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The spaces of analytic functions studied arise from the problem of finding

invariant subspaces for bounded linear transformations in Hubert space. Two

fundamental problems are (1) to determine the invariant subspaces of any bounded

transformation, (2) to reconstruct a transformation from its invariant subspaces.

Satisfactory answers are known for self-adjoint transformations, for unitary

transformations, and more generally for normal transformations, but for all

other kinds of transformations the known results are less complete. Beurling [2]

illustrates how to find invariant subspaces for isometric transformations which

are not unitary, and in so doing uncovers an important connection with analytic

function theory. Aronszajn and Smith [1] are able to show the existence of in-

variant subspaces for completely continuous transformations, a result which

they ascribe to von Neumann in the Hubert space case with which we are now

concerned. A general study of transformations T with T—T* completely con-

tinuous is started by Livsic [11] and continued by Brodskiï and Livsic [9]. The

Livsic approach forms an interesting link between the methods of analytic func-

tion theory and those which depend on compactness in linear spaces. When the

spectrum of the transformation is a point, Gohberg and Krein [10] give an

integral representation of the transformation in terms of invariant subspaces.

This construction makes an interesting contrast with the spectral representation

of a self-adjoint operator. Relations between the existence of invariant subspaces

and the factorization of related operator valued entire functions are obtained

by Brodskii" [7; 8]. Our purpose now is to give an exposition of the function

theoretic background to this interesting observation.

Recall that we have previously [3-6] made a study of Hubert spaces, whose

elements are entire functions and which have these properties:

(HI) Whenever Fiz) is in the space and has a nonreal zero w, the function

Fiz)iz — w)/(z — w) is in the space and has the same norm as Fiz).

(H2) For every complex number w, the linear functional defined on the

space by Fiz) -» Fiw) is continuous.

(H3) Whenever Fiz) is in the space, the function F*iz)=Fi¿) is in the space

and has the same norm as F(z). The axiom (H2) which appears here is conjec-

tured to be a consequence of (HI). Several apparently weaker conditions, of

various degrees of subtlety, are known to imply (H2), and one of these is quoted
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in previous work in place of the present axiom (continuity not assumed on the

real axis). Present work requires a similar but more general class of Hubert

spaces, whose elements are vector valued analytic functions, and which satisfy

a suitable interpretation of (HI) and (H2). Some notation is necessary to describe

these spaces.    •

Let ^ be a fixed Hubert space. By a vector we will always mean an element

of this space. A special notation is used for the norm and inner product of vectors

to avoid confusion with other spaces we shall construct. Let | c | be the norm

of a vector c. If b is a vector, let b be the corresponding linear functional on

vectors so that the inner product takes the form <a,fc) = ba. By an operator we

mean a bounded linear transformation of vectors into vectors. If A is an operator,

let | A | be the operator norm, let A be the adjoint of A, and let Re A = (A 4- Ä)/2.

We write A Ï; 0 if cAc ^ 0 for every vector c, and this inequality implies in par-

ticular that A = A is self-adjoint. If A and B are operators, the inequality A ;£ B

is taken to mean B — A ^ 0. An operator is said to be invertible if it has an every-

where defined and bounded inverse A-1. If a and b are vectors, let ab be the

corresponding operator defined by (ab)c = a(bc) for every vector c. The theory

requires the choice of a fixed invertible operator / such that / = —I = I~1. Let

#+ be the kernel of / — i, and let ^_ be the kernel of I + i. Then #_ and &+

are orthogonal subspaces of # which span <€. We use x to denote the finite or

infinite trace norm of an operator. Relevant properties of this norm are that

x(ABC) = x(B) whenever A and C are unitary operators, and x(A + B) = x(A)

+ x(B) whenever A ^ 0 and B = 0.

A vector valued function f(z), defined in a region Si of the complex plane,

is said to be analytic in Í2 if the complex valued function cf(z) is analytic in

the region for every choice of vector c. An operator valued function F(z), defined

in Si, is said to be analytic in the region if bF(z)a is analytic in the region for

every choice of vectors a and b.

If Jf is a Hubert space, whose elements are vector valued entire functions,

the axiom (HI) makes perfect sense and the axiom (H2) has an obvious inter-

pretation : the linear transformation of Jf into <€ defined by F(z) -* F(w) is con-

tinuous for all complex w. We shall not here be concerned with a general study

of Hubert spaces of vector valued entire functions which satisfy these axioms.

It is sufficient to consider a special case in which the axiom (HI) is strengthened

in a way suggested by Lemma 1 of [6] :

(H4) The function \F(z) - F(w)}/(z - w) belongs to Jf whenever F(z) be-

longs to ^, for every complex number w, and the identity

2nG(ß)IF(a) = <F(í), [G(í) - G(ß)}/(t - ß)>

-<[F(í)-F(a)]/(í-a),G(t)>

+ (a - ß) <[F(í) - F(a)]/(t - a), [G(í) - G(ß)}/(t - ß)}
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holds for all F(z) and G(z) in 3tf and all numbers a and ß. This identity is a char-

acteristic property of the generalized Hubert transform of [5].

A general study of such spaces had been completed when we discovered that

a wider theory can be constructed with little additional effort. Let SI be a given

region of the complex plane, which is always assumed to contain the origin.

If Jf is a Hubert space whose elements are vector valued analytic functions in

Si, the axioms (H2) and (H4) make sense when the numbers a, ß, and w are re-

stricted to SI. A space with these properties is then said to satisfy (H2) and (H4)

in Si. Standard models of linear transformations are constructed from such

spaces.

Theorem I. If J? is a Hilbert space of vector valued analytic functions

which satisfies (H2) and (HA) in Si, the transformation

R(w) : F(z) -* {F(z) - F(w)]/(z - w)

is bounded, for all w in Si, and the resolvent identity

(v.-ß)R(*.)R(ß)=R(a)-R(ß)

holds. The spectrum of R(0) is contained in the set of points w such that w_1

does not belong to Si. Let P+ and P_ be the spectral projections, corresponding

to (0,oo) and (—co,0) respectively, for the self-adjoint transformation

i{_R(0) — R(0)*]. Then the dimension of (the range of) P+ is no more than the

dimension ofré'+,and the dimension of P- is no more than the dimension of^^.

Theorem II. Let T be a bounded linear transformation of a Hilbert space

J^ into itself. Let P+ and P_ be the spectral projections, corresponding to

(0,oo) ¿j«¿¿ (—oo,0) respectively, for the self-adjoint transformation i(T— T*).

We suppose that the dimension of P+ is no more than the dimension of (ë'+

and that the dimension of F_ is no more than the dimension of ^_. Then T

admits a largest invariant subspace J(, which is also invariant under T* and

to which the restriction of T is self-adjoint. If JÍ is the zero subspace of Jf?,

then T is unitarily equivalent to the transformation R(0) in some Hilbert space

of vector valued analytic functions which satisfies (H2) and (HA) in a region Si

(containing the origin), and such that I commutes with the operator m (de-

fined below).

Such spaces have a simple structure.

Theorem III. Let ^ be a Hilbert space of vector valued analytic functions

which satisfies (H2) and (HA) in Si. Then there exists a unique operator valued

function M(z), defined and analytic in Si, with value 1 at the origin, which

has this property: if

K(w,z) = \_M(z)IM(w) - /]/ [2tt(z - w<)],
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then Kiw,z)c belongs to ¿F as a function of z for every vector c and every number

w in Q, and

cFiw) = <F(í), Kiw,t)c>

holds for every Fiz) in Jt. The adjoint of the transformation R(0) in 3P is

RiO)*: Fiz) -> [Fiz) - M(z)F(0)]/z.

There exists a unique operator valued function </>(z), defined and analytic for

y > 0, for y < 0, and in a neighborhood of the origin, such that

[M(z)+l]<Kz) = [M(z)-1]/.

It has value 0 at the origin and satisfies the operator inequality

(2) [</J(vv) - 4>iw)~\/iw - w) ̂  0.

The operator m = M'(0)f is nonnegative and çb'iO) = \m.

Since the space ¿? in question is determined by Miz), we may denote it by

¿?iM). When an operator valued analytic function Miz) is given, with value 1

at the origin, we shall say that it satisfies (1) if it is of the form

(3) M(z) = [l-<Kz)/]/[l-r-<Kz)7],

where <fj(z) is defined and analytic for y > 0, for y < 0, and in a neighborhood

of the origin, and if ^>(z) satisfies (2) in its region of analyticity.

Theorem IV. Let Miz) be a given operator valued analytic function which

satisfies (1) in Q and has value 1 at the origin. Then there exists a unique

Hilbert space Jf(M) of vector valued analytic functions, which satisfies (H2)

and (H4) in Q, and is related to Miz) as in Theorem III. //

(4) çbiz)I4>iw) = 0,

the transformation R(0) is self-adjoint in Jf(M).

When Miz) is given, Kiw,z) is understood to be defined for the space J^(Ai)

as in Theorem III. When several spaces are present, the distinguishing index,

a,b,---, is considered a new variable, as in Mia,z), Kia,w,z), mia), and </>(a,z).

Occasionally it is better to use two indices as in Mia,b,z), Kia,b,w,z), etc. Iso-

metric inclusions of spaces of vector valued analytic functions are related to a

factorization of the defining operator valued analytic functions.

Theorem V. Let Mia,z) and Mib,z) be operator valued analytic functions

which satisfy (1) in fi and have value 1 at the origin. The region Q is supposed

to be symmetric about the real axis. If J^iMia)) is contained isometrically in

■y^iMib)), then

MQ},z) = Mia,z)Mia,b,z),
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where M(a,b,z) is a uniquely determined operator valued analytic function

which satisfies (1) in Si and has value 1 at the origin. In this case, F(z) -* M(a,z)

F(z) is a linear isometric transformation of 3f(M(a,b)) onto the orthogonal

complement ofJi?(M(a)) in 3J?(M(b)).

Note that J^(M(a)) is then an invariant subspace of the transformation R(0)

in Jf(M(b)). Conversely, an invariant subspace of R(0) in 3^(M(b)) is a Hubert

space of vector valued analytic functions which satisfies (H2) and (H4) in Q

and hence of this form for some M(a,z). For technical reasons the factorization

of operator valued analytic functions which satisfy (1) is not equivalent to an

isometric inclusion of the corresponding Hubert spaces.

Theorem VI. // M(b,z) and M(b,d,z) are operator valued analytic func-

tions which satisfy (1) in Si and have value 1 at the origin, then

M(d,z) = M(b,z) M(b,d,z)

is an operator valued analytic function which satisfies (1) in Si and has value 1

at the origin. There exist operator valued analytic functions M(a,z), M(a,b,z),

M(b,c,z), M(c,z), and M(c,d,z), which satisfy (1) in Si and have value 1 at the

origin, such that
M(b,z) = M(a,z) M(a,b,z),

M(c,z)  = M(b,z) M(b,c,z),

M(d,z) = M(c,z)M(c,d,z),

and

2tf(M(a)) c J^(M(b)),

JP(M(a)) c 3^(M(c)) c 3f(M(d))

are isometric inclusions, and M(a,b,z), M(b,c,z), and M(a,c,z) = M(a,b,z)

M(b,c,z) satisfy (4).

All known factorization theorems for operator valued analytic functions seem

to contain a complete continuity hypothesis. The condition we shall use is first

related to the Livsic hypothesis.

Theorem VII. Let M(z) be a given operator valued analytic function

which satisfies (1) in Si and has value 1 at the origin. A sufficient condition

that R(0)* — R(0) be completely continuous is that m be a completely continuous

operator. If m commutes with I, this condition is also necessary. The inequality

x[R(0)* — R(0)] ^ x(m) always holds, with equality when m commutes with I.

Theorem VIII. Let M(c,z) be a given operator valued analytic function

which satisfies (1) in Si and has value 1 at the origin. We suppose that Si is

symmetric about the real axis. If m(c) is completely continuous and if s is

a given number, 0 _ s _ x(m(c)), then there exist operator valued analytic

functions M(a,z), M(a,b,z), and M(b,c,z), which satisfy (1) in Si and have

value 1 at the origin, such that
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M(c,z) = M(a,z) M(a,b,z) M(b,c,z)

and x(m(a)) ^ s ^ x(m(a)) + x(m(a,b)), and such that J^(M(a,b)) has dimension

0 or 1.

From this one obtains a useful estimate in the trace norm for operator valued

analytic functions which satisfy (1). No similar estimate is known in the operator

norm to replace the trace norm when it is infinite.

Theorem IX. Let M(z) be a given operator valued analytic function which

satisfies (1) in Si and has value 1 at the origin. We suppose that Si is symmetric

about the real axis. If m is of trace class, then

(5) log(l + x[M(z) - 1]) ^ x(m)p(z)-\

where p(z) is the distance from z_1 to the set of points of the form w_1, where

w is not in Si. The function M(z) has an analytic continuation to the half-planes

y > 0 and y < 0, except for isolated singularities (w„) such that

(6) I K^-nT1!  ^ t(m).

This estimate allows an interesting kind of factorization in which singularities

are shifted into preassigned regions.

Theorem X. Let M(b,z) be a given operator valued analytic function

which satisfies (1) in Si and has value 1 at the origin. We suppose Si symmetric

about the real axis. If m(b) is of trace class, then

M(b,z) = M(a,z) M(a,b,z),

where M(a,z) and M(a,b,z) are operator valued analytic functions which satisfy

(1) in Si and have value 1 at the origin, M(a,z) has an analytic continuation

to the half-plane x > 0, M(a,b,z) has an analytic continuation to the half-plane

x < 0, andJ^(M(a)) is contained isometrically inJf(M(b)).

A more detailed factorization theorem holds for entire functions.

Theorem XL Let m(t) be a continuous, nondecreasing, operator valued

function of real t which has trace finite increments. Then for each real number

a and each complex number w, there exists a unique continuous, operator valued

function M(a,t,w) of t}ïa such that

(1) M(a,b,w)I-I = w \   M(a,t,w)dm(t)

a

whenever b}ia. For each fixed a and b, M(a,b,z) is an operator valued entire

function of z which satisfies (1) /« Si and has value 1 at the origin, and

M(a,c,z) = M(a,b,z) M(b,c,z)

holds whenever a g b :g c. Furthermore, m(a,b) = m(b) — m(a) is trace finite.
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The integral occurring in (7) is interpreted as a limit of Riemann sums con-

verging in the trace norm.

Theorem XII. Let Miz) be a given operator valued entire function which

satisfies (1) and has value 1 at the origin. Let ia,c) be the choice of a finite inter-

val. If m is of trace class, there exists an operator valued function mit) as in

Theorem XI such that the solution of (7) satisfies Mia,c,z) — Miz).

Acknowledgement is made to James Rovnyak for reading the manuscript,

which owes much to his work [12] on square summable power series.

Proof of Theorem I. Because of (H2) and (H4) the transformation R(w) is

everywhere defined and has a closed graph when w is in (I. Boundedness follows

by the closed graph theorem. The resolvent identity is a familiar property of

difference quotients which is easily verified directly. Since

Riw) = R(0)[1 - wR(O)]"1

is everywhere defined and bounded for every number w in £2, for no such point

w is w"1 in the spectrum of R(0). If Fiz) is in JF, write F(0) = F+(0) + F_(0),

where F+(0) is in <?+ and F_(0) is in <€-. By (H4),

/|F+(0)|2-i|F_(0)|2 =/-(0)/F(0)

= <F(i), [Fit) - F(0)]/i>- <[F(i) - F(0)]/f, Fit)}
= <[R(0)* - R(0)]F,F>.

If Fiz) is a nonzero element in the range of P+,

|F+(0)|2  ^   <i[R(0)-R(0)*]F,F> > 0.

Therefore, F(z)->F+(0) is a one-to-one transformation of the range of P+ into

r€+, and the dimension of P+ cannot exceed the dimension of #+. A similar

argument with the transformation Fiz) ->• F_(0) will show that the dimension of

P_ is no more that the dimension of ^_.

Proof of Theorem II. Our dimension hypotheses imply the existence of a

linear transformation S of ¿? into # with these properties: (1) if T/= T*/> then

Sf = 0; (2) if P+/ =/, then Sf belongs to #+ and

2tt|S/|2 =   <i(T-T*)/,/>;

(3) if P-f=f, then Sf belongs to <¿?_ and

27i|S/|2=<-i(T-T*)/,/>.

Corresponding to every / in ¿f, we define a vector valued analytic function Fiz)

by Fiw) = S(l — wT)~xf whenever w-1 belongs to the unbounded component of

the region complementary to the spectrum of T. Since

(z - w)(l - zT)_1T(l - wT)-^ (1 - zT)_1- (1 - wT)-\
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the identity

Giz) = [_Fiz)-Fiw)Viz-w)

holds whenever

a = T(l-wT)-1/.

Let us now take Ji to be the set of elements / of $f for which the corresponding

vector valued analytic function Fiz) vanishes identically. If / belongs to Ji,

T"f is in the kernel of T-T* for every » = 0,1,2, -, and so T"f=T*"f.

Conversely, this condition on / clearly implies that it belongs to Ji. Therefore,

J{ is indeed an invariant subspace for both T and T* and the restriction of T

to Ji is self-adjoint. On the other hand, if/ belongs to an invariant subspace

for T, which is also invariant for T* and to which the restriction of T is self-

adjoint, then <T/,o> = </, Ta> is valid whether a is in the invariant subspace

or orthogonal to it. Therefore it is valid for all ginJt and Tf— T*f. Continuing

inductively, one obtains T"/= T*"f for every n, a condition which implies that/

is in Ji. We have now characterized Ji as the largest invariant subspace for T

which is invariant under T* and to which the restriction of Tis self-adjoint.

In the remainder of the proof we suppose Ji is the zero subspace of ¿P. Identify

each element of & with the corresponding vector valued analytic function. Then

3tf becomes a Hubert space of vector valued analytic functions which clearly

satisfies (H2) in Q. We have seen that

R(w) = T(l - wT)~l : Fiz) -* [Fiz) - Fiw)~\/iz - w)

is a bounded linear transformation of 3tf into itself when w is in Q. Our con-

struction was such that

27t(7(0)/F(0) = {Fit), [Git) - G(0)]//>

-<[F(f)-F(0)]/i, Git)}

holds whenever Fiz) = Giz) is in ¿P. By linearity the formula holds also when

Fiz) and Giz) are distinct. The axiom (H4) is now easily verified from the re-

solvent identity for difference quotients.

By this construction the transformation adjoint to S takes #+ into the range

of P+ and #'_ into the range of P_. In the notation of Theorem III, this adjoint

is of the form c -» iC(0,z) c, where 27rX(0,0) = m and

bKiO,0)a m <K(0,í)fl, K(0,t)b}

holds for all vectors a and b. It follows that bma = 0 holds whenever a is in <8'_

and b is in ^+, and this implies that m commutes with L

Proof of Theorem III. For each number w in P_, let Tiw) be the bounded

linear transformation of <€ into Jf which is the adjoint of the transformation

Fiz) -* Fiw) of (H2). By linearity and continuity, there exists a unique operator
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valued analytic function K(w,z) in Si such that T(w)c = K(w,z)c holds for every

vector c. Therefore,

cF(w)= (F(t),T(w)c) = (F(t),K(w,t)c)

holds for every F(z) in Jif. If a and b are vectors and if a and ß are numbers in

Si, then [K(oc,z) - K(a,w)}a/(z - w) and [K(p\z) - K(ß,w)}b/(z - w) belong to

Jf as functions of z for every complex number w in Q, by (H4), and

< K(a,t)a, ¡_K(ß,t) - K(ß,w)} b/(t - w) > - <[K(a,t) - K(a,w)}a/(t-w),K(ß,t)b}

= 2nbK(ß,w)]IK(a,w)a.

From the defining property of K(a,z) and K(ß,z), we obtain

b[K(ß, a) - K(ß, w)}a/(* - w) -  b[K(a,ß) - K(a,w)}a/(ß - w)

= 2nbK(ß,w)lK(a,w)a.

By the symmetry of an inner product,

bK(a,ß)a = (K(a,t)a,K(ß,t)b}

=   (K(ß,t)b, K(a,t)a)~ = bK(ß,a)a.

By the arbitrariness of a and b, an operator identity is obtained which may be

put in the form

/ 4- 2k(z - w)K(w,z) = [I + 2n(z- y) K(y,z)} /[-/ 4- 2n(w - y)K(y,w)}

after a change of variable. The operator valued function M(z) = 1 - 2tizX(0,z) /

is defined and analytic in Si, has value 1 at the origin, and satisfies

K(w,z) = [M(z)IM(w) - /]/[2?t(z - w)}.

If F(z) is in .?f,

[F(z)-M(z)F(0)]/z = [F(z)-F(0)]/z 4- 2tiK(0, z) / F(0)

belongs to Jf. The axiom (H4) is now easily used to verify that the transformation

F(z)^[F(z)-M(z)F(0)}/z

is the adjoint of R(O). Therefore, if we write A(z) = ^[1 4- M(z)}, the transformation

//:F(z)->[F(z)-¿(z)F(0)]/z

is self-adjoint in 34?. Since A(z) has value 1 at the origin, it has invertible values

in some neighborhood of the origin. When A(w) is invertible, (1 — wH)"1:

F(z)^> \_zF(z) — wA(z)A(w)~1F(w)}/(z — w) is a bounded linear transformation

of Jf into itself, and

(1 - wH)~1 :   K(0,z)c -v K(0,z) Ä(w)~1 c.
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Since

K(w,z) = A(z)\jp(z) - $(w)-]Ä(w)/[n(z - *)],

we obtain

c\_m - Kßi\c/[n(a - j8j] = <(1 - ßH)~^(0,1)^(1 - äHylK(0,t)c)

for all vectors c when a and ß are in some neighborhood of the origin. This for-

mula may be used to extend (j>(z) analytically to the half-planes y > 0 and y < 0,

and the inequality (2) follows by the positivity of an inner product.

Proof of Theorem IV. To study operator valued analytic functions which

satisfy (2), we must use an integration theory for operator valued measures. The

construction to be made follows the proof of Lemma 4 of [3] after a conformai

mapping of the upper half-plane onto the unit disk. By a non-negative, operator

valued measure, we mean a countably additive function, defined for bounded

Borel subsets of the real line, whose values are non-negative operators. By count-

ably additive we mean that

holds whenever (E„) is a sequence of disjoint Borel sets with a bounded union.

Convergence is taken in the weak sense:

cp(\jE„)c =   Tcp(En)c

holds for every vector c. Frequently the values of p are completely continuous,

in which case the sum may also be taken in the operator norm. Note that for

each fixed vector c, c¡x(E)c is a non-negative, numerically valued measure when

considered as a function of E. If f(x) is a Borel measurable, complex valued

function of real x, an integral (f(t)dp(t) will be defined if the numerical integrals

f/(í)¿¿ [cp(i)c] remain bounded when c is restricted to unit length. The integral

is then interpreted as the unique operator such that

c[j f(t)dp(t)]c =   [/(í)¿¿[c-p(í)c]

holds for every vector c. In present applications measures have mass zero in a

neighborhood of the origin and jt~2dp(i) converges. If p is a given non-negative

operator, we may associate with p and p a unique operator valued function <¡>(z),

defined and analytic for y > 0, for y < 0, and in a neighborhood of the origin,

which has value 0 at the origin and satisfies

(8) n(j)(z) - n<j>(w) = p(z - w) + (z - w) \ (t - z)~\t - iP)_1¿¿p(í)

for all z and w in this region. Conversely, if a given <j>(z) satisfies (2), it is repre-

sented by (8) for some unique measure p and operator p. This is an operator



1963] SOME HILBERT SPACES OF ANALYTIC FUNCTIONS. I 455

version of the Poisson representation of a function positive and harmonic in a

half-plane. A similar construction has previously been used in the proof of Lemma

4 of [3].

Let Q(</>) be the region of analyticity of the given çbiz), which includes at least

the half-planes y > 0 and y < 0, as well as a neighborhood of the origin. From

the representation (8) we find that if w,,---,wr are in iïiçb) and if Cy,---,cr are

corresponding vectors, then

Icj[çbiwj) - Öiwdlc./iwj - w,) ̂  0.

Let -^oiçb) he the set of finite sums of functions of the form [çbiz) — (j>iw)]c/iz-w),

with c in %> and w in Q(</>). We may define an inner product in =S?0(<¿>) by

< ZDKO - 0(w,)]C(/(< - Wt),   Z[<K0 - #*;)] Cj/it - Wj)}

= nTcj [çbiwj) - ç^iw/^c-JiWj - w¡).

The linearity and symmetry of an inner product are obvious from this definition

and self inner products are non-negative by what we have shown from the Poisson

representation. By the Schwarz inequality, a self inner product is strictly positive

unless all the values of the functions are zero. So, ■S'oiçb) is a well-defined inner

product space with the property that

cfiw) - </(i), [çbit)-$iw)-]c/[nit-W)-]y

holds for every vector c and every number w in Qiçb). The completion ^içb)

of a?oiçb) may now be identified with a Hubert space of vector valued analytic

functions in Qiçb) by applying this same formula to every element / of a'içb).

Analyticity of the functions so defined may be shown directly, but we omit do-

ing this as it is a consequence of a difference-quotient property of the space,

now to be established. By this construction the space S'içb) obviously satisfies

(H2) in Qiçb). For later use in the proof of Theorem VIII, we remark that if p

is supported at a finite number of points, and if p and the values of p are opera-

tors of finite dimensional range, the space -S?0(^)> ar,d hence also a'içb), is finite

dimensional.

From the representation (8), it may be verified that if fiz) is in ü^oO/O and if

w is in Qiçb), then [/(z) -/(w)]/(z - w) is in JSfiçb) and

||[/(0-/(w)]/(i-w)||   ^ d(w)-1 ||/(i) I,

where d(vv) is the distance from w to the support of p. It follows that

fiz)-* [fiz) —/(w)]/(z — w) is a bounded linear transformation of =§?(</>) into

itself which satisfies the same inequality. If a and ß are in Q, the identity

o = {fit), [git)-giß)Vit-ß)>

-  <[/(0-/(«)]/('-«), 0(0 >

+ (« - ß)<[f(t) -MVit - a), [git) - giß)]/it - /?)>
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may be verified directly from the definition of the inner product if f(z) and g(z)

are in =S?0(<£). The same formula follows by continuity for all elements f(z) and

g(z) of £?($), and is equivalent to the self-adjointness of the transformation

R(0) in JSPÍ».

Since 4>(z) has value 0 at the origin, 1 4- 4>(z)I is invertible in a subregion Si

of Si(tf>) which contains the origin. Let Ji?(M) be the Hubert space of vector

valued functions F(z), defined and analytic in Q, of the form

F(z) = [1 4- <Kz)í]~ V(z)

for some corresponding /(z) in J¡f(fj>). We define the inner product in J4?(M)

so as to make the correspondence f(z) -» F(z) isometric. Since &(<$) satisfies (H2)

in Si(tj)), Jt(M) satisfies (H2) in Si. For each complex number w in Si,

f(z) - [/(z) -f(w)}/(z - w) + Itp(z) - <p(w)} I [1 4- 4>(w)l} "l f(w)/(z - w)

is a bounded linear transformation of ^(tp) into itself. It follows that

F(z) -* \F(z) — F(w)}/(z — w) is a bounded linear transformation of Jf(M) into

itself for every w in Q. The axiom (H4) in ,W(M) is now easily verified from the

self-adjointness property of difference-quotients in ^(tp). Our definition of Jf(M)

is such that

K(w,z)  =  [M(z)IM(w)-I}/[2n(z-w)}

= [14- tp(z)iy » r>(z) - ^(w)] [i - /^(w)] - V [<z - *>)]

has the desired properties : K(w,z)c belongs to Jf(M) for every vector c when w

is in Q, and

cF(w) = <F(i), K(w,t)c}

holds in Jif(M) for every F(z). When (4) holds

K(w,z) = [tp(z) - <Kw)]/[7t(z - vP)]

and .3f(M) is equal isometrically to &(<p). The transformation R(0), which is

always self-adjoint in ££(§), becomes self-adjoint also in Jf(M) in this special

case.

Proof of Theorem V. Since <p(a,z) satisfies (2), we have i(f>(a,z) — i<p(a,z) 2: 0

for y > 0, and by continuity, also on the portion of the real axis where tf>(a,z)

remains analytic, whereas the reverse inequality holds for y ^ 0. When z is real,

the double inequality implies that 4>(a,z) = 4>(a,z), an identity which remains

valid off the real axis by analytic continuation. It follows that M(a,z)IM(a,z) = /

holds in Si, which is assumed symmetric about the real axis. Since M(a,z) has

value 1 at the origin, it has invertible values in some neighborhood of the origin.

For such values of z, we may conclude that M(a,z)IM(a,z) = I, an identity

which holds in Si by analytic continuation. It follows that M(a,z) has invertible

values in Si.
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Let J((a,b) be the Hilbert space of vector valued functions F(z), defined and

analytic in Si, such that M(a,z)F(z) belongs to J^(M(b)) and is orthogonal to

^f(M(a)), the norm being defined so as to make the transformation F(z)-y

M(a,z)F(z) isometric. Then Jt(a,b) is a well-defined Hilbert space of vector

valued analytic functions which satisfies (H2) in Í2. If F(z) is in Ji(a,b) and if

w is in Si, then

M(a,z)\F(z) - F(uO]/(z - w) = [M(a,z)F(z) - M(a,w)F(w)]/(z - w)

+ 2nK(a,w,z)IM(a,w)IF(w)

belongs to :/e(M(b)) since M(¿7,z)F(z) belongs to Jf(M(b)) and since Jt(M(b))

satisfies (H4). A direct use of the axiom (H4) will show that this function is ortho-

gonal to every element G(z) ofJ4?(M(a)). We have shown that \F(z) — F(w)]/(z — w)

belongs to Jt(a,b) whenever F(z) belongs to Ji(a,b), if w is in Si. The axiom

(H4) in Jt(a,b) is now verified by a straightforward substitution. By Theorem

III, Ji(a,b) is equal isometrically to M'(M(a,b)) for some operator valued ana-

lytic function M(a,b,z) which satisfies (1) in Q and has value 1 at the origin. For

every vector c and every number w in Si, K(a,b,w,z)c belongs to M'(M(a,b)) as

a function of z and

cF(w) = (F(t),K(a,b,w,t)c)

holds in Jf(M(a,b)) for every F(z). It follows that for every vector c and every

number vv in Si, M(a,z) K(a,b,w,z)M(a,w)c belongs to .^C(M(b)) and is orthogonal

to J^(M(a)), and that

cG(w) = (G(t),M(a,t)K(a,b,w,t)M(a,w)c)

holds in J? (M(b)) whenever G(z) is orthogonal to yf(M(a)). Therefore,

M(a,z)K(a,b,w,z)M(a,w) = K(b,w,z) - K(a,w,z),

and M(b,z) = M(a,z)M(a,b,z).

Proof of Theorem VI. Let J((a) be the orthogonal complement in J^(M(b))

of those elements which are of the form M(b,z) F(z) with F(z) in Jt(M(b,d)).

Clearly, Ji(a) is a Hilbert space of vector valued analytic functions which satisfies

(H2) in Si, when considered in the metric of ^f (M(b)). We shall now show that

it satisfies (H4) in Si. If G(z) is in Ji(a) and if w is in Si, \G(z) - G(w)~\/(z - w)

certainly belongs to ^(M(b)). If F(z) is in 3t(M(b,d)) and if M(b,z) F(z) is in

Jf(M(b)), then [F(z)-F(m>)]/(z-m>) is in Jt(M(b,d)) and

M(b,z)[F(z)-F(w)-]/(z-w)

is in Jf(M(b)), and

< [G(t) - G(w)V(t - w), M(b,t)F(t))

=  (G(t), M(b,t) [F(t) - F(w)1/(t - vv)> = 0.
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So, [G(z) — G(iv)]/(z — w) belongs to Jiia) whenever Giz) belongs to Jiia),

if w is in Q, and the axiom (H4) for Jiia) follows from the axiom (H4) in Ji?(M(i>)).

By Theorem III, Jiia) is equal isometrically to ^f(M(a)), where Mia,z) is an

operator valued analytic function which satisfies (1) in £2 and has value 1 at

the origin. Since Fiz)-> Mia,z)Fiz) is alinear isometric transformation of

2fiMia,b)) onto the orthogonal complement of J?iMia)) in Jf(M(¿>)), the

elements of ^(M(a,i>)) which are of the form Mia,b,z) Fiz) with Fiz) in

Jf(M(6,d)) are dense in tf(M{a,b)).

In a similar way we define Jiib,c) as the closure in ^f (M(b,d)) of those ele-

ments Fiz) such that Mi/b,z)Fiz) belongs to ¿f(M(£>)), or what is equivalent,

Mia,b,z)Fiz) belongs to =3f(M(a,b)). Then Jiib,c) is a Hubert space of vector

valued analytic functions which satisfies (H2) and (H4) in Q. It is equal isometri-

cally to ¿?iMib,c)) for some operator valued analytic function Mib,c,z) which

satisfies (1) in Q and has value 1 at the origin. We have a factorization

Mib,d,z) = Mib,c,z) Mic,d,z),

where M(c,d,z) is an operator valued analytic function, given by Theorem V,

which satisfies (1) in any subregion of Q symmetric about the real axis, and has

value 1 at the origin. We will now show that Mib,c,z) satisfies (4). This con-

dition implies that Mib,c,z) is analytic for y > 0 and for y < 0, and by the proof

of Theorem V, that Mic,d,z) is analytic in £2.

Let SP he the Hubert space of vector valued analytic functions Fiz) in ^(M(è,c))

such that M(a,ft,z)F(z) belongs to 3fP (M(a,b)), with the norm

\\Fit)\\2=\\Mia,b,t)Fit)\\2ab+\\Fit)\\2bc.

Since Jf?iMia,b)) and ^f(M(Í7,c)) satisfy (H4), Ä(w) is a bounded linear trans-

formation of SP into itself for every number w in £2, and self-adjointness of the

transformation Rio) in SP is verified by an obvious calculation. It follows that

[1 — wR(0)] ~1 is a bounded linear transformation of SP into itself for every

nonreal choice of w. When w is in Q, Fiw) may be obtained by substituting 0 for

z in

[zFiz) - wFiw)]/(z - w) m [l-wR(0)]_1F(z).

This procedure will now extend Fiz) analytically to the half-planes y > 0 and

y < 0. Since (H2) holds, there is a unique operator valued function çbiz), de-

fined and analytic for y > 0, for y < 0, and in £2, with value 0 at the origin, such

that çbiz) u/z belongs to SP for every vector u and

tíwF(O) = <F(i),<K0"A>

holds for every Fiz) in SP. If w is in £2 or is not real,

[çbiz) - (piw)]u/iz - w) =  [l-wRi0)y14>iz)u/z

belongs to zSP and
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<F(i),  [0(0-#*)]»/(*-*)>

=  <[1 - wR(0)]_1F(0, (¡>(t) u/t) = mF(w).

On choosing F(z) = \jp(z) — <p(\v)} u/(z — w), we obtain the operator inequality

I4>(w) - 4>(w)}/(w - w) ̂  0

by the positivity of an inner product. In particular, self-adjointness of the operator

yields

<p(w) — cp(w) = tj)(w) — tj)(w).

Since the expression on the left is analytic and the one on the right is conjugate-

analytic, each is a constant, equal to zero by its value at the origin. If follows

that <j>(z) = 4>(z) satisfies (2) and that SC is equal isometrically to the space ¿¡?(<p)

constructed in the proof of Theorem IV.

Since the inclusion of =§?(<£) in Jf(M(b,c)) is continuous, there is a bounded

adjoint transformation T, which takes ^f(M(b,c)) into ^(tj)). Because of (H4)

for $?(M(b,c)) and the self-adjointness of R(0) in =S?(<£), we have

T: [F(z)-M(fc,c,z)F(0)]/z - [G(z) - G(0)]/z

whenever T: F(z)-+ G(z). We use this formula when F(z) = K(b,c,w,z)u, where

u is a vector and w is a nonzero element of Si, in which case

G(z) = r>(z) - #w)]u/[7t(z - *>)].

w{F(z) - M(b,c,z)F(0)}/z = F(z) - K(b,c,0,z)M(b,c,w)u, vv[G(z)¡- G(0)]/z = G(z)

- <j)(z)ul(nz),

T: K(b,c,0,z)M(b,c,w)u -► <p(z)M(b,c,w) u/(nz).

It follows that tj)(z)M(b,c,w) = tp(z), an identity which may be written M(b,c,z)(j>(w)

= <p(w) after a change of variable. From this we obtain M(b,c,z)F(w) = F(w)

for every F(z) in =Sf0(<^)> and hence for every F(z) in £f(4>) since (H2) holds and

^C0(tt)) is dense in £(§). Since SC(tj)) is dense in Jf(M(b,c)), M(b,c,z)F(w) = F(w)

holds for every F(z) in ^(M(b,c)), and in particular when F(z) = K(b,c,0,z) u

for some vector u. By the arbitrariness of u, we obtain

\_M(b,c,z) - \}I\M(b,c,w) - 1] = 0,

an identity which implies (4) for M(b,c,z).

If G(z) is in J>if(M(a,b)) and is of the form G(z) = M(a,f>,z)F(z) with F(z) in

^(M(b,c)), we now obtain from the self-adjointness of R(0) in the spaces SC(tj))

and Jf(M(b,c)),

G(Q)IG(0) =  <G(i),[G(0 - G(0)}/t}ab

-  <[G(f) - G(0)]/i, G(i)>„6 = 0.
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Since such G(z) are dense in Jf(M(a,b)), the same identity holds for every ele-

ment of this space. In particular, we may choose G(z) = K(a,b,0,z)u to obtain

\_M(a,b,z) - l]/[Ä/(a,fc,w) - 1] = 0

by the arbitrariness of u, and this implies (4) for M(a,b,z). We have seen that the

identity M(b,c,z)F(w) = F(w) holds for every F(z) in =S?(0). But for each F(z),

G(z) = M(a,b,z)F(z) belongs to Jf(M(a,b)). Since M(a,b,z) satisfies (4), F(z)

= G(z). We may now conclude by continuity that M(b,c,z) F(w) = F(w) holds

for every F(z) in Jf(M(a,b)), and hence that

[_M(b,c,z) - l]I[M(a,b,w) - 1] = 0.

It follows that M(¿j,c,z) = M(a,b,z) M(b,c,z) satisfies (1) and (4) and that

<t>(a,c,z) = 4>(a,b,z) + tb(b,c,z).

Let us now show that every element L(z) of Jf(M(a,c)) is of the form

L(z) = F(z) + M(a,b,z) G(z), where F(z) is in 3V(M(a,b)) and G(z) is in JiT(M(b,c))

and ||L||2c = ||F||2,, + I G||2C. When L(z) = Z^(fl,c,w¡,z)c¡ for some numbers

wx,---,wr in Si and corresponding vectors cx,---,cr take F(z)= £K(a,b,w¡,z)c¡

and G(z) = lZK(b,c,w¡,z) M(a,b,wi)ci. The desired decomposition is obtained by

linearity and continuity for other choices of L(z).

From this we will show that the only element F(z) + M(a,b,z)G(z) of ■^C(M(a,c))

such that M(a,z)[F(z) + M(a,b,z)G(zj\ = M(a,z)F(z) + M(b,z)G(z) belongs to

Jf(M(a)), vanishes identically. For M(a,z)F(z) belongs to Jf(M(b)) and is ortho-

gonal to Jf(M(a)) by Theorem V, whereas M(b,z)G(z) is in J^(M(b)) and so

is orthogonal to J^(M(a)) by the definition of this space. Since

M(a,z) {F(z) + M(a,b,z)G(z)~\

is thereby orthogonal to itself, it vanishes identically. Since M(a,z) has invertible

values in a neighborhood of the origin, F(z) + M(a,z)G(z) vanishes identically.

We may now show that M(c,z) = M(a,z)M(a,c,z) satisfies (1) and that Jf(M(a))

is contained isometrically in Jf(M(c)). To see this let Ji(c) be the Hilbert space

of functions of the form F(z) + M(a,z)G(z) with F(z) in Jf(M(a)) and G(z) in

Jf(M(a,c)) and with || F(t) + M(a,t)G(t) ||2 = || F(t) ||2+ || G(i)||2ac. This defi-

nition is unambiguous by what we have just shown. Since Jif(M(a)) and Jf(M(a,c))

are known to satisfy (H2) and (H4) in Si, it may be verified directly that Ji(c)

does also. But for every complex number w in Si and every vector u,

\M(c,z)IM(c,w) - í]u/[2n(z - w)~]

= K(a,w,z)u + M(a,z)K(a,c,w,z)M(a,w)u

belongs to J((c) and

mF(vv) = (F(t), [M(c,t)IM(c,w) - /] «/ [2ti(î - iv)] >.
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By Theorem III, Mic,z) satisfies (1) and Mi¿) is equal isometrically to JPiMic)),

which therefore contains ¿PiMia)) isometrically. A similar argument will show

that Mia,d,z) = Mia,c,z)Mic,d,z) satisfies (1) and that JP\Mia,c)) is contained

isometrically in 3^iMia,d)). It remains to show that Mid,z) = Mic,z)Mic,d,z)

satisfies (1) and that JPiMic)) is contained isometrically in Jf(M(d)).

By the argument just used, we need only show that if Fiz) is in J#*iMic,d)) and

if Mic,z)Fiz) is in JPiMic)), then Fiz) vanishes identically. We know from Theo-

rem V that Mib,c,z) Fiz) = Giz) belongs to JPiM(b,d)) and is orthogonal to

^f(M(6,c)). On the other hand, Mib,z)Giz) = Mic,z)Fiz) belongs to .?f (M(c)).

It is known that JPiMia)) is contained isometrically in JPiMic)). By Theorem V

there is an element Liz) of JPiMia,c)) such that Mib,z)Giz) — Mia,z)Liz) be-

longs to ¿PiMia)). But we have seen that Liz) = Siz) + Mia,b,z) Tiz), where

Siz) is in JPiMia,b)) and Tiz) is in JT(M(M). By Theorem V, Mia,z)Siz) is

in JfiMib)) and is orthogonal to ^f(M(a)). On the other hand,

Mib,z)Giz) - Mia,z)Mia,b,z)Tiz) = M(f>,z)[G(z) - T(z)]

is orthogonal to J^iMia)) since Giz) - Tiz) is in ^f(M(b,d)). Since Mib,z)Giz)

— Mia,z)L{z) is orthogonal to itself, it vanishes identically. We then have

Liz) - Ai(a,fc,z)G(z) = Mia,c,z)Fiz).

Since ¿PiMia,c)) is known to be contained isometrically in 3tPiMia,d)), we may

conclude from Theorem V that Fiz) vanishes identically.

Proof of Theorem VII. If the non-negative operator m is completely con-

tinuous, there is an orthonormal set (w„) of eigenvectors, each for a positive

eigenvalue p„, whose span is dense in the range of m. The corresponding functions

F„(z) = (27t/p1))1/2X(0,z)u(I

form an orthonormal set in 3*P(M) whose closed span is the orthogonal comple-

ment of the functions which vanish at the origin. Since m is completely con-

tinuous, lim p„ = 0 if the set is infinite. It follows that Fiz) -* F(0) is completely

continuous as a transformation of ^f(Jvf) into #, and that the adjoint transform-

ation c ~* K(0,z)c is completely continuous. Therefore,

R(0)* - R(O): Fiz) -► 27rK(0,z)/F(0),

as a composition of two completely continuous transformations and a unitary

operator, is completely continuous. If m is of trace class, r(m) = Zp„ is finite.

The Schmidt norm of the transformation F(z)-»F(0) is [T(m)/(27t)]1/2.

The adjoint has the same Schmidt norm. The composition R(0)* — R(0) of two

Schmidt transformations is estimated in the trace norm by

t[R(0)* - R(0)] i% 27:[T(m)/(27C)]1/2 [<m)/(27r)]1/2

^ r(m).
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Conversely, suppose that R(0)* — R(0) is completely continuous and that m

commutes with /. If F(z) is an eigenvector of this transformation for a nonzero

eigenvalue X, we have F(z) = K(0, z)c for some vector c such that Xc = Imc.

Since m commutes with /, K(0,z)i(l + il)c and K(0,z)%(l — il)c are also eigen-

vectors of R(0)* — R(0) for the eigenvalue X. Complete continuity of R(0)* — R(0)

allows us the choice of an orthonormal set (F„(z)) of eigenfunctions, whose

closed span is the orthogonal complement of the functions which vanish at the

origin. We may choose them so that R(0)* —R(0): F„(z)-> XnF„(z), where

F„(z)=K(0,z)cn, X„c„=mlcn, and Ic„= ± ic„. Since mis non-negative, mcB = |2„|c„.

The vectors (c„) are now an orthogonal set whose span is dense in the range of m.

Since R(0)* — R(0) is completely continuous, lim X„ — 0, and m is completely

continuous. If either R(0)* — R(0) or m is of trace class, so is the other and

t[R(0)*-R(0)]= zZ\Xn\ = x(m).

Proof of Theorem VIII. Let p(c) be the non-negative, operator valued measure

which appears in the representation (8) of $(c,z), and let p(c) be the corresponding

non-negative operator. Then,

nm(c) = 2ntf>'(c,0) = 2p(c) 4- 2    t~2dp(c,t)

s a completely continuous operator by hypothesis. Let (p„(c)) be a sequence of

non-negative, operator valued measures each supported on a finite set and having

values of finite dimensional range, such that

\r2dpn(c,t) g j r2dp(c,t),

and

p(c,E) = lim pn(c,E)

holds in the operator norm for every bounded Borel set E. The construction of

such a sequence is made in the obvious way, approximating p by measures of

finite support and then approximating values by operators of finite dimensional

range. We shall also need a sequence (p„(c)) of operators of finite dimensional

range, such that pn(c) _ p(c) for every n, and p(c) = lim pn(c) in the operator

norm. Let M„(c,z) and </>„(c,z) be defined by (3) and (8). The space Jt(M„(c)),

constructed in Theorem IV, then has finite dimension equal to the dimension

of the range of p„(c) plus the sum of the dimensions of the ranges of the values

of p„(c). Let Sin be the common region of analyticity for the pair Mn(c,z) and

Mn(c,z).

The conclusion of the theorem is easily obtained for a finite dimensional space

since invariant subspaces of all possible dimensions exist for R(0). Let (s„) be

a sequence of non-negative numbers such that s = lims„ and s„ ̂  x(mn(c)) holds

for every n. We may grant the existence of operator valued analytic functions
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Mn(a,z), M„(a,b,z), M„(b,c,z), which satisfy (1) in Si„ and have value 1 at the

origin, such that

Mn(c,z) = Mn(a,z)Mn(a,b,z)Mn(b,c,z)

and x(m„(a)) ^ s ^ x(m„(a)) + x(m„(a,b)), and Jf (M„(a,b)) has dimension 0 or 1.

Observe that m„(a) + m„(a,b) + m„(b,c) ^ m(c), where m(c) is a fixed completely

continuous operator. Since

Pn(a)+    t~2dpn(a,t) = ^nm„(a)

and similarly for M(a,b,z) and M(fr,c,z), the sequence may be chosen so that

(go to a subsequence if the original sequence does not have this property)

p(a,E) = lim p„(a,E),   p(a) = lim pn(a)

converge in the operator norm for every bounded Borel set E, and similarly for

Mn(a,b,z) and Mn(b,c,z). The limits p(a), p(a,b), and p(b,c) are non-negative

operators. The limits p(a), p(a,b), and p(b,c) axe non-negative operator valued

measures. They satisfy

p(d) + \r2dp(a,t)^-nm(c)

and similarly for M(a,b,z) and M(b,c,z). The functions cb(a,z), (¡)(a,b,z), <p(b,c,z)

defined by (8) are obtained as limits in the operator norm : <j)(a,z) = lim (¡)n(a,z), etc.,

uniformly in some neighborhood of the origin. Therefore, the operator valued

analytic functions M(a,z),M(a,b,z), and M(b,c,z), defined by (3), are obtained

as limits in the operator norm: M(a,z) — limMn(a,z), etc., uniformly in some

neighborhood of the origin. Since <j)(c,z) = lim (j)„(c,z) and M(c,z) = lim M„(c,z)

in the same sense, we have

M(c,z) = M(a,z)M(a,b,z)M(b,c,z).

Theorems V and VI now imply that M(a,z), M(a,b,z), and M(b,c,z) have analytic

continuations in Si. It is clear from this construction that x(m(a)) ^s| i(m(a))

+ x(m(a,b)) holds in the limit since operators converge in norm with a com-

pletely continuous majorant. Since J^(M„(a,b)) has dimension 0 or 1, an element

f(z) of this space is an eigenfunction of R(0) for some eigenvalue X„, and so is

of the form f(z) = (1 — Xnz)~1u for some vector u. It follows that

Mn(a,b,z) = 1 - z(l - A„z)_1 m„(a,b)I,

where the range of m„(a,b) has dimension 0 or 1. Since M(a,b,z) = limM„(a,b,z)

in the operator norm, at least in a neighborhood of the origin,

M(a,b,z) = 1 - z(l - Xzylm(a,b)I,

where X = lim A„, and m(a,b) = lim mn(a,b) has range of dimension 0 or 1. This

formula implies that J^(M(a,b)) has dimension 0 or 1.
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Proof of Theorem IX. By the approximation procedure used in the proof

of Theorem VIII, we may restrict explicit proof to the case in which Miz) = Mir,z)

has finite dimension r. If r > 0, the transformation R(0) in ,3f (M(r)) has an eigen-

value, and hence an invariant subspace of dimension 1. Since this invariant sub-

space is a Hubert space of vector valued analytic functions which satisfies (H2)

and (H4) in £2, in the metric of ¿f (M(r)), it is equal isometrically to JP(M(l)),

for some operator valued analytic function M(l,z) which satisfies (1) in £2 and

has value 1 at the origin. Since ^"(M(l)) is contained isometrically in JPiMir))

and since £2 is symmetric about the real axis, Mir,z) = M(l,z)M(l,r,z), for some

operator valued analytic function M(l,r,z) which satisfies (1) in £2 and has value 1

at the origin. Since Fiz) -» M(l,z)F(z) is a linear isometric transformation of

^f(M(l,r)) onto the orthogonal complement of ^f(M(l)) in ^f(M(r)), the di-

mension of JP(M(l,r)) is r — 1. We may continue inductively to construct spaces

¿PiMin)) contained isometrically in JPiMir)) for every n = l,---,r, such that

Min + \,z) = M{n,z)Min,n + l,z),

where JP{Min,n + 1)) has dimension 1 for n = 1, —,r — 1. Let A„ be the eigen-

value of R(0) in jf(M(n - l,n)) if n = 2,--,r, of R(0) in ^(M(l)) if n = 1. As

in the proof of Theorem VIII,

M(n-l,n,z) = 1 - z(l - Xnzylmin - l,n)7,

when n > 1, and similarly for M(l,z) when n = 1. From the obvious estimate

r[M(n-l,n,z)  -  1]  á  TÍm(n - l,n)) | A„  -  z~l\~\

we obtain

log(l + r[M(n - l,n,z) - 1]) z% ximin - l,n))\X„ - z_11 _1

since log(l + t) St when t 2: 0. Here A"1 is a singularity of M(n —l,n,z), and

hence does not belong to £2 since this region is assumed symmetric about the

real axis. The estimate (5) now follows for Miz) by the additivity of the trace

norm for non-negative operators. The identity M(n — l,n,z)/M(n —l,n,z) = 7,

which is a consequence of (1), implies that

min — l,n)/m(n — l,n) = (Xn — X„)min — l,n).

On taking the trace norm of each side, one finds that

1¿«-A,,| Ú timin- l,n)),

an inequality which implies (6) on summation.

Proof of Theorem X. By the proof of Theorem VIII, it is sufficient to con-

sider the case in which JP(M(¿)) is finite dimensional. The general case follows

by approximation, the regions of analyticity being preserved by estimates from

Theorem IX. When JPi/MilSfj is finite dimensional, the argument is like that

for Theorem IX except that we make a choice of eigenvalues so as to have analy-
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ticity in the desired half-planes. Details of this procedure can surely be left to

the reader.

Proof of Theorem XI.    For existence, let

M(a,b,z) =  ÏMn(a,b)z",

where M„(a,b) is defined inductively by M0(a,b) = 1 and

Since

Mn+1(a,b) =    Í Mn(a,t)dm(t).
Ja

[MB+1(a,0] =   | \Mn(a,t)\ dx(m(t)),

we obtain inductively

x[Mn+1(a,b)}  g T(m(a,b))B+7(n4-l)!',

which implies convergence of the series defining M(a,b,z) uniformly on bounded

sets. Because of this estimate, we may integrate term by term in

w i M(a,t,w)dm(t)   =   2>n+1  j  M„(a,r)dm(i)

=   Iwn+1Mn+y(a,b)I

= M(a,b,w)I-I.

Since M„(a,c) = lZM„^k(a,b)Mk(b,c), we do have M(a,c,z) = M(a,b,z)M(b,c,z)

when a -^bfLc The estimate (5) for M(a,b,z) may be verified directly, and

from this we see that M(a,t,w) is a continuous function of t 2: a for each fixed w.

We are now justified in rearranging integrals in the following calculations from (7)

M(a,b,z)IM(a,b,z) - I

= ziv M(a,s,z)dm(s)Idm(t), M(a,t,w)

4-  z M(a,s,z)dm(s) —  w     dm(t)M(a,t,w)
a «a

[     M(a,s,z)dm(s)}Idm(t)M(a,t,w)
Ja       •'a

4- zw      M(a,s,z)dm(s)I\_     dm(t)M(a,t,w)}
•'a Ja

4- z     M(a,s,z)dm(s) - w      dm(t)M(a,t, w)
• a * a

= (z - w)      M(a,s,z)dm(t)M(a,t,w).

'b      /•!

^ a       "a
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From this identity it is clear that M(a,b,z) satisfies (1). It remains to show the

uniqueness of solutions of (7). If M0(a,t,w) is another solution of this equation,

the argument just gone through will show that

M(a,b,z)IM0(a,b,w)-I

= (z — w)       M(a,t,z)dm(t)M0(a,t,w).
* a

The identity M0(a,b,w) = M(a,b,w) is obtained when z — w since

M(a,b,w)IM(a,b,w) = I

by the proof of Theorem V.

Proof of Theorem XII. By Zorn's lemma we may choose a maximal family

(M(t,z)) of operator valued entire functions, which satisfy (1) and have value 1

at the origin, such the spaces that 3tif(M(t)) are contained isometrically in 3^(M)

and are totally ordered by inclusion. If M(s,z) and M(t,z) are in this family and

if Ji?(M(s)) is contained in jf(Ai(t)), then M(t,z) = M(s,z)M(s,t,z), where

M(s,t,z) is an operator valued entire function which satisfies (1) and has value 1

at the origin. Since m(t) = m(s) + m(s,t), x(m(s)) :_ x(m(t)), and equality holds

only when m(s,t) = 0, a condition which implies that M(s,t,z) = 1 identically

and that M(s,z) = M(t,z). Therefore, i = x(m(t)) is a natural choice of parameter

for the family. Since M(z) = M(c,z) and x(m) is finite by hypothesis, these para-

meters are well-defined numbers, contained in an interval [0,c]. A number t,

which corresponds in this way to an element M(t,z) of the family, will be called

a regular point. Other points i in [0,c] are said to be singular. The end points 0

and c are obviously regular. We now show that the regular points form a closed set.

If t = lim i„, where (t„) is a decreasing sequence of regular points, the inter-

section of the spaces Jf(M(t„)) is a Hilbert space of vector valued entire functions

which satisfies (H2) and (H4) and is comparable with every space in our family.

By Theorem III and the maximal choice of our family, this intersection coincides

with 3^(M(s)), where s is a regular point, s ^t„ for every n, and s is the largest

regular point with this property. For every vector u, K(t„,0,z)u belongs to

Jf(M(Q) and has K(s,0,z)u as its projection in ¿f (M(s)). Since Jif(M(s)) is the

intersection of the spaces Jf(M(tn)), K(s,0,z)u = limK(t„,0,z)u holds in the

metric of Jf(M), hence convergence of the norms to yield üm(s)u = lim ûm(t„)u.

It follows that

i = lim í„ = lim-r(m(í„)) = x(m(s)) = s

is a regular point. A similar argument will show that the limit of an increasing

sequence of regular points is regular. The regular points are therefore a closed set.

Consider any one of the possible intervals (r,t), with regular end points, which

contains only singular points in its interior. We will show that Jf(M(r,t)) has

dimension 1. This conclusion may be drawn directly from Theorem VIII if
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Mir,t,z) cannot be factored. Otherwise, we may write M{r,t,z) = M{r,s,z) Mis,t,z),

where Mir,s,z) and M(s,f,z) are nonconstant operator valued entire functions

which satisfy (1) and have value 1 at the origin. By Theorem VI we obtain a

factorization

Mir,t,z) = Mir,S-,z)Mis-,s+,z)Mis+,t,z),

where Mir,s_,z), Mis-,s+,z), and Mis+,t,z) are operator valued entire functions

which satisfy (1) and have value 1 at the origin, Mir,s_,z) does not coincide with

M(r,i,z), Mir,s+,z)= Mir,s_,z)Mis-,s+,z) is not constant, <?f(M(/-,s_)) and

JPiMir,s+)) are contained isometrically in JPiM{r,t)), and Mis_,s+,z) satisfies

(4). By the maximal choice of our family, M{r,s_,z) = 1 and Mir,s+,z) = Mir,t,z)

identically. Therefore, M{r,t,z) = Mis_,s+,z) satisfies (4). The maximal choice of

our family implies that the transformation R(0) in <?f(M(r,0) has no proper

invariant subspaces. Since this transformation is self-adjoint, .?f(M(r,r)) has

dimension 1.

When ^f(M(r,0) has dimension 1,

Mir,t,z) = 1 - z(l - Xzy^mirj)!

by the proof of Theorem VIII, where A = 0 in this case since we have an entire

function. In particular, Mir,t,z) satisfies (4). We define M{r,s,z) and M(s,r,z)

for r z% s í£ t by

çbir,s,z)   = çbir,t,z)is - r)/(í - r),

çbis,t,z)   = çbir,t,z)it - s)/(i - r),

so that Mir,t,z) = Mir,s,z) Mis,t,z). Then Mis,z) = Mir,z)M{r,s,z) is defined for

singular points in [0,c], as well as for regular points. But, of course, when s

is singular, JfiMis)) is not contained isometrically in JPiM).

To avoid a clumsy but obvious renormalization, we will suppose that the

given interval ia,c) is of the form a = 0 and c = r(m). Let m(i) be the choice of

a continuous operator valued function of real t, constant outside of (0,c), such

that mis,t) = mit) — mis) whenever 0 z% s ^ t ^ c. This function is obviously non-

decreasing and has trace finite increments. By Theorem IX, the estimate

log(l + t[M(s,i,z)-l]) z% it-s)\z\

holds whenever 0 ^ s z% t ^ c. If

Mis,t,z) =  ZM„(s,i)z"

is the power series expansion, we therefore obtain

i[Mn+iis,iî}zgnne\t-sr+l.

But whenever r z% s z% t, M{r,t,z) = Mir,s,z)Mis,t,z) and so

M„ir,t) =  yM„-kir,s)Mkis,t).
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This fact may be used to refine our previous estimate in the more elegant form

xlMn+y(s,t)}£(t-sy+1/(n + l)l.

Since

Mn+y(t) =  lM,+ 1.t(s)M,(s,l),

where My(s,t)I = m(s,t), we obtain

x\_Mn+1(t)I - MH+i(s)I - MH(s)m(s,t)} ¿ f+1/(n + 1)! - sH+1/(n 4- 1)!

when s _ /. It follows that

Af„+1(í)/=   f M„(s)dm(s)
•>o

and that

M(t,w)I - I = w       M(s,w)dm(s).
J o

The general case of formula (7) follows by similar arguments.

Added in proof. Theorems VI and VIII are incorrectly stated and are revised

in the second part of this paper.
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