EXTREME EIGENVALUES OF N-DIMENSIONAL
CONVOLUTION OPERATORS

BY
HAROLD WIDOM

PART 1

1.1. Let k be a function belonging to L, of Euclidean N-space Ey and satis-
fying k(—x) = k(x); let Q be a subset of E, of finite but positive measure; let
t >0 be a parameter. The integral operator on L,(tQ) with kernel k(x —y) is
self-adjoint and completely continuous, so its spectrum is a discrete set of eigen-
values whose only possible limit point is zero. Denote the positive eigenvalues,
if any, by

Pig 2 Pap 2 -

We are interested in the behavior of p,, , (for fixed m) as t — co.
Denote the Fourier transform of k by K,

K(¢) = fei§ *k(x)dx.

Set M = max K(¢) and assume M > 0. Then there are positive eigenvalues for
sufficiently large ¢, each is less than M, and p, ,— M for each m. The proof
of this is simple and is given in Part V. However in many cases much more can
be said.

Assume K(¢) = M for exactly one value of &, which we may take to be £ =0,
and assume that as £ - 0 we have

M K@ =M~ |[¢]"0/|E]) +o( ]

where « >0 and @ is a positive function defined on the unit sphere which is
bounded and bounded away from zero. (In the simplest cases « will be 2 and ®
will be a positive definite quadratic form.) We shall associate with the triple
(2, @,Q) a certain unbounded self-adjoint positive definite operator on L,(Q),
the inverse of a completely continuous operator, such that if its eigenvalues be
denoted by 4, < 4, < --- then for each m

Ume=M — It %+ 07", t— 0.

To give the idea of how this is done let us consider, instead of the operator
with kernel k(x — y) on tQ, the operator with kernel t*k(t(x — y)) on Q. It is just
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a matter of changing variables; the eigenvalues are still u, ,. Now we have a
sequence of operators on the same space L,(2) and we can also consider limiting
properties of the eigenfunctions. The Fourier transform of f'k(1x) is K(¢/t) and
for this reason we shall denote the operator by Ag... The corresponding bi-
linear form is

@ Ak f:8) = J. f " k(((x~ ) f(y) §(x)dydx,  f, g€ Ly(©Q).
Q Q

To Ak there corresponds in a natural way an operator XKW,) on L,(Q), the
space of Fourier transforms of L, functions vanishing almost everywhere out-
side Q. The operator is determined by the bilinear form

© (RraF.6) = [KE/DF@GE@ e, F.GeL Q).
If -
7© = @y j ¢ % f()dx,

60 = @7 [ g,
then we obtain from (2), (3), and Parseval’s identity
(Ax(g/z)fa g = (Ax(g/r)ﬁ 8).

Of course the operator KKW,) is just multiplication by K(&/t), which results in a
function of L,(Ey), followed by projection onto the subspace L,(Q) of L ,(Ey).
For any bounded measurable function K we may similarly define the operator
Ag on L,(Q) as multiplication by K followed by projection onto £,(Q). The cor-
responding operator Ax on L,(Q) is then defined by the bilinear form

(Acf,8) = (Ag /), f,8€Ly(Q).
Now
Actm-xem = FIM 1= Agen] s

where I is the identity operator. Therefore the numbers (M — Ump) are the
eigenvalues of A,«y - k(e/r)) and the eigenfunctions of Ay, are the eigenfunctions
of Aserpr— k- What happens when t— co? It follows from (1) that

rIM—-K(@&/0]- | ®E/|E])
for each £. There is therefore reason to hope that the eigenvalues and eigen-
functions of Aepp—k(zy approach those of Ajyages))- This is what we shall
show.

Now that the problem is stated this way one is naturally led to a more general
question. If J,— J pointwise, do the eigenvalues and eigenfunctions of A;, con-
verge to those of A;? We shall show that this is true under certain conditions,
which will be easily seen not to be superfluous.
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The observant reader will have noticed that the J in which we are mainly inter-
ested, namely J(&) = | £|*®(&/| &), is certainly not bounded, so that we have not
defined A,. Part of our task will be to define A, for a general non-negative func-
tion J, and to ensure the validity of the theorem we must do this correctly. For
example if J(£) = | £|? and Q is smooth A; will be the negative of the Laplacian
on the functions on Q with zero boundary values.

1.2. Given a function ¢ € L,(—n,n) with Fourier coefficients c;, the matrix
(¢j-)jx=1,, is called the tth truncated Toeplitz matrix associated with ¢.
Similarly let ¢(&) = (£, ---,&Y) be a function integrable on the N-torus with
Fourier coefficients c; (j € A, the lattice points of Ey). Let Q be a bounded set
in Ey. Then we may consider the ‘‘N-dimensional Toeplitz matrix’’ (¢;_); xco-
This is the operator which sends the vector {x;}; . nq into the vector

{ X cj_kx,,}, jeANQ.

keA NQ

If, as we shall assume, ¢ is real, then the matrix has only real eigenvalues. Denote
the positive eigenvalues, if any, of the matrix associated with the set tQ by

Pig = P2y = e
We are interested in the behavior of y,, , for fixed m as ¢t — co. Just as in the case
of integral equations discussed in §1.1 we have p,, ,— || ¢ |, and we are interested
in the next approximation.

Again it is convenient to consider not truncations, associated with 1Q, of a
single infinite matrix, but rather a family of matrices associated with the single
set Q. Let us set Q, = Q Nt~ 'A. We consider the operator which sends the vector
{u,} peq. into the vector
{ z Ct(p-q) “q}’ PEQ,.

qeQe
The positive eigenvalues of this operator are the pu,,. To show the connection
with the situation discussed in §1.1 (not only the analogy, which is clear), we
generalize. Let us assume that with each value of ¢t > 0 we have a real-valued
function ¢,(&) = ¢,(&*, -+, &N) which is of period 2zt in each of its variables and
integrable over the cube |§i| < nt. Denote by L,(,) the space of vectors
u = {U,},c0, With norm

K s 2 L e

We set "
R RO
[& St
and define the operator T, on L,(Q,) by
(Teu), = X Crpglip pefd.

qeQe
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(If ¢(&) = ¢(&/t) then T, is the operator described above.) The associated bi-
linear form is

(Tu,0) =t X ¢, p-yU, 0,
p.q

This can be written

@) (Tu,v) = f GO {@rP) V2 XU} {(2nr?) N2 X5} de.

IS L

Now suppose that as t — co the functions ¢, converge to a function ¢ and that
u and v are restrictions to €, of functions f and g defined on all of Q. Then the
limiting form of the right side of (4) is

(6 /O [8(OT de.

the integration being extended over all of Ey. (The bar following the bracket
in the above integral denotes complex conjugation.) Thus at least in some formal
sense the operators T, will converge to the operator A, discussed in §1.1. We
may therefore hope that the eigenvalues and eigenvectors of T, will converge
to the corresponding eigenvalues and eigenfunctions of A,. We shall show that
this is the case under certain conditions. This will be enough to show that, with
a smoothness condition imposed on Q, the following holds for N dimensional
Toeplitz matrices: Let ¢ and p,,, be as in the first paragraph of §1.2. Assume ¢
assumes its maximum M at & =0, that the essential supremum of ¢ outside
any neighborhood of ¢ = 0 is smaller than M, and that as £ - 0

&) =M — [E]"®/|ED + o[ €]
where o > 0 and ® is bounded and bounded away from zero on the unit sphere.
Then for fixed m as t -
#m,t =M - j’mt_a + o(t-a)s
where A; < A, < --- are the eigenvalues of A s« ¢ (g/j¢))-

1.3. An outline of the paper is as follows. In Part II we discuss the operators
A; and prove the perturbation theorem described in §1.1. In Part III we consider
a technical question which is of interest for two reasons. It will allow us to re-
place (1) by the more general condition

K(&) =M — [E[*0(&/|EDLAED + o E "L € )
where Lis slowly varying near |£| = 0. More important, it is needed in Part 1V,
our discussion of Toeplitz matrices. The content of Part V was already mentioned.

1.4. A few words are in order concerning the history of the problems we
consider here. For convenience we shall mean by ‘‘the integral equation theorem’’
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the theorem described in §1.1 whose conclusion is p, , = M — A,t7" + ot
and perhaps also the related result concerning the eigenfunctions, which we
have not explicitly stated; ‘‘the Toeplitz matrix theorem’ is the corresponding
theorem described in §1.2. In all previous work Q was an interval on the line
and @ = 1. First the Toeplitz matrix theorem was proved in the case a =2 by
Kac, Murdock, and Szegs [3]. (See also [1].) The integral equation theorem
was proved by us in the case @ = 2 [8] and then for a < 2 but with k a probability
density [9]. Parter proved the Toeplitz matrix theorem for o = 4 [4] and then
for a any even integer [5]. Finally we proved the integral equation theorem for
general a [10] and Parter proved the corresponding Toeplitz matrix theorem [6].

In view of the papers [10] and [6] and the present paper it is clear, as was
not clear in the early stages of development of the problem, that the Toeplitz
matrix theorem and the integral equation theorem are not simply analogues of
each other. The Toeplitz matrix theorem involves more.

PArT 11
2.1. We shall assume as stated in §1.1 that Q is a subset of Ey of finite but
positive measure. L,(Q) denotes the subspace of L,(Ey) consisting of the func-
tions which vanish almost everywhere on Q’, the complement of Q. L,(Q) is
the space of Fourier transforms of functions in L,(Q).
Let us be given a non-negative function J(£), not identically zero. We denote
by o the set of F e L ,(Q) for which

IFI7 = [T+ 9@ Fopde < o

hen 42 is a Hilbert space with inner product

(FGY = f [1 + J&]FOGE) d.

Given F e £,(Q) the functional G — (F, G) is bounded on 5 since
|F.6) = |F| || = [F] [lIG]ll-
It follows that there is a unique element BF e for which
) (F,G) = (BF,G>, Ges#.

Furthermore |||BF Il S| F|, so certainly | BF | < | F|l- We have defined BF
forall Fe L,(Q) but we shall consider only its restriction to #,, the | | closure of
# in L,(Q). Thus B is a bounded operator on #, of norm at most 1. It is also
self-adjoint, since we have from (5)

(F,BG) = <BF,BG) = (BF, G), F,Ge#,

and 5 is dense in 5,
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Define A=B~!—1 Then A is a self-adjoint operator with domain %
=range (A) and from (5) we deduce

© j JEOFECE)dE = f AF)(©) G, Fed, Ge .

Finally the spaces 5, ¢, 2 and the operator A are defined by inverse Fourier
transformation. Thus f belongs to the domain £ of A if fe % and we define
(Af)" =A/. (A circumflex over a function denotes the Fourier transform with
normalizing factor (2m) V/2.)

In most cases of interest we have 5, = L,(Q). For example if J is at most of
polynomial growth the C* functions with compact support and vanishing outside
Q all belong to #, and these are dense in L,(Q) if the boundary of Q has measure
zero. However if Q is a nowhere dense set of positive measure and, say, J(¢)
=|&|"*!, then o consists only of the function identically zero, so certainly
Ky # L,(Q). We shall not exclude this possibility.

Let us give the simplest examples of the operators A. If n=1, Q=(-1,1),
J = &2, then fe s means that f is (equivalent to) a function vanishing outside
(—1,1), absolutely continuous on (— 00, 0) and with f' € L,. fe 2 means that
also f’ is absolutely continuous on (—1,1) and f" € L,(—1,1). For fe 2, Af=f".
Notice that if Q, = (—1,0) U (0,1) then the spaces ## and 2 and the operator A
are exactly the same for Q, as for Q since Q; and Q differ only by a set of mea-
sure zero. Thus it would not be accurate to say, for a general open set Q, that the
functions of 2 must vanish on the boundary of Q. It is true if every neighbor-
hood of every boundary point of Q meets the complement of Q in a set of posi-
tive measure. With this restriction imposed on an open set Q in Ey it is not
hard to see that the operator corresponding to J = | |** (k= 1,2,---) is the kth
power of the negative of the Laplacian with Dirichlet boundary conditions.

For other J or Q the situation is more complicated. If Q =(—1,1) and
J = |§|“ (e > 0) the Green’s function for A can be found explicitly. It is the
function K(x,y) of [10]. (See [10, Lemma 3].)

2.2. LemMMmA 1. Let F,,e.?? satisfy
| F,|| = 1, limsup f J|F,|%d¢ < liminf J(©).
n—~o Ki=w
Then there is a subsequence F, and an Fe# with F#0 so that F, —>F
weakly (in Ly(Q)). If liminfJ() = co the convergence is strong.

Proof. Since || F,| =1 there is a subsequence F, weakly convergent to an
FeL,(Q). Set

L=1liminfJ(¢), L =limsup (Janlzdé,

Y
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and assume first that L< 0. Choose R and n, so that n > ny and |£| 2 R imply

leF 20 < L L+ 2L 1(5)22L+ L
Then
e[ smPrzTEE[ R,
1$12R 1$12R

and so since | F,| =1,

L/

2
Q) f |Fld":22L+ L’
1EISR

Now if F,=f, and F = f we have |f,| =1 and £, — f weakly. These imply,
since Q has finite measure, that F, — F pointwise and boundedly. Therelore

from (7)
L-L
LR ==
. 2L+ L

and so F # 0. That F € # follows from Fatou’s lemma and the facts that F,. - F
pointwise and [J | F,|*d¢ = O(1).

For L= oo we modify the argument as follows. Given ¢ > 0, choose R and n,
so that n > ng and |¢| 2 R imply

fJ|F,,|2d§ SL+e JO2'L+1.

We obtain, analogously to (7),

f |F,|?d¢ =2 1-e.

RIsSR

It follows that | F||2 21 —¢ and, since ¢> 0 is arbitrary, that | F | 2 1. This,
with weak convergence, implies strong convergence. Again Fe ¥ by Fatou’s
lemma.

THEOREM 1. The part of the spectrum of A to the left of L= liminfJ({)
consists of eigenvalues, all positive and of finite multiplicity, whose only pos-
sible limit point is L.

Proof. If Ais in the spectrum of A there is a sequence F,,€ 9 so that | F,, | =1
and

® | AF,, — AF, | - 0.
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From (6), [J|F,|?d¢ =4+ o(1). If A< L we can apply Lemma 1 to obtain a
subsequence F,,. converging weakly to F € 5, F#0. It follows from (8) that for any
Ge 9, AF,G)=lim A(F,,, G) = lim(AF,,, G) = lim(F,,, AG) = (F,AG). Since A is
self-adjoint this implies F e & and AF = JF. Thus 1 is an eigenvalue. Also, F is
a nonzero entire function and so vanishes only on a set of measure zero, and J
is not identically zero. Thus 1 = [J|F|%d¢ > 0.

To prove the remaining two statements of the theorem, note that if either were
false we could find a sequence 4,— A < Land an orthonormal sequence F, with
AF, = A F,. But F, is weakly convergent to zero and this contradicts Lemma 1.

COROLLARY. If L= co then A is the inverse of a positive definite completely
continuous operator on ;.

In case L= oo the eigenfunctions of A span s, and it is possible to give a
variational characterization of the eigenvalues. We denote the sequence of eigen-
values by 4; <4, < -.-. As we have seen, in pathological cases it is possible
that 5, is not infinite dimensional. If 5#, is d-dimensional (d < ) we shall
define 4,44 = 444, = -+ = co0. In the theorem below, the infimum of the empty
set is considered to be oo.

THEOREM II. For each n we have

= supint [JO)|F (&) ae

where the supremum is taken over all sets of n — 1 functions Gy ,-++,G,_, € L,(Q)
and the infimum over all F € L,(Q) satisfying

) |F|=1(F,G,)=0 (1=m<n).

Proof. We first consider the case 1, = oo, that is d < n. Choose G, -,G,_,
to contain a basis for 5#,. Either there is no nonzero F orthogonal to the G,,
in which case the infimum is co, or any such F does not belong to .9?’0, therefore
not to 9?, so again the infimum is co.

We may assume therefore that 4, < co. Let {F,,} be an orthonormal basis of
2, consisting of eigenfunctions of A so that AF, = AwF . Foranyset G, ,---,G,_,
we can find a linear combination

satisfying (9). Then
[EGILCIR R RN LTS

1t follows that supinf < 4,. To prove the opposite inequality it suffices to show that
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Fe#,|F|=1,(F,F)=0 (1sm<n)

imply [J|F|*d¢ 22, Now {F,} isan orthonormal basis for #,; but also
{1+ 4,)"Y?F,} is an orthonormal basis for s with inner product <, ).
Therefore

MEIE = 4207 <R FWY 2 = E (4 2| FP

=2 (1+)‘m)l(F’Fm)'zgl+)‘m

m=n

so [J|F|*d¢z 4,

2.3. In this section we state and prove the perturbation theorem. We shall
consider a family of functions J,,¢t > 0, in addition to J. We denote by 5, 5,
9, A the spaces and operator corresponding to J and by 5, #,,, Z,, A, those
corresponding to J,. The spectral families corresponding to A [resp. A,] are
E(A) [resp. E(4)]. The conclusion of the theorem will be that E(1) - E(1)
in the strong, or uniform, topology on operators on J#,. Now it will be a con-
sequence of hypothesis (ii) of the theorem that % c #, for all ¢, but it may
happen that J, # 5. We must therefore make clear what these types of con-
vergence mean. Strong convergence means that for any fe . #,

| E).f = E@Q)S] - 0.
Uniform convergence means that there are constant v, — 0 such that

|E)f - EQS| £ v |f]
for all fe .
As before L= liminf J(&).

THEOREM IlI. Let J, be a family of non-negative functions satisfying the
following conditions:

@A) lim,,J(&) = J(&) for almost every &,
(ii) there are constants c,,c, > 0 such that

JO) S ¢y + ¢2J(E)
for all t and &,
(iii) given e > O there exist R and t, such that t > t, and |£| 2 R imply
€ if L< o0,

ll/s if L= o

If A< L is not an eigenvalue of A then E(A) - E(1) in the strong topology
on operators on . If L= oo the convergence holds with respect to the uniform
operator topology.

J(O) 2
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We shall need a few lemmas, the hypotheses being those of the theorem. {t'}
will be a sequence of #’s tending to co.

LEMMA 2. Assume F,,eé?,, satisfy
[Fell=1,  limsup [ 1@|Fu@dE < L
'

Then the conclusions of Lemma 1 hold.

The proof of this is almost identical with that of Lemma 1 and so is omitted.

LeMMA 3. Assume F,.eé?,, satisfy

j JAE) | Fo(®) 24 = O(1), Fo— F weakly.
Then
(10) f THOF &6 > f JOFE®C@)E, Ge .

Proof. Since || J}/? F, | = O(1) every subsequence of {J;}/> F,} has a subse-
quence which converges weakly. But J)/?> - J'/? pointwise and, as observed
in the proof of Lemma 1, F, — F pointwise. It follows that J!/2F,— J!*F
weakly. In addition J/2 G - J '/ G in norm. (Here we have used (ii) and the domi-
nated convergence theorem.) These two facts imply (10).

LEMMA 4. Let I be a closed interval to the left of L and disjoint from the
spectrum of A. Then for sufficiently large t the spectrum of A, is disjoint from I.

Proof. It follows from (iii) that for sufficiently large ¢, I lies to the left of
L, =liminf J,. It follows from Theorem I that for such ¢ any point 4, belonging
to I and the spectrum of A, is an eigenvalue of A,. Assume there is a sequence of
t’s tending to oo for each of which there is such a 4,. Let F, be a normalized eigen-
function of X, corresponding to 4. By Lemma 2 we can find a subsequence F,.
converging weakly to a nonzero Fe#. We may also assume A, converges to
some number A. If we use Lemma 3 with Ge 9 we obtain

(11 MF,G) = lim 1,(F,, G) = (F,AG).

Since A is self-adjoint this implies Fe & and AF = AF. This is a contradiction
since Ael.

We now prove the theorem. Let C be a circle in the complex plane, described
in the positive direction, with center A/2 and radius 1. We have

i = -1 [ (@4-pt
B = 5— JC A - 2)"4z.
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From Lemma 4, C is disjoint from the spectrum of A, for sufficiently large ,
so we have

~ 1 N -
E‘(l) = i‘-n—l'f (A, - Z) le.
C

On C the operators (A, — z) ~! are uniformly bounded for sufficiently large ¢
since C is bounded away from the spectrum of A,, also by Lemma 4. If we can
show, for each z e C, that (A,—z)"* — (A — z)~! weakly, then we can conclude
that E(1) —» E(4) weakly, and so strongly.

Let F 69%). Since

(12) AA-2'F=F+z(A,-2)"'F

we have

[21@, =27 FPaz = AG - 57 R G- 57D = 00

By Lemma 2 every sequence {t'} has a subsequence {t"} for which (A, — z)"' F
converges weakly. Denote this weak limit by H. Then by Lemma 3 with Ge 2

(13) A-@A, — 2"'F,G) > (H,AG).
Thus (see (12))
(H,AG) = (F,G) + z(H,G), Ge 9.

It follows that He 2 and (A — z)H = F, so H = (A — z)"'F. We have shown
that every sequence {¢'} has a subsequence {t"} for which (A,.—z) ' F - (A—z) " 'F
weakly. This implies (A, — z)"*F - (A — z)~'F weakly.

It remains to show that if L= oo then ﬁ,(l) - E(2) uniformly. If not, we could
find F, € # with | F, | =1 and a 6 > 0 so that

(14) | B F, — EAF,| 2 6.

By Lemma 2 there is a subsequence so that both ﬁ,»,(A)F,n and ﬁ(A)F,,, converge
strongly, say to G, and G, respectively. It follows from (14) that |Gy — G| 26
But the weak convergence of E(4) to E(1) implies G, = G,, a contradiction.

It is now easy to obtain the integral equation theorem described in §1.1. Recall
that we have a function ke L,(Ey) which satisfies k(—x) = k(x) and we set
K(§) = [e " k(x)dx. We assume that K(0) = M > 0, that

max K(&) < M
1¢izo

for each 6 > 0, and that as ¢ -0

(15) K@) =M —[E[D&/|E]) +o(|E])
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where « > 0 and @ is bounded and bounded away from zero. The positive eigen-
values of Ay, are denoted by u,, = p,, = --- and corresponding normalized
eigenfunctions by f; ,.f, ,» -++. Denote the eigenvalues of A, with J(§) = |&|*®(&/|¢])
by 1; £ 4, £ --- and corresponding normalized eigenfunctions by fi,f, . (Re-
call the convention by which we may define certain 2, to be .)

COROLLARY. For each m we have

(16) lim (M — p ) = Jop.

t—=cc
If A, < o then every sequence {t'} has a subsequence {t"} for which f,, . con-
verges strongly to a linear combination of those f, for which 4, = 4,.

Proof. Apply Theorem III with J(¢) = | & |*®(&/|€]) and J (&) = [ M — K(&/1)].
PArT 11

3.1. If we try to extend the corollary of Theorem III to the case when the
hypothesis (15) is generalized to

an K@ =M—|El0E/[EDL(ED + o E]* L D),
L being a non-negative slowly varying function near zero, we would take
(18) J(&) = Lt~ )71 [M — K/, (&) = | &|*@(&/| &)

But we cannot apply the theorem since the domination condition (ii) may not
hold. However we have,

THEOREM IV. The conclusions of Theorem 1T hold if (ii) is replaced by
(ii") for each G € S there is a sequence er./f satisfying

@ [swi@lGu@Pat<o, ek k

®) [J(&) |Gu(&) — G(&) [2dE — 0, ko o0,

Proof. Where in the proof of Theorem III was (ii) used? Only in the proof
of Lemma 3. Now this lemma was used at two points of the proof of the theorem,
namely at (11) and at (13). Going back to (11), we can conclude in our situation
that

MF,G,) = (JFdeé.
(Recall that F e 9?.) But then from (b) we can conclude that
A(F,G) = [JFGdé.

Similarly the argument at (13) can be taken care of.
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In the following corol lary we denote by Cg(Q) the C* functions with compact
support contained in Q.

COROLLARY. Assume that C3(Q) is ||| ||| dense in . Then the corollary to
Theorem III holds with (15) replaced by (17) if (16) is replaced by
lim LEY WM = p,] = A
t— o0
Proof. It is sufficient to show that with J, and J given by (18) the condition

(ii") of Theorem IV holds. It is an elementary fact about slowly varying functions
that for each ¢ > 0 thereisa > 0 and a ¢, > 0 so that

LL(Z"‘)) < ¢@" +a) i (1 + a)u <.
Thus
LD L(E)/D S (e + &) if A+ e 6.
This shows

T S es(l + &7, 1+ ¢ <6t
But if 1+ |&| 2 6t then

10 S L6 e max | KO)| S e, £
n
Therefore for all ¢ and &

J(O) S es(1 + €.

It follows that part (a) of condition (ii’) is satisfied for G, = g, where g, € CT(Q),
and (b) is a consequence of this fact and our assumption.

3.2. Because of the assumption of the preceding corollary, and because we
shall need it in our discussion of Toeplitz matrices, we now give a sufficient con-
dition for C3(Q) to be ||| ||| dense in .

We call Q star-shaped with respect to the origin if for each r < 1 the closure
of rQ is contained in the interior of Q. Q is star-shaped if some translate is star-
shaped with respect to the origin. Q is locally star-shaped if every point of Q
(the closure of Q) has a neighborhood whose intersection with Q is star-shaped.

THEOREM V. Assume that Q is locally star-shaped and that for some con-
stants 6,M >0

(19)

1+ J©) .
TTam =M if

Then C3(Q) is ||| ||| dense in .

Proof. It follows from (19) that J(¢) S c (1 + | & |M ') with appropriate constants
¢, M;. Thus C3(Q) = #.

4
n

|
IA

1+4.
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Assume first that Q is bounded and star-shaped; we may suppose it is star-
shaped with respect to the origin. If r < 1,

g, = dist (rQ,Q’) > 0.

Let ¢ be a non-negative C* function on Ejy, supported on |x| <1, and with
[édx =1. Given fe #, set

fix) = f (6710 — ().

Then f,e C3(Q). 1If ®(&) = [¢**$(x)dx then
£(&) = "0 (e,d) f(rd)

and

AP = oo+ sl P

s [tr+ setonl 0 s Mr I
whenever r > (1 4+ 8)"!. Thus we have
I£1l] =0, |£—-f]-0,

as r — 1. These two statements imply the result. For by the Banach-Saks theorem
(see [6, §38]) there is a sequence r,— 1 and an f, € 5 such that

I£ £ps] o
Then f; = f and
(5 2]

is the required sequence of functions in Cg'(Q).

Next assume Q is bounded and locally star-shaped. Let Uy, ---, U, be bounded
open sets covering Q such that each QN U, is star-shaped. Find functions ¢,
belonging to C® so that each ¢, is supported in U; and X¢(x) =1 on Q. Let
fe ¥ and consider a fixed ¢;. We have, using Schwarz’s inequality,

2

el = @o" [ia+ sz [ 46 - m faran

< @ [ [t +I@N f |6& = m)| | fen) [2dn f | $n) | dn.
It follows from (19) that
1+ J(9) S My[1+ I 1)) [+ J0)]

for some M, and all &, . Therefore



1963] EXTREME EIGENVALUES OF CONVOLUTION OPERATORS 405
@) |61 = @™, f | $in) | dn f [t + I | 346 | e ||| 7|1~

This shows that ¢,;fe 5. (The argument we have just given was suggested by a
similar one used by Hérmander and Lions [2, Lemma 6].) Now since ¢, f vanished
outside the star-shaped set Q N U; we can find a sequence f e CJ(Q N U)) so
that [||fix — ¢.f||| = 0. But then

| Zes]f o
and{ X,fu} is the required sequence.

Finally we remove the restriction that Q be bounded. Assume fe 5# and again
let ¢ be a non-negative C* function on Ey, supported on | x| < 1, with [¢dx =1;

in addition assume ¢ = 1 on a neighborhood of the origin. It follows from (20)
that

16 Ef@||P < @n'M, f | 3n) | dn f [1 + I | 6 |dé || 7)1
< M, J(l + [ [M)) | $@ | e ||| A1 = Ma ||| £

if, say, € < 1. By the Banach-Saks theorem once again there is a sequence &, — 0
so that

l\lf-, kgl¢(ekx)f(x) 1)~ 0.

Now each of the functions

! % s
k=1

is supported in a set of the form @ N {x :|x| < R}. If we can show each of these
sets is contained in a bounded locally star-shaped subset of Q we shall be through.
Each point x of QN {x:|x| <R} has a neighborhood U, such that Q N U,
is star-shaped, and we can take U, to be bounded. Since @ N {x:|x| < R} is
compact we can find a finite set U, , ---, U,, which covers it. Then QN (U,, U ---
U U,,) is bounded, locally star-shaped, and contains Q@ N{x:|x| < R}.

PART 1V
4.1. In this section we shall prove a perturbation theorem similar to Theorem
III but where the approximating operators are matrices. We assume that for
each value of t>0 we have a function ¢(&)= ¢,(¢%, -, &Y) defined, non-
negative, and integrable over the cube || < nt. Q is a bounded subset of Ey and
Q,=QNt'A where A is the set of lattice points in Ey. L,(Q,) is the space of
vectors {U,},eq, With norm

lul = 7 { Z Ju o
pef:
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T, is the operator on L,(Q,) defined by
(Tt u)p = 2 ct,p—quq

qeQe
where

¢p=Qn))™" f IR b (E)de, et A,

18 <nt

We shall use a certain mapping U, of L,(Q,) into L,(Ey). It is given by

peQ

Uxu(x)=(21tt)_N Z u, f eiC‘(P—x)dé'
18i| sne

The Fourier transform of U,u is

R omt2)~ N2 i&p <
1) (Ur) (‘5):{%1“) -’ ifhelfv;i:;f

From (21) and the definition of the norm in L,(Q,) it is easy to verify that U,
is an isometry. Moreover we have

(22) (Tuy) = fd’.(é)(Ufu)A(é)(va)“ (8)de,

where”~ denotes Fourier transformation followed by complex conjugation.

THEOREM VI. Assume Q is bounded and locally star-shaped, ¢ is a non-
negative function for which there exist constants 5, M > 0 such that

L+6@  _ 4 ¢
n

T+ = NPT

IIA

1+0.

We set L= liminf ¢(&).
Let ¢, be as described above and assume

(D) lim,. o, §(E) = ¢() for almost every ¢,

(ii) there are constants cy,c, > 0 such that

L&) S e (14 |E]*), |&] < mt,

(iii) given &> O there exist R and t, such that t > t, and |¢| 2 R, |&| S mt
imply
L—¢ lf L< o,
>
¢I(é) = 1/6 lf L = o0,
Denote by E(A),E(4) the spectral families of T, and A(= A;) respectively.
Then if A < Lis not an eigenvalue of A we have U,E, (1)U} — E(4) in the strong

topology on the operators on L,(Ey). If in addition L = oo the convergence
holds with respect to the uniform operator topology.



1963] EXTREME EIGENVALUES OF CONVOLUTION OPERATORS 407

ReMARK. Strictly speaking E(1) is an operator on L,(Q), not L,(Ey). We
have made the obvious identification.

4.2. The proof of the theorem requires a series of lemmas some of which
are analogous to those used in the proof of Theorem III. For this reason not
all the lemmas will be proved in detail. The spaces J#, #,, 2 will be those cor-
responding to ¢.

LEMMA 5. Assume u,€ L,(Q,) satisfy

lu] =1 lim sup j 64 (Uu) ™ [dé < co.
1= 0

Then there is a subsequence {t'} and an F € # with F # 0 such that (U,u) > F
weakly in L,(Ey). If L= oo the convergence is strong.

Proof. We may assume that (U, u,)” converges weakly to F € L,(Ey). We must
show that F # 0, that F € #, and that | F | = 1if L= co. It follows from (21) that

[(Gu) QP @)™ Z1X |u,]P=@a)™™ X 1.

peQe peQe pefde

The sum on the right represents the number of lattice points in tQ and so is O(t").
Therefore the functions (U,u,)” are uniformly bounded. Similarly, using the nota-
tion p=(p',-,p"),

| (Ua)"®)] 5 Crd™ I [ = o),
H aé PpeQ:e

so (U,u,) are equicontinuous. It follows that (U,u,)” — F boundedly and point-
wise, and the method of Lemma 1 shows that F #0, [¢|F|?d¢ < oo, and
| F| = 1if L= co. It remains to show that F € #, that is, if f = F then fe L,(Q).
If ge C3(Q’) then
f eTEPg(EE = 0, peQ
and so (see (21))
(Ua) ,8) = 0.

It follows that f is orthogonal to g for all ge C3(Q’). But since Q is locally star-
shaped the boundary of Q has measure zero, so that C,°(Q’) is dense in L,(Q").
Therefore f is orthogonal to L,(Q’) so fe L,(Q).

LEMMA 6. Let u, € L,(Q,) satisfy

limsup ‘.(1 + @) | (Uu)" [dé < oo, (Uu,)” - F weakly.
Then ) i
im [4Uu)” ©)7d¢ = [ @) £ C@.
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Proof. See the proof of Lemma 3.

LEMMA 7. Assume ge CJ(Q). Then for every integer k > 0,

tim [ (L+]E)™ @) - (UDFe) @4 = o.
Proof. We have
7D, = @0 7" [ gas[ e g
(23) 18 snt
= @nM? f o1 2g(E)de

) 184 < ne
and so for |&| < at (see (21)),
(UUr)"(©) = @uy ™ T & j e "2 4(n)dn

pe: Int] St

24
= Qu®)™? X & P[g(p) + Ot~ %]
pefde

where the term O(¢~?¥) is independent of ¢&.
We denote by I'; the second difference operator acting on the jth coordinate.
Thus for any v defined on t™!A

(rjv)(p) = 2v(pls Ehe) N) - v(l’l’ *tty P] + t_la "'spN) - v(Pl9 ”‘st - t-l’ Sty PN)-

Then a simple computation shows, using (24),

f |1 — %)% (U,UPg)"(9) [Pde
18! Sne
=t"E {g T}/ + 0@t ")}
peQe

Since I'}Z(p) = O(t~**) and the number of points in Q, is O(t") we deduce

f 1 — 2| (U,Ug) &) PdE = O 2).

18t Sat
Since

|1- "] 2 ()~']&], |&| < e,
we have

f |12+ (U,Ure) (@) Pde = 0().
HEL
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Therefore

(25) [ a+lep*|wure @Fe = ow.

v 18 s

Now if we go back to (24), say with k=1, we see that (U,U¥g)” con-
verges to ¢ boundedly and pointwise. Let

S = sup || (U,U78)" | -
Then
f (1 + [E)*|§ - (U,U*g) " [de
ISIZR

2
S o | e e - ey P

and by (25) with k replaced by k + 1 this can be made less than ¢/2 by choosing R
sufficiently large. Then

f (L + [ED*|g - (UU*g) " [2de
|$I<R

can be made less than g/2 by choosing ¢ sufficiently large, and the lemma is es
tablished.

LeMMA 8. Let I be a closed interval to the left of L and disjoint from the
spectrum of A. Then for sufficiently large t the spectrum of T, is disjoint from I.

Proof. We begin as in the proof of Lemma 4. We assume the lemma false,
so there is a sequence {4,.} = I such that each A, is an eigenvalue of T,., say
with normalized eigenvector u,., and such that 4,,— Ael. By Lemma 5 we may
assume that U,.u,. converges weakly to fe o, f# 0. Assume ge Cy° (Q). Then

Mf, 8 = lim4,.(Uyu,, g) = lim(T,u,., U?'g)°
By (22) this is
lim f ¢, (U,ruy0) - (Ux'U::g) “TdE

~tim { [ 6, (U @ d + [ 60U (VU8 - £17ae].
By Lemma 6 the first integral approaches

[or@-ae:
by the boundedness of

f 6o | (Uy) " [2e,
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hypothesis (ii) of the theorem, and Lemma 7, the second integral approaches
zero. Thus

A(fg) = f 678y de.

This holds for all ge Cg(Q). But by Theorem V, C3(Q) is ||| ||| dense in 2,
so the identity can be extended to hold for all ge . It follows that fe 2 and
Af=Af, a contradiction.

4.3. We now complete the proof of Theorem VI. We have, by Lemma 8,
with an appropriate circle C,

1 -
13(,1)=27 fc (A —2)"dz,

1 -
UEWU! =z [ U =27 ez,
C

and the operators (T, — z)™! are uniformly bounded on C. We first prove that
. for fe L,(Ey)

U(T,— )" 'U¥f> (A - 2) ' Ef

weakly, where E = E(c0) is the projection of L,(Ey) onto L,(Q). This will es-
tablish the weak, hence strong, convergence of the projections UE/(A)U* to
E(4). We may assume that U(T, — z) ~'U}*f converges weakly to some h eL,(E").

Let ge C5(Q’). Then it follows from (23), which holds for any function
g € L,(Ey), that Ufg — 0 uniformly on Q,. Therefore

(h,8) = lim(U(T, - 2)"' U}, ) = lim((T, — 2)'U}f, Ufg) = 0.

Since this holds for all ge Cg(Q’) we obtain, as at the end of the proof of Lem-
ma 5, that h = Eh.
Next let ge C3(Q). Then

(U,UYg) = (UT(T, - 2)"'Utf.g) — 2(U(T, — 2) "' Ulf.g).
(26)
= (T(T, - z)—lU;'f’ U:g) — z(U(T, - Z)—lUff, ).

The left side converges to (f,g) by Lemma 7, and the second term on the right
side to —z(h,g). As for the first term on the right, it is, by (22),

@7 j @) ~de + f SHI(UUR) — 61 de,

where we have set

h, = U(T, — Z)_IU;kf'
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The first term on the right of (27) converges to

28) f ()" de

by Lemma 6. As for the second term we have

f bl |dE = (T(T, — 27 'UM,(T, — 2 'U¥)
= (UY,(T,— 2)7'UY) + z||(T, — 2) ' U¥f|?

which is O(1). Therefore by hypothesis (ii) and Lemma 7 the second term on
the right of (27) approaches zero. It follows that (27), i.e., the first term on the
right of (25), converges to (28). Therefore

(Ef.e) = (fig) = j (&) ~dé - =(hg), g€ C2(Q).

Since C3(Q) is ||| ||| dense in # this identity holds for all ges#. It follows that
he2and (A —z)h=Ef.

We have shown that U,E,(1)U}¥ —E(A) weakly. To show that if L= oo the con-
vergence is uniform we use Lemmas 5 and 2 just as in the proof of the analogous
fact in Theorem III we used Lemma 2. The details are left to the reader.

In the following corollary we shall assume that T, come from expanding
Toeplitz matrices as described in §1.2. Thus we are given a bounded non-negative
function Y(&) on the N-torus. We assume that for each § > 0

sup Y& <M (M>0)

LEYIL B

and as £—-0

YO =M— S 0E/|ED +o(E]

where o > 0 and ®@ is bounded and bounded away from zero. We set ,(£) = Y(¢/1)
and @(&) = | €|*®(&/| € ]). The positive eigenvalues of the operator T, correspond-
ing to y, are denoted by p, , = pu,, = ---,and a set of corresponding normalized
eigenvectors is u, ,,u, -~ The numbers and functions 4; < 4, < -+, fi,/5,
are the eigenvalues and corresponding normalized eigenfunctions A,.

COROLLARY. Assume Q is locally star-shaped. Then for each m we have

lim ta(M~— ”m;r) = lm‘

t= o

Morever every sequence {t'} has a subsequence {t'} for which the functions
U,.u,, ,» converge strongly to a linear combination of those f, for which 2,= 4,

Proof. Apply Theorem VI with ¢, = t*[M — y,].
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PART V

We prove here the assertion made in §1.1. To repeat: Assume ke L,(Ey)
k(—x) =k(x). Set

K(¢) = feig'“ k(x)dx

and assume M = maxK(&) > 0. Let Q have finite but positive measure and
denote by py , 2 Py, = -+ the positive eigenvalues of the integral operator on
L,(t1Q) with kernel k(x — y). Then

lim Ungy = M

for each n.
Let B be a ball with center the origin. Then for almost every x € Ey we have
as t— o

| et ) = xaldy =,

t~1B

where yq denotes the characteristic function of Q. In particular for almost every
x e Q we have, for every B,

[ [xa(x+y)—=1]dy = ot™™).

t~ B
Since the eigenvalues p,, are unchanged if we translate Q, we may take x = 0.
Thus for every B

jlxn(r‘y)-lldy = o(1).
B
It follows that for any fe L,(Ey),

(29) lim | |/ —f)|*dy = 0.

t—+

We have Jtn = inf sup f K@) |F(©)|*a¢

where the infimum is taken over all Gy,-+,G,_, € L,(tQ) and the supremum
over all Fe L,(1Q) satisfying

IF| =1 (F.G)=0 (1<i<n).

Let ¢> 0 and find disjoint sets I,,---,I, each of finite positive measure on
each of which K(£) = M — &. Let M, denote the matrix of inner products

(27‘)_2N (xr, * )?tns X, * fm)

where the asterisk denotes convolution.
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Since from (29)
(27‘)—NX1, * Xra = X1,

in L,, M, approaches the matrix

|1, 0

0 ||
If o« = (ay,--+,,) is a vector such that (Ma, «) = 1 then of course
E e[|l =1.
It follows that for sufficiently large ¢, say ¢t > t;, (Mo, a) = 1 implies
1+e2 X |2 |L|21-e
We can also find ¢, so that ¢ > ¢, implies
1™ x1, # Xea = %1, | S ¢/n

for each i.
Assume t = max(t,,t,). Given Gy,--+,G,_; find a, = (-, ,,) so that

F(&) = (zn)-N 2 Ot X1y * fm

satisfies
IF]=1 (F.G)=0 (1<i<n).

The condition || F,| =1 is equivalent to (M%) =1, so
1+e2 X|o 2 |L|21-
Also
| Fe=@m)™ Tty | £ Z o] |0 s 8 Koo — 10| S 2.

Therefore, for sufficiently small ¢,

’ﬁK|F,|2d§ > (M—¢) fl, U UL | F|?dE
M —¢ U | Loty 21, |2dE — 6¢
M — &) {Z|oy|*| 1] - 62}

1\%

2 (M—-¢) (1-"Te).
Thus p,, = (M —¢) (1 — 7e) for t > max(t,,t;) and the assertion is established.
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