentioned.

1.4. A few words are in order concerning the history of the problems we

consider here. For convenience we shall mean by "the integral equation theorem"
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the theorem described in §1.1 whose conclusion is pmt = M — Xmt~" + oit~")

and perhaps also the related result concerning the eigenfunctions, which we

have not explicitly stated; "the Toeplitz matrix theorem" is the corresponding

theorem described in §1.2. In all previous work Q was an interval on the line

and $sl. First the Toeplitz matrix theorem was proved in the case a = 2 by

Kac, Murdock, and Szegö [3]. (See also [1].) The integral equation theorem

was proved by us in the case a = 2 [8] and then for a :g 2 but with fc a probability

density [9]. Parter proved the Toeplitz matrix theorem for a = 4 [4] and then

for a any even integer [5]. Finally we proved the integral equation theorem for

general a [10] and Parter proved the corresponding Toeplitz matrix theorem [6].

In view of the papers [10] and [6] and the present paper it is clear, as was

not clear in the early stages of development of the problem, that the Toeplitz

matrix theorem and the integral equation theorem are not simply analogues of

each other. The Toeplitz matrix theorem involves more.

Part II

2.1. We shall assume as stated in §1.1 that Q. is a subset of EN of finite but

positive measure. L2(fi) denotes the subspace of L2iEN) consisting of the func-

tions which vanish almost everywhere on D', the complement of £2. Z2(ii) is

the space of Fourier transforms of functions in L2(Q).

Let us be given a non-negative function J(f), not identically zero. We denote

by J?the set ofFeL2(Q) for which

|||F|||2 = |[1 + J(0]|F(Í)|2^< ».

hen 3tf is a Hubert space with inner product

(F,G} = j[1 + JiQ)]FiQG(QdÇ.

Given F e L2(P_) the functional G -* (F, G) is bounded on at since

|(F,G)|  ^  |jr| \G\  g  ||F|| |||G|||.

It follows that there is a unique element BF e ¿f for which

(5) iF,G) = <BF,G>, Gei.

Furthermore |||BF||[ S \\F\\, so certainly ||BF|| g ¡FU. We have defined BF

for all F g ¿2(Í2) but we shall consider only its restriction to ^0, the || | closure of

$ in L2i£i). Thus B is a bounded operator on #f 0 of norm at most 1. It is also

self-adjoint, since we have from (5)

(F, EG) = <BF, BG > = (BF, G), F, G e £,

and ^f is dense in ^0.
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Define A = B 1 — I. Then A is a self-adjoint operator with domain &

= range (A) and from (5) we deduce

(6) J J(t) F(0 <7(ö</£ = j (AF) (0 G(£)d£, F e à, G e tf.

Finally the spaces 3V, 2tf0, 3i and the operator A are defined by inverse Fourier

transformation. Thus / belongs to the domain 2) of A if fe È and we define

(A/)~ = A/. (A circumflex over a function denotes the Fourier transform with

normalizing factor (2ri)~NI2.)

In most cases of interest we have Jf0 = L2(Sl). For example if J is at most of

polynomial growth the Cœ functions with compact support and vanishing outside

SI all belong to 3tif, and these are dense in L2(Sl) if the boundary of SI has measure

zero. However if £2 is a nowhere dense set of positive measure and, say, J(Ç)

= |£|W+1> then Jf consists only of the function identically zero, so certainly

^o 7e L2(SÏ). We shall not exclude this possibility.

Let us give the simplest examples of the operators A. If n = 1, SI = ( — 1,1),

J = t,2, then fe#F means that / is (equivalent to) a function vanishing outside

( — 1,1), absolutely continuous on (—00,00) and with f eL2. fe 3> means that

also/' is absolutely continuous on ( — 1,1) and/" eL2(-1,1). For/e 2¡, Af = f".

Notice that if Slx = (-1,0) U (0,1) then the spaces Jf and 3¡ and the operator A

are exactly the same for Slx as for Si since Slx and SI differ only by a set of mea-

sure zero. Thus it would not be accurate to say, for a general open set Í2, that the

functions of £? must vanish on the boundary of Si. It is true if every neighbor-

hood of every boundary point of Í2 meets the complement of Q in a set of posi-

tive measure. With this restriction imposed on an open set SI in EN it is not

hard to see that the operator corresponding to J = | f |2* (fe = 1,2, ■••) is the feth

power of the negative of the Laplacian with Dirichlet boundary conditions.

For other J or Í2 the situation is more complicated. If fi = ( —1,1) and

J = \Ç\X (a > 0) the Green's function for A can be found explicitly. It is the

function K(x,y) of [10]. (See [10, Lemma 3].)

2.2.   Lemma 1.   Let F„e3? satisfy

|| F„ || = 1, lim sup   [j\F„\2d^<  liminf J(£).
n-»oo        J |i|-»oo

Then there is a subsequence Fn, and an FeJV with F # 0 so that F„, ->F

weakly (in L2(S1)). If liminf J(Ç) = 00 the convergence is strong.

Proof. Since || F„ || = 1 there is a subsequence F„. weakly convergent to an

Fe£2(i2). Set

L = lim inf J(£),     L' = lim sup | J \ F„ \2d£,
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and assume first that L< co. Choose R and n0 so that n> n0 and | ¿ | = R imply

h Fn\2d^—^, /(OS213      '  "w-      3

Then

^£.f   j|FB|2di = Hi+^r   |Fn|^,

and so since II F„ II = 1,

(7)
* Ijei <■ DlilS*

Now if F„ = /„ and F =/ we have ||/n | = 1 and /„- -»/ weakly. These imply,

since SI has finite measure, that F„, -* F pointwise and boundedly. Therefore

from (7)

LJ'I* * ¿^
«IS*

and so F í 0. That F e & follows from Fatou's lemma and the facts that F„, -* F

pointwise and /j | F„ \2d£, = 0(1).

For L= oo we modify the argument as follows. Given e > 0, choose R and n0

so that n> n0 and | <Ü | = R imply

[j\F„\2d£, = L' + e,    /(Ofc^L' + l.

We obtain, analogously to (7),

f       \Fn\2dÇ<tl-e.
"'lili*

It follows that || F ||2 ^ 1 - e and, since e > 0 is arbitrary, that || F || = 1. This,

with weak convergence, implies strong convergence. Again Fe3^ by Fatou's

lemma.

Theorem I. The part of the spectrum of A. to the left of L= liminf J(Ç)

consists of eigenvalues, all positive and of finite multiplicity, whose only pos-

sible limit point is L.

Proof. If X is in the spectrum of A there is a sequence Fme @so that [| Fm || = 1

and

(8) |ÂFm-AFJ|-+0.
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From (6), Jj | Fm |2d£ = X + o(l). If X < L we can apply Lemma 1 to obtain a

subsequence Fm. converging weakly to F e 3?, F ^ 0. It follows from (8) that for any

Ge ê, 1(F, G) = lim A(Fm,, G) = lim (ÂFm-, G) = lim (Fm-, AG) = (F, ÂG). Since A is
self-adjoint this implies F e 3 and AF = XF. Thus A is an eigenvalue. Also, F is

a nonzero entire function and so vanishes only on a set of measure zero, and J

is not identically zero. Thus X = jJ\F\2d£, > 0.

To prove the remaining two statements of the theorem, note that if either were

false we could find a sequence X„ -* X < L and an orthonormal sequence F„ with

AF„ = X„F„. But F„ is weakly convergent to zero and this contradicts Lemma 1.

Corollary. If L= oo then A is the inverse of a positive definite completely

continuous operator on ^f0.

In case L = oo the eigenfunctions of A span Jf 0, and it is possible to give a

variational characterization of the eigenvalues. We denote the sequence of eigen-

values by Xy z% X2 ̂  •••. As we have seen, in pathological cases it is possible

that Jf o is not infinite dimensional. If ^f 0 is d-dimensional (d < oo) we shall

define Xd+1 = Xd+2 = •■• = oo. In the theorem below, the infimum of the empty

set is considered to be oo.

Theorem II.   For each n we have

X„ = sup inf jjiO\Fi0\2di

where the supremum is taken over all sets of n — 1 functions G1,-..,Gn_1 e£2(0_)

and the infimum over all FeL2iQ) satisfying

(9) ||F|| = l,(F,Gm) = 0 (l^m<n).

Proof. We first consider the case X„ = oo, that is d < n. Choose Gx ,•••,G„_t

to contain a basis for Jf 0. Either there is no nonzero F orthogonal to the Gm,

in which case the infimum is oo, or any such F does not belong to J^0> therefore

not to Jf, so again the infimum is oo.

We may assume therefore that X„ < oo. Let {Fm} he an orthonormal basis of

^f0 consisting of eigenfunctions of Â so that AFm = XmFm. For any set Gt ,•••, Gn_t

we can find a linear combination

m=l

satisfying (9). Then

(JiO\FiO\2di; =   Z Xn\am\2z%X.
J m=l

It follows that sup inf ;£ Xn. To prove the opposite inequality it suffices to show that
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Fe^f,||F| = 1, (F,FJ = 0     (1 g m < n)

imply fj\F\2dÇ 2ï X„. Now {Fm} is an orthonormal basis for 3^0; but also

{(1 + Xm)~ll2Fm} is an orthonormal basis for 3t with inner product < , >.

Therefore

IliFJII2 = Z (1 + XJ-11 <F,Fm> |2 =   Í(l + Am)|(F,Fm)|2
m=1 m=1

00

= 1 (l+Am)|(F,Fm)|2^l+;.„,

so  ¡j\F\2d^X„.

2.3. In this section we state and prove the perturbation theorem. We shall

consider a family of functions J„ t > 0, in addition to J. We denote by Jf, Jf 0,

i?, A the spaces and operator corresponding to J and by J4?0, ̂ f or, ^, A, those

corresponding to J,. The spectral families corresponding to A [resp. At] are

E(X) [resp. E,(A)]. The conclusion of the theorem will be that E,(X) -* E(A)

in the strong, or uniform, topology on operators on ä?0. Now it will be a con-

sequence of hypothesis (ii) of the theorem that ¿F0 c j>if0t for all i, but it may

happen that Jf0 # 3^0t. We must therefore make clear what these types of con-

vergence mean. Strong convergence means that for any fe3t0

||E,(A)/-E(A)/|-0.

Uniform convergence means that there are constant v, -* 0 such that

¡Ef(A)/-E(A)/|ávf||/|

for all/eJf0.

As before L— liminf /(£).

Theorem III.   Let Jt be a family of non-negative functions satisfying the

following conditions :

(i)   lim,.,^ Jt(Ç) = J(Ç) for almost every Ç,

(ii)   there are constants cx,c2 > 0 such that

JtâSCi + C.Jtf)

for all t and £,

(iii) given £ > 0 there exist R and i0 such that t > i0 and I <* | ^ R imply

L — £ (/ L< oo,

^IV. ifL-oo.

If X<L is not an eigenvalue of A then Et(A)->E(A) in the strong topology

on operators on Jf0. If L= oo the convergence holds with respect to the uniform

operator topology.
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We shall need a few lemmas, the hypotheses being those of the theorem, {f'}

will be a sequence of i's tending to co.

Lemma 2.   Assume Ft, e M'^ satisfy

|| F, || = 1,      lim sup    | Jt,(0\F,.(i)\2di < L.
t'-»00 J

Then the conclusions of Lemma 1 hold.

The proof of this is almost identical with that of Lemma 1 and so is omitted.

Lemma 3.   Assume Ft.eJ^t, satisfy

f MQ\F¿Q\2dt = 0(1), F,.-*F weakly.

Then

(10) jJ,(t)Ft,(0G-(l;)dl; - |J(C)F(0G(0dC, Gei.

Proof. Since || J1.12 Ft. || = 0(1) every subsequence of {J,1/2 Ft,} has a subse-

quence which converges weakly. But JtV2->J1/2 pointwise and, as observed

in the proof of Lemma 1, Ft.-+F pointwise. It follows that J,1'2 F,.-+J1I2F

weakly. In addition J1,!2 G -* J1/2 G in norm. (Here we have used (ii) and the domi-

nated convergence theorem.) These two facts imply (10).

Lemma 4. Let I be a closed interval to the left of Land disjoint from the

spectrum of A. Then for sufficiently large t the spectrum of A, is disjoint from I.

Proof. It follows from (iii) that for sufficiently large t, I lies to the left of

L, = liminf Jt. It follows from Theorem I that for such t any point X, belonging

to / and the spectrum of A, is an eigenvalue of At. Assume there is a sequence of

i's tending to oo for each of which there is such a Xt. Let Ft be a normalized eigen-

function of A, corresponding to X,. By Lemma 2 we can find a subsequence F(.

converging weakly to a nonzero F eM1. We may also assume Xt. converges to

some number X. If we use Lemma 3 with Ge^we obtain

(11) X(F, G) m lim Xt,(Ft., G) = (F, A G).

Since A is self-adjoint this implies F 6 3 and AF = XF. This is a contradiction

since Xel.

We now prove the theorem. Let C be a circle in the complex plane, described

in the positive direction, with center X/2 and radius X. We have
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From Lemma 4, C is disjoint from the spectrum of A, for sufficiently large t,

so we have

É¿X) = ~jiAt-zyídz.

On C the operators (A, — z) ~1 are uniformly bounded for sufficiently large t

since C is bounded away from the spectrum of Â„ also by Lemma 4. If we can

show, for each zeC, that (A,—z)_1 -* (A — z)-1 weakly, then we can conclude

that E,iX) -* E(A) weakly, and so strongly.

Let FeJf0. Since

(12) AtiAt-zy1F = F + ziAt-zy1F

we have

| Jt | (Â, - z)-1F |2d£ = (Â (Â, - z)- » F, (Âr - s)"1*) = 0(1).

By Lemma 2 every sequence {í'} has a subsequence {i"} for which (A,»— zy1 F

converges weakly. Denote this weak limit by H. Then by Lemma 3 with Ge 3)

(13) (Â,„(A,„ - z)"1 F, G) - (H, Â G).

Thus (see (12))

(if, A G) = (F, G) + z(/7, G), Gel.

It follows that He 3> and (Â - z)if = F, so H = (Â - z)'^. We have shown

that every sequence {t'} has a subsequence {/"} for which (Ar — z)~x F -» (A - z) ~ XF

weakly. This implies (A, — z)~ 1F -* (Â — z)~ *F weakly.

It remains to show that if L— oo then E,(A) -+ Ê(i) uniformly. If not, we could

find Ft. e & with || Ft. || = 1 and a 5 > 0 so that

(14) \%iX)F,-nX)Ft\^b.

By Lemma 2 there is a subsequence so that both Er(l)F,.. and Ê(A)Fr. converge

strongly, say to Gt and G2 respectively. It follows from (14) that || Gy - G2 \ ^ Ô.

But the weak convergence of Ef(A) to Ê(l) implies Gj = G2, a contradiction.

It is now easy to obtain the integral equation theorem described in §1.1. Recall

that we have a function keLyiEN) which satisfies fc(—x) = fc(x) and we set

Kit) = ¡e~ii'xkix)dx. We assume that X(0) = M > 0, that

max  K(£)<M

for each ¿ > 0, and that as £ -> 0

(15) K(£) = M-|É|*$(£/|£|) + 0(|£|*)
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where a > 0 and O is bounded and bounded away from zero. The positive eigen-

values of AKrí/í) are denoted by plt^p2,f = "" and corresponding normalized

eigenfunctions by/t t,/2 „ ••■. Denote the eigenvalues of A7 with J(£) = l^"«^/^!)

by Xy iS X2 ̂  ••• and corresponding normalized eigenfunctions by fy,f2,---. (Re-

call the convention by which we may define certain Xn to be oo.)

Corollary. For each m we have

(16) lim   t\M - pra>() = Xm.
!-»CC

If Xm< co then every sequence {f'} has a subsequence {t"} for which fmX, con-

verges strongly to a linear combination of those f„ for which Xm = X„.

Proof.   Apply Theorem III with M) = |£ |"G(£/|f |)and J,(0= f*[M-K(É/í)].

Part III

3.1.   If we try to extend the corollary of Theorem III to the case when the

hypothesis (15) is generalized to

(17) Kií) = M-\^cl>il/\^\)Li\í\) + oi\^Li\í\)),

L being a non-negative slowly varying function near zero, we would take

(is)        jtio = Lir'y'fiM - mm, m = |É|"o(É/|í |).

But we cannot apply the theorem since the domination condition (ii) may not

hold. However we have,

Theorem IV.    The conclusions of Theorem III hold if (ii) is replaced  by

(ii')   for each Ge$ there is a sequence Gke$ satisfying

(a) [sup J,iO | Gkii) |2d£ < oo, each k,

(b) lj(O|Gt(É)-G(É)|2dÉ-0, fc-oo.

Proof. Where in the proof of Theorem III was (ii) used? Only in the proof

of Lemma 3. Now this lemma was used at two points of the proof of the theorem,

namely at (11) and at (13). Going back to (11), we can conclude in our situation

that

XiF,Gk) = ^JFGkdÇ.

(Recall that F e ¿ê.) But then from (b) we can conclude that

XiF,G) = I JFGdÇ.

Similarly the argument at (13) can be taken care of.
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In the following corol lary we denote by C"(Si) the Cœ functions with compact

support contained in Q.

Corollary. Assume that Cq (Si) is || || dense in JP. Then the corollary to

Theorem III holds with (15) replaced by (17) if (16) is replaced by

lim LCr'rVCM-A.J = 4.-
f-»oo

Proof. It is sufficient to show that with Jt and / given by (18) the condition

(ii') of Theorem IV holds. It is an elementary fact about slowly varying functions

that for each e > 0 there is a <5 > 0 and a ct > 0 so that

L(au)

L(u)
Thus

= c¡(a~F + a') if (1 +a)«g«.

L(rTlL(\i|/0 ^c2(|^|-I/2 + |{|)       ifr'a + l«!)^«.

This shows

•/.(^csd+ur1), i+i«iái*.

But if 1 + | {| ^ St then

J((£) = L(t~ *)" Ymax | K(n) | g c4 í"+'.
f

Therefore for all t and f

/,(í)^c5(l4-|í|I+1).

It follows that part (a) of condition (ii') is satisfied for Gk = gk where gk e C^(Si),

and (b) is a consequence of this fact and our assumption.

3.2. Because of the assumption of the preceding corollary, and because we

shall need it in our discussion of Toeplitz matrices, we now give a sufficient con-

dition for Co°(Q) to be ||| ||| dense in Jf.

We call Si star-shaped with respect to the origin if for each r < 1 the closure

of rSl is contained in the interior of Si. SI is star-shaped if some translate is star-

shaped with respect to the origin. SI is locally star-shaped if every point of SI

(the closure of Si) has a neighborhood whose intersection with ii is star-shaped.

Theorem V. Assume that Si is locally star-shaped and that for some con-

stants S,M > 0

Then Co (Si) is ||| ||| dense in 3V.

Proof. It follows from (19) that J(Ç) ^ c(l + \Ç\Mi) with appropriate constants

c,My. Thus C?(£l)cjf.
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Assume first that Í2 is bounded and star-shaped; we may suppose it is star-

shaped with respect to the origin. If r < 1,

£r = dist (rSi,Sl') > 0.

Let <¡> be a non-negative C°° function on EN, supported on |xj^l, and with

f(j>dx = 1. Given feJf, set

fr(x) = £r-N j<K£\x - y))f(r-'y)dy.

Then fr e C?(fl). If <D (£) = jeii,x4>(x)dx then

fr(0 = rNM*& An)
and

|||/r|||2 = J[i+J(0]|/r(€)|ad€

è r"J[l + J(r - ̂ O] | AO Ia« ^ Mr"

whenever r > (1 + ô) 1. Thus we have

|||/r||| = 0(l),   |/r-/|ho,

as r -> 1. These two statements imply the result. For by the Banach-Saks theorem

(see [6, §38]) there is a sequence r„ -* 1 and an fx e Jf such that

Then fx=f and
» *=t

1 s /,k

0.

is the required sequence of functions in Cq(S1).

Next assume Si is bounded and locally star-shaped. Let Ux, •■•, U„ be bounded

open sets covering SI such that each Í2 n U, is star-shaped. Find functions (p¡

belonging to C00 so that each $¡ is supported in U¡ and E<£¡(x) = 1 on Í2. Let

fe ¿f and consider a fixed <¿>¡. We have, using Schwarz's inequality,

M ¿/M2  = (2n)l,j[i + J(0]^\j$^-yi)f(ri)dr,\2

^ (2n)N [ [1 + Jtf)]áí J" | &{ - u) | |/(if) |2d7 J | «M) | <&,.

It follows from (19) that

1 + J(0 = M2 [1 + J« - i,)] [1 + Jfo)]

for some M2 and all £, n. Therefore
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(20)        HIchJlW2 ^ i2n)NM2 (" |&(«)|dnj [1 + /(£)] |te|#

This shows that çbje ¿tí?. (The argument we have just given was suggested by a

similar one used by Hörmander and Lions [2, Lemma 6].) Now since çbj vanished

outside the star-shaped set íl n l/¡ we can find a sequence flk e Co°(£î n U¡) so

that III/» - ^111-»0. But then

Z/W 0

and { Z¡/f*} is the required sequence.

Finally we remove the restriction that Í2 be bounded. Assume feJf and again

let çb be a non-negative C00 function on EN, supported on | x | ^ 1, with Jçbdx = 1 ;

in addition assume çb = 1 on a neighborhood of the origin. It follows from (20)

that

HI çbiex)fix) HI2 ^ (2^)NM2 J | fa) | dn j [1 + J(e|)] | fcO \ d£

z% M3j(l + \^\Kl)\${Q\di\\\f\\\2èM.

if, say, £ < 1. By the Banach-Saks theorem once again there is a sequence £„-»0

so that

11
Z <Piekx)fix) -fix)

n fc=i
0.

Now each of the functions

1   "
- Z çbiekx)fix)
n *=i

is supported in a set of the form £2 n {x : | x | ^ R}. If we can show each of these

sets is contained in a bounded locally star-shaped subset of Í2 we shall be through.

Each point x of Ü n {x : | x | ^ R} has a neighborhood Ux such that Cir\Ux

is star-shaped, and we can take Ux to be bounded. Since Í2 rv {x : | x | z% R} is

compact we can find a finite set UXl, ■■■, UXk which covers it. Then Cl n (UXl U •■•

U 17^) is bounded, locally star-shaped, and contains Qn{x:|x|^R}.

Part IV

4.1. In this section we shall prove a perturbation theorem similar to Theorem

III but where the approximating operators are matrices. We assume that for

each value of i>0 we have a function $,(£) = çb,i£\•••,ÇS) defined, non-

negative, and integrable over the cube | £' | :£ nt. £2 is a bounded subset of EN and

Qt = Qnt1A where A is the set of lattice points in EN. L2(i2f) is the space of

vectors {Mp}pÊnt with norm

= t ■N/2 z
psfl i

2    1/2
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Tt is the operator on L2(Sit) defined by

(T(u)p= £   cfjP_gw„
qeCl,

where

c<>p = (2jtí)-Ní e-«-ptj>t(Ç)di;, pet~lA.

We shall use a certain mapping U, of L2(fi,) into L2(EN). It is given by

V,u(x) = (2nt)~N   I «,   f       <?íí',p"jc)d£.

The Fourier transform of U,u is

(2D íu«ría=í(2*'2)~w/2 £>**"' \^Snt'
(21) (U,I° (C)~(o, "e0t otherwise.

From (21) and the definition of the norm in L2(Sit) it is easy to verify that U,

is an isometry. Moreover we have

J«(22) (T,«,v) - | «{)(U,«)"(0(U,»)"" (ÍK.

where"- denotes Fourier transformation followed by complex conjugation.

Theorem VI.   /Issume Q is bounded and locally star-shaped, tj> is a non-

negative function for which there exist constants S, M > 0 such that

i + <Ki)    " I n I ~

We sei L= lim inf </>(£).

Let tp, be as described above and assume

(i)    lim,.,«, t¡)t(í) = (p(Ç) for almost every £,,

(ii)   there are constants Cy,c2 > 0 such that

«oáci(i+i«m («•la««,
(iii) given e > 0 íñere ex/sí R and t0 such that t > t0 and | £ | _ R, | <f| g rcí

j'mpZy

L — e i/   L < oo,

Denote by E,(X),E(X) the spectral families of T, and A( = A^) respectively.

Then if X< Lis not an eigenvalue of A we have \JtEt(X)l]* -* E(X) in the strong

topology on the operators on L2(EN). If in addition L = co the convergence

holds with respect to the uniform operator topology.
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Remark. Strictly speaking E(A) is an operator on L2(Sl), not L2(EN). We

have made the obvious identification.

4.2. The proof of the theorem requires a series of lemmas some of which

are analogous to those used in the proof of Theorem III. For this reason not

all the lemmas will be proved in detail. The spaces Jf, Jf0, 2 will be those cor-

responding to </>.

Lemma 5.   Assume uteL2(Sït) satisfy

|| u, || = 1 lim sup     #t|(UtMf)~ \2dÇ < oo.
(-►00        J

Then there is a subsequence {t'} and an F eat with F # 0 such that (Utur)~ -> F

weakly in L2(EN). If L= oo the convergence is strong.

Proof. We may assume that (U, u,) " converges weakly to F e L2(EN). We must

show that F ¿ 0, thatFeJf, and that | F ¡ = 1 if L= oo. It follows from (21) that

|(U(u,r(í)|2 = (27tí2)-N   EU |„f|*.(2*0~"Il.
peSlt   petit peSir

The sum on the right represents the number of lattice points in iQ and so is 0(tN).

Therefore the functions (U,u,)~ are uniformly bounded. Similarly, using the nota-

tion p = (p\--,pN),

-¿(U,Mfrd Ï (2*ir* I |pf = 0(1),

so (U,t/r)'areequicontinuous. It follows that (Vtu,y -*Fboundedly and point-

wise, and the method of Lemma 1 shows that F ^ 0, f(¡)\F\2d¿;< oo, and

¡F|| = 1 ifL= oo. It remains to show that Fe3&, that is, if/ = Fthen/eL2(i2).

If geCJ(ÍJ') then

jWpg(¿;)^ = 0, peSlt

and so (see (21))

((Utuf ,g) = 0.

It follows that /is orthogonal to g for all ge Cg (SI'). But since Q is locally star-

shaped the boundary of SI has measure zero, so that C0x(Sl') is dense in L2(Q').

Therefore / is orthogonal to L2(Sl') so fe L2(Si).

Lemma 6.    Let u,eL2(Sl,) satisfy

limsup    (1 + (/>,) | (U,u,)" \2d£ < oo, (U,ur)~-> F weakly.

Then

lim | <b,(\]tuty (¿)~dt = j<pF(g)-dÇ, g e C?(fi).
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Proof.    See the proof of Lemma 3.

Lemma  7.   Assume geC^iJß). Then for every integer fc > 0,

lim   f (1 + | Í |)2* | m - (U,V?gf «) 12dt = 0.
r-»oo J

Proof.   We have

(U*g)p = (2«) ~N f g(x)dx f ,-*»-») #
(23) J ■'lí'lí««

=  (2«)-"/2f e-«->g(Z)dÇ
J\tt\£*t

and so for | ? | ¿ tií (see (21)),

(U,U*g)Ä(0 = f>0~W Z f f e-*-'&r,)dt,

(24)
= (2«i2)-ff/2   Z eii-p[g(p) + 0(r2*)]

peiJt

where the term 0(i~2*) is independent of £.

We denote by Tj the second difference operator acting on the j'th coordinate.

Thus for any v defined on i-1A

(i»(p) = 2vip1,-,pN) - vip1,-^* + r\-,/) - vip\ -,pj - r\ -, A

Then a simple computation shows, using (24),

f      li-^TlwufiHol2*
•'ií'IS«

= '~*Z {«(p)(r;D(p) + o(rM)}.
peflt

Since T*g(p) = 0(i-2*) and the number of points in fi, is 0(1*) we deduce

f \l-e«T\iVtV*gyil;)\2dÇ = Oit-2k).

Since

|l-/M*|fcGc0-1|i'|. I«1**.

we have

f       ler^lOWfaW« - 0(1).



1963] EXTREME EIGENVALUES OF CONVOLUTION OPERATORS 409

Therefore

(25) f (14- | £ |)2* | (ILUfsHö |2d¿ = 0(1).

Now if we go back to (24), say with k = 1, we see that (U,Ufg)~ con-

verges to g boundedly and pointwise. Let

s-«p|(u,u**n..
Then

(l + \Ç\)2k\g-iV,V?gy\2dl;
i. l«U*

4S2
<

(1 4- R)2
j(i + \ç\)2k+2\g-(vtvrgf\2dï

and by (25) with k replaced by k + 1 this can be made less than e/2 by choosing R

sufficiently large. Then

f     (i + |€|)M|#-(u,u;*r|2di

can be made less than e/2 by choosing í sufficiently large, and the lemma is es

tablished.

Lemma 8. Let I be a closed interval to the left of L and disjoint from the

spectrum of A. Then for sufficiently large t the spectrum o/T, is disjoint from I.

Proof. We begin as in the proof of Lemma 4. We assume the lemma false,

so there is a sequence {X,,} c I such that each X, is an eigenvalue of T,., say

with normalized eigenvector «,-, and such that A,. -* X e I. By Lemma 5 we may

assume that U,.«t. converges weakly to fe3^,f^ 0. Assume ge C0°° (Si). Then

X(f,g) = linU,.(U,.u,,,g) = lim(T,,u,,,U*g).

By (22) this is

lim jtf,,,(U,.u,,HU,.U,Vr-di

= limjJ&.(U,.u,.f íjrdÉ + f^,.(U,.u,,)[(U,.U*g)^-g]-díJ.

By Lemma 6 the first integral approaches

jtM-dt;
by the boundedness of
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hypothesis (ii) of the theorem, and Lemma 7, the second integral approaches

zero. Thus

JVc;.(/,£)= jéñgTdi.

This holds for all geCÔ(Q). But by Theorem V, Co(fi) is ||| ||| dense in Jf,

so the identity can be extended to hold for all geJf. It follows that/e 3> and

Af=Xf, a contradiction.

4.3.   We now complete the proof of Theorem VI. We have, by Lemma 8,

with an appropriate circle C,

ILE^U* =-4   f   U,(T(-zV^Ufdz,

and the operators (T, — z)_i are uniformly bounded on C. We first prove that

for feL2iEN)

uxT-.-r'Tj^tA-zr^/

weakly, where E = E(oo) is the projection of L2iEN) onto L2(£2). This will es-

tablish the weak, hence strong, convergence of the projections U,Et(A)U* to

E(A). We may assume that U,(Tr — z)~1XJ*f converges weakly to some h eL2(EN).

Let g e Co (£2')- Then it follows from (23), which holds for any function

geL2iEN), that U(*g->0 uniformly on £2,. Therefore

ih,g) = lim(Ut(Tr - zy'Utfg) = lim((Tf - zylv*f,vh) = o.

Since this holds for all gsQfi') we obtain, as at the end of the proof of Lem-

ma 5, that h = Eh.

NextletgeCo°(i2). Then

(UtUf/,g)   . (U,T,(T, - zy1 V*f,g) - z(Ur(T, -zy1 M*f,g).

(26)

= (Tr(Tf - zy'Vff, Vfg) - z(U,(Tt - zy'Vff, g).

The left side converges to if,g) by Lemma 7, and the second term on the right

side to - zih,g). As for the first term on the right, it is, by (22),

(27) foMêrdi + [ ¿ÁKiWVr - êT dL

where we have set

h, = v,iT,-zylv?f.
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The first term on the right of (27) converges to

(28) JWrdí

by Lemma 6. As for the second term we have

JV|£,|2# = (Tj;T(-z)-1u?/,(T,-zr1u;'/)

= (uf/.cT.-zr'u,*/) + z\\(jt-zyivrf\\2

which is 0(1). Therefore by hypothesis (ii) and Lemma 7 the second term on

the right of (27) approaches zero. It follows that (27), i.e., the first term on the

right of (25), converges to (28). Therefore

(Ef,g) = (f,g) = j <ph(g) "di; - z(h,g), g 6 C0œ(Q).

Since CÔ(SÏ) is ||| ||| dense in Jt this identity holds for all geJt. It follows that

h e 2> and (A - z)h = E/.

We have shown that U,E,(A)Ut* ->E(A) weakly. To show that if L= oo the con-

vergence is uniform we use Lemmas 5 and 2 just as in the proof of the analogous

fact in Theorem III we used Lemma 2. The details are left to the reader.

In the following corollary we shall assume that T, come from expanding

Toeplitz matrices as described in §1.2. Thus we are given a bounded non-negative

function \j/(Ç) on the iV-torus. We assume that for each b > 0

sup     ip(0 <M (M > 0)

and as £->0

«K£) = M-|£|"<I>(£/|{|) + o(|£|°)

where a > 0 and <D is bounded and bounded away from zero. We set ij/t(Ç) = i¡/(í/t)

and <¡>(C) = 1f |a<P(^/| £ |). The positive eigenvalues of the operator Tf correspond-

ing to \¡/t are denoted by p1>( ̂  p2t ^ -^and a set of corresponding normalized

eigenvectors is u1>(,«2j„ •••. The numbers and functions Xx^ X2^---, fx,f2,---

are the eigenvalues and corresponding normalized eigenfunctions A¿.

Corollary. Assume SI is locally star-'shaped. Then for each m we have

lim f(M-pm\t) = Xm.
r-»oo

Morever every sequence {t'} has a subsequence {/"} for which the functions

U,"Mm,í" converge strongly to a linear combination of those f„ for which X„ = Xm.

Proof.   Apply Theorem VI with <¡>t = f[M- \¡i/\.
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Part V

We prove here the assertion made in §1.1. To repeat: Assume keLyiEN)

fc(-x) = £(x).    Set

Kit)= íeíí-*fc(x)dx

and assume M = max Ki£) > 0. Let £2 have finite but positive measure and

denote by py,^. p2t¿: •■• the positive eigenvalues of the integral operator on

L2(i£2) with kernel fc(x - y). Then

lim  p„>t = M
l-»oo

for each n.

Let B be a ball with center the origin. Then for almost every x e EN we have

as f-* oo

Í \Xn(x + y) - Xci(x)\dy = oit N),

where %a denotes the characteristic function of £2. In particular for almost every

x g £2 we have, for every B,

f     UqO + y) -1 \dy = oit~N).
't'B

Since the eigenvalues p„, are unchanged if we translate £2, we may take x = 0.

Thus for every B

Í \Xnit~1y)-í\dy = oií).

It follows that for any fe L2iEN),

(29) lim   í|/(>0;í(n(>')-/0')|2d>' = 0.
(-►00     J

pB>t = infsup JK(Q |F(0|2di
We have

where the infimum is taken over all G^ •••,G„_1 eL2(i£2) and the supremum

over all FeL2(i£2) satisfying

||FI = 1   (F,Gf) = 0   (lgi<n).

Let e > 0 and find disjoint sets Iu •••,/„ each of finite positive measure on

each of which Kit)) ^ M — e. Let M, denote the matrix of inner products

i2n)~2N ixIt * X,Q, Xii * £n)

where the asterisk denotes convolution.
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Since from (29)

i2n)~NXií*X,n-* Xi,

in L2, M, approaches the matrix

"I'll on

M =

-  « WJ

If a — (ay, •••, a„) is a vector such that (Ma, a) = 1 then of course

EkH'il-i-
It follows that for sufficiently large t, say t > tu (M,a,a) = 1 implies

l4-e= Z \a,\2\l,\^\-£.

We can also find r2 so that t > t2 implies

fl(2íO~AZ/l*Jfco-Xíi|l = e/n

for each ¿.

Assume t ^max(ty,t2). Given Gy,--,G„-y find a, = (au, ■■■,ant) so that

F,(0 = (2n)~N I a,, Xll * £,

satisfies

||F,|| = 1,    (F„G,.) = 0   (l = i<n).

The condition || F, || = 1 is equivalent to (M,a„a() = 1, so

1+eZ I|a>.,|2 |J,|fcl-«.

Also

|| F, - (2*)-*  I aiAll || ^ I |a¡;,| || (2nyNXil , j?lD - Xlt |  = 2 «.

Therefore, for sufficiently small £,

j" X ¡ F, |2d£ ^ (M - e)   jIy U - U/. | F,|2d£

= (M-e)  {[|Ia,(Zii|2d|-6e}

= (M-e) {Ela^l/.l-óc}

^ (M - ê) (1 - 7e).

Thus //„ , j5 (M - e) (1 - 7e) for I > max^, f2) and the assertion is established.
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