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This paper contains the proof of a conjecture of Ciesielski and Taylor [1]:

Let X(x, to) be a planar Brownian motion with initial point the origin. Let

(1) T(a,t,to)= f V(\X(x,to)\;a)dx,
Jo

where

V(r;a)  =  1,   0 = r < a,

= 0,   a=r,

be the measure of that portion of the time interval (0, i) which the path spends

within the circle of radius a about the origin.  Let

(2) C(t,to) = {X(x,to):0^x^t}

be the planar set formed by the path for 0 ^ x í£ i. Let

(3) tf>(a) = ia2log(l/a)logloglog(l/a).

Theorem 1.   With probability one,

lim sup T(a,t,to)/t¡>(a) = 1
a-»0

for each t > 0.

Theorem 2.    There is a positive number 9 such that with probability one,

4>-m(C(t,to))^9t

for each t > 0, where 4> — m(-) is the Hausdorff measure defined by the func-

tion <p.
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Corresponding results for Brownian motion in fc-space, k ^ 3, were proved

by Ciesielski and Taylor in [1], verifying a conjecture of Levy [4].

Theorem 2 follows from Theorem 1 exactly as in [1] by using a density theorem

of Rogers and Taylor [5]. Whether or not çb — m(C(í,œ)) is finite remains an

open question however. I am very grateful to S. J. Taylor for pointing out that

a supposed proof of this last, originally contained here, was indirect.

The sojourn times

T(F,f,o))= Í ViXix,co);E)dx,

where

F(x;F) =  1,   xeE,

= 0,   xeE,

of the Brownian path up to time t in the Borel set E define for each t and co a

measure on Borel sets. Theorem 2 and the fact that Brownian motion has in-

dependent increments imply easily that with probability one this measure has

a density relative to (¿»-measure, equal to the constant 6 on the set C(i,œ) of

finite ^-measure, and vanishing outside Cit,co). Again the corresponding result

holds in higher dimensions. The sojourn time of linear Brownian motion has

a density relative to Lebesgue measure dx :

TiE, t, co) =     ^~(x, t, co) dx,

the "local time" 3~ix, t, co) being continuous in (x, i) for almost all co [6].

Theorem 1 is proved by a technique devised by Knight [3], subdividing the

path according to successive passage time ; this provides the independence which

seems necessary in proving asymptotic results of this type. The method may be

applied to other similar situations, as we will indicate after describing the setup

more precisely in the next section. In particular, it yields a simple proof of the

existence of local time for linear Brownian motion. Such a proof exhibits

some interesting properties of local time which will be described elsewhere.

As in [1], Theorem 2 is obtained from Theorem 1 by the use of some density

theorems of Rogers and Taylor [5] for Hausdorff measures.

1. The statement and proof of Theorem 1 involve only the radial process

Rix, co) = | X (t, co)\ of our planar Brownian motion, with initial point R (0, co) = 0.

Due to the spherical symmetry of Brownian motion, the radial process is Mar-

ko vian. Denote by Rix, co/) the process with the same transition function but

initial point /J(0, co/) = r.
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For the radial process starting at r, let

(4) P(s,cor) = Inf {t : |R(x,tor) = s}

be the first passage time across s. A special case [2] of the strong Markov pro-

perty states that the stopped process R(x, cor), 0 ^ x < P(s, cor), and the renewed

process R(P(s,a>r) + x,cor), x ^ 0, are independent; and that the renewed process

is a copy of R(x, a>s), x 2; 0. This remains true conditional on the event P(s, cor)

< P(s',œr), for a third point s', since this event depends only on the stopped

process. Of course, the conditioning is trivial unless r is between s and s', when

there is the well known formula

(5) np(s, o < p(s', cor)} = í^-|t^ •

Now choose positive numbers b, B, and set an = Be~bn, n = 0,1, ••-. Fix n

temporarily. For each path of the radial process, let tv, v = 0,1, •••, be the suc-

cessive passage times across the points an-x, a„, a„_x,--- . To be precise, set

io(cu) = 0,

Í2v+i(g>) = Inf{t :t > t2v(co), R(x,co) > an_.x},

t2v(co) = \nf{x:x >t2v-x(to), R(x,co)<a„}.

Since the process is recurrent, i„ is defined for all positive integers v. Define

Py(to)  = ív+1(ü))-ív(co),

Kv(t,o>)   =  R(tv(co) + x,co),    0|t<P,(co).

Successive applications of the basic property in the preceding paragraph show

that the processes Rv(x, to) are independent copies of a radial process R(x, cor)

stopped at the passage time across s, where if v = 0, r = 0, s = a„_ x ; if v is positive

and even, r = a,„ s = a„-x; if v is odd, r = an„x, s = an.

The number of returns from a„-x to a„ before crossing B is

(6) N„(co) = Max {v : i2v(o>) < P(B, to)}.

N„¡t k if and only if for 0 ^ v < k each of the independent processes R2v+X

starting at an_t passes across a„ before B. Hence using (5),

(7) &{Nn^k} = (1-1/«)*.

Since the event N„ = k is independent of the processes B2v, we have

Lemma 1. Conditional on the value of Nn, the processes R2v(x,co),

0^x<Pv(co), are independent, 0 ^ v ^ N„; and each is a copy of R(x,cor),

0 ^ x < P(a„_x,tor), where r = 0, // v = 0, r = a„ if v > 0.
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This decomposition will allow us to describe the pertinent fluctuations of the

sojourn times Tia„) as a„ -> 0 in terms of the process N„ with parameter n = 1,2, • • -.

The problem is then much easier to handle, since the latter process turns out

to be Markovian.

Indeed, suppose m > n, and for v = 0,1, ••■, let N„mv be the number of re-

turns from am_x to am of the process R2v. Since the processes R2v+i can never

reach a,„,

(8) Nm =  Z JV„!miV .
o

On the other hand, returns from at_1 to ak for kz^n can occur only during

intervals \tv, rv+1] for v odd. Each variable N„ ,„ v is independent of the behavior

of the process during these intervals, and so independent of Nk, k^n. But then

(8) implies that given JV„, JVm is independent of Nk, k <n.

The transition function can be computed from the distributions of the inde-

pendent variables N„ m „, m > n. For v = 0, N„imi0 is just the number of returns

from a,„_! to a,„ before reaching a„_! of the process starting at 0. By the same

argument used to derive (7),

For v > 0, N„ mv ^ 1 if and only if the process R2v starting at a„ reaches am_y

before au-x\ Nnm^k> 1 if and only if JVB>m>v è 1 and k-\ independent

copies of the radial process starting at a,„ reach am-.y before a„_t. Thus for

v>0,

»{Nnmv^k} = r-L-(   m~n    \\   k> 1.
•m¡ '        im - n)\m - n + 1/

The generating function is given by

£{^-'»"}   =(l + (m-n)(l-ff))-1,   v = 0,

=  1 - (1 - a) (1 + (m - n) (1 - er))"1,   v > 0.

Finally since the N„ „,>v are independent of N„, (8) implies

E{o*"\Nu)

(10)
= (1+ (1 - o)im - n))'1 (1 - (1 - ff)(l + im-nyi-o))-1)"".

Lemma 2. For the radial process starting at the origin, let Nn be the number

of returns from Be~("~1)b to Be~"b before the first passage across B. The variables
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N„, n = 1,2, ■■-, form a Markov chain with the initial value Nt=0 and with

the stationary transition function given by (10).

It is worth noting that, except for the formulas depending on (5), what we

have done is independent of the dimension. The main difficulty in proving

Theorem 1 for planar Brownian motion is reflected in the fact that the chain

JV„ is null recurrent in this case. The analogous chain in dimension greater than

two is ergodic, but for a slightly different choice of the sequence {a„}, as in [1],

Nn = 0 eventually with probability one. In the linear case, the chain Nn is transient,

and using only Tchebycheff's inequality one can prove that with probability

one the sequence (a„_y — a„)Nn converges to a random variable proportional

to the density of the sojourn time at the origin.

2. The decomposition of the radial process given by Lemma 1 breaks up the

sojourn time T(a„,P(B,to),ta) into independent increments: As in [3], set

Tv(œ)= V(R(x,to);a„)dx
Ji2v(.

"/.

P2v(o)

V(R2y(x,to);a„)dx.
o

Then

(11) T(an,P(b, to), to) =     IT»,
o

and by Lemma 1, the summands are independent, conditional on the value of N„.

For v _■ 1, Tv is the sojourn time within a circle of radius a„ = Be~hn of a

Brownian motion starting on the circumference and stopped upon crossing the

circle of radius a„^y = Be~b^"~1). Since for Brownian motion, for each X > 0,

X(t)^X_1 X(X2t) is a measure preserving transformation, Tv has the same dis-

tribution as a2T, where

pP(eb,(Oi)

T= T(tOy) = V(R(x,tOy);l) dx

is the sojourn time inside the unit circle of a Brownian motion   starting  on  the

circumference and stopped upon crossing the circle of radius eb.

It is well known that

E{T(tOy)}= |       G(x,y)dy,   \x\ = l,
J |y|<l

where G is the Green's function for Laplace's equation with boundary values

zero on the circle of radius eb. Thus E{T(tOy)} = \b. Let pk = E{(T(tOy) - b/2)k}. Then

E{Tv(to)} = \ba\,        E{(Tv(o>) = \ b a2f} = a2kpk.
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Since the Tv are independent

E { ( I (Ty - ¿¿>a2))4} - fln8(Np4 + 3N(N - l)p2)

<  CN2a8„,

and by a Tchebycheff type inequality,

0»(|   ZTv-iba2nN\>na^

< «"V8    FJ^I^-i&a2))^

<  CN2n~\

Since the Tv are independent conditional on JV„, (11) implies

0>{\ T(a„,P(B)) - T0 - iba2N„\ > na2„}
N„

= £ l\-±ba2nNn\ >na2n\Nn^

< Cn~4E{N2}

< 2Cn~2.

By the Borel-Cantelli lemma, with probability one as n -y oo, as in [3],

(12) T(an, P(B)) =T0 + i ba2Nn + 0(na2).

Now  T0(co) <P(a„_!,©), and by homogeneity, E{P2(a„_x)} = CaAn_x < C'a*.

Hence by Tchebycheff's inequality and the Borel-Cantelli lemma,

(13) T0 = 0(na2)

as n -y oo with probability one. This is of course implied by Theorem 4 of [1],

but we do not need so strong a result.

3.   The standard techniques of Markov chain theory suffice to prove

(14) lim sup (Nn/n) log log« = 1
n-*a>

with probability one, as follows.

Using (10) with

o- = (1 + x)_1 < 1, x = (JÏÏ- jXy)/(m - n + 1) jTy

for X < 1, we get the estimate
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0>{Nm<Xy\N„ = N}

z% o'>y E{oN-\Nn = N}

= a + x)»     1 + x_l\_)"
1+ x + (m - n)x\        l + (m-n+l)x/

f. Nx \< expf/yx — -—-.-——
v\ *       l + (m-n+l)x J

. exp[_ ifi-m
v\ m-n+l )

< expj- (1 - VI)2 j

=  1  - SiX)

if N = Nn ^ y ^ m - n + 1 > 0.

Under the same restrictions on y and X,

PJ>{Nm > Xy}

è   -^{3 fe, n ^ /c < m, iV* ̂  y; Nm ̂  Ay}

m-l

Z
k=n

=   Z 0»{N, < y, n g j < fc; JVj ̂  y; Nm è Ay}

m-l

^ ¿(A) Z á»{N_, < y,« á j < fe;Nk è y}

= ôiX)0>{3k, n£k<m, Nk£ y}.

Let p be an arbitrary number exceeding one, and choose X < 1, c > 1, such

that Xp > c. Using the above and (5), for n large,

0>{3k, caz%k<c"+l,   Nk^pkloglogk}

z%   ^{3k,cnz%k<c"+1,   Nk^pc" log loge"}

= jjrTv^cn + * = ^c "log loge"}
o(A)

_      ■*•    /-i  _    — (n +1)\ A/íc" log log cn" <5(A)U J

< Cn^"/c.

By the Borel-Cantelli lemma,

(15) lim sup NJn log log n ^ p
n-»oo

with probability one.
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On the other hand, suppose n < 1. Choose c > 1 so that nc < c — 1. For

n = c*-1, m = ck, k = 2,3, •••, let N„m0 be the number of returns from am_1 to

am before the first passage of a„_1; as defined in §1. N„ „, 0 depends only on

R(t,co) for P(am-y,to) < x < P(a„-y,ta), and as k varies these time intervals

are disjoint. Hence by the basic property of §1, the variables N„m 0 are indepen-

dent, k = 2,3, •••.

By (9)

&{N„.m0 = 1 '"log log m}

(, \ - t\m log log m

14——
m — n/

> exp — n-loglogm
{       m — n

= exp - n ——r log (k log c)

= C/c""c/(''"1) .

By the converse of the Borel-Cantelli lemma,

lim sup Aínm0/mloglogm ^ n
k-*co

with probability one. But by (8), Nm ̂  N„ ,„ 0 and so

(16) lim sup NJm log log m ^ n
m-^oo

with probability one. This together with (15) implies (14).

4. We complete the proof of Theorem 1. By (12), (13), and (14), and since

bn ~ log(l/a„), log log n ~ log log log (l/a„),

lim sup T(an, PB)) / t¡>(an) = I

with probability one, for each choice of B and b. If an+i<a^an, then

T(a, P(B)) = T(an, P(B)), while <p(a) = tp(an+1)~e-2b t¡>(an).

Hence

lim sup T(a,P(B))/tp(a) = e26
a->0

with probability one. Since b is arbitrary, e26 may be replaced by 1 on the right,

and since the opposite inequality is trivial,

lim sup T(a,P(B))/(p(a) = i
«-»o

with probability one.
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Given positive numbers e and ô, we can choose B so small that P(B) < ô with

probability exceeding 1 - e. Since t > P(B) implies T(a,t)> T(a,P(B)),

lim sup T(a,t)/<p(a)t 1

whenever t > Ô, with probability at least 1 - e. Similarly, for arbitrary positive A

we can choose B so large that P(B) > A with probability exceeding 1 — e. Thus

lim sup T(a,t)/<p(a)^ 1
a-»0

whenever i < A, with probability at least 1 — e. And since s, ¿5, and A are ar-

bitrary, Theorem 1 follows.
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