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1.    Introduction.    1. If/is a trigonometric polynomial

= L ane

the trigonometric polynomial conjugate to/is

/= I - fW*"

where e0 = 0 and s„ = n/1 n | for n # 0. The operation taking trigonometric poly-

nomials into their conjugates is linear and carries real trigonometric polynomials

into real trigonometric polynomials. Associated with the conjugacy operation is

the projection T defined on trigonometric polynomials by

Tilaneinx)=lattei',x.
n>0

T carries arbitrary trigonometric polynomials into analytic trigonometric poly-

nomials with mean value zero, and is related to the conjugacy operation by

2Tf = f+if-a0.

M. Riesz' theorem on conjugate functions [11, p. 225; 14, p. 253] states that

the projection T (or equivalently the conjugacy operation) is bounded in V„ for

1 < p < oo :

j\Tf\>da£KJ\f\'de

for all trigonometric polynomials /, where K is a constant depending only on p.

Here and in the sequel, all integrals are over [ — n, n) and o denotes normalized

Lebesgue measure on this half-open inerval : do = dx/2n.

The problem we wish to consider in this paper is that of extending the Riesz

theorem to measures other than Lebesgue measure.
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To be more precise, let pbe a. finite non-negative measure defined on the Borel

sets of [— n,n) and denote by L£ the space of complex valued ^-measurable

functions / such that

j\f\"dp<co.

We will assume throughout 1 ^ p < oo so that L^ is a Banach space with norm

(Jl/I^f •
Since p is finite the trigonometric polynomials form a de n linear subset of LJj.

The problem we will consider is this. For a fixed exponent p, for which measures

p is the projection T bounded in L£:

[\Tf\>dp^K \\f\"dp

for all trigonometric polynomials /, where K is a constant depending only on

p and p.

2. Before describing the history of this problem and our contributions to it,

a few words about conjugate functions are in order [14, Chapter 7]. For any

trigonometric series

(1) I fl„eiM

the conjugate series is

(2) I-/W'"\

If (1) is the Fourier series of a summable function/ the series (2) converges in the

metric of U„ for 0 < r < 1 to a function / The function /is called the conjugate

function off. Although /is defined whenever/is summable, /may not be sum-

mable. If/is real, so is/. If/is real and bounded with ||/||M < Ji/2, ef is summable.

3. If p is absolutely continuous with respect to Lebesgue measure we will write

dp = wdc and write L£ for L£.

The relation between T and L£ for measures p other than Lebesgue measure

seems to have been first considered by Hardy and Littlewood [7, p. 371](2).

They showed T is bounded in Lfv for w of the form

w = | x |s ( — n ¿ x < n)

if 1 < p < oo and — 1 < s < p — 1. Later Babenko rediscovered their result [2].

Hirschman [9, p. 30] and Flett [5, p. 136] have also given proofs of this theorem.

The proofs given by these authors use real variable methods and depend in an

(2) We are indebted to [8] for most of this history.
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essential way on the function [x|s. We wish to point out that the condition on s

is necessary as well as sufficient (Lemma 2). This fact is surely known but it does

not seem to appear in the literature. In any event this shows that the class of

measures p for which T is bounded in ~LP varies with the exponent p.

More recently, Gaposkin [6] has shown T is bounded in L£, if w satisfies

| w | ^ Cw a.e.

where C is any positive constant if 2 ^ p < oo and C is less than tan (p — l)7c/2 if

I < p < 2. Gaposkin's theorem intersects the Hardy-Litflewood-Babenko theorem

but does not contain it. More precisely, Gaposkin's result shows only that T is

bounded in L^x |. for — l<s < 1 if 2 g p<co, and that T is bounded in L'x]. for

— p + l<s<p — 1 if 1 < p ;£ 2. Gaposkin's proof uses analytic functions and

is an adaption, which is by no means obvious, of the method used by Riesz for

the case w = 1.

Finally, Helson and Szegö [8] have completely described the measures p for

which T is bounded in L*. They show p must be absolutely continuous, dp = wdo,

and log w must be summable. Then a necessary and sufficient condition for T to be

bounded in lit is

(3) sup   \fe -"°B wdo
!*

■ i log "
<1

where the supremum is taken over all/with mean value zero in the unit ball of H1.

H1 is the set of functions in L¿ whose Fourier coefficients vanish for negative

indices. (3) states that the norm of e-ll°8 w as a linear functional on a subspace

of L¿ is smaller than one. Using this observation, Helson and Szegö found that (3)

holds only for w of the form

(A) w = e

where u and v are bounded real functions and || i; || œ < n/2. This class of weights

coincides with that considered by Gaposkin for p = 2 modulo multiplication by

factors bounded from above and below.

The corresponding problem for the real line and the Hubert transform has been

considered by Widom [13].

4. In §2 we gather together most of what we know of a general nature about

the problem. Using results from [8] we are able to describe (Theorems 3 and 4),

for a given exponent p, some weights w for which T is bounded in IFW. These

weights include those considered by Hardy and Littlewood and by Gaposkin.

In §3, using the methods of [8], we obtain for each p a condition, similar to (3)

(and of course identical if p = 2), for T to be bounded in Lpw. The condition

is that the norm of a certain functional, which depends on p, be smaller than one.

However, for p # 2 this condition does not have the linear character which (3)

has, and we know little about this condition other than that it exists.
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In §4 we study weights w for which log~ w is continuous except for a finite

number of simple discontinuities. For this class of weights we are able to extend

to exponents p # 2 results obtained in [8] for p = 2.

2. General results.

1. First some additional notation which will be used throughout. C will denote

the space of all complex-valued, continuous, 27t-periodic functions on (— oo, oo).

P and F will denote respectively the sets of trigonometric polynomials of the form

a„e    , L ane    .
»SO ngO

For m a positive integer, Fm will denote the set of trigonometric polynomials of

the form

I a/»*

and Mm the sum of P and Fm: Mm consists of all trigonometric polynomials/ + g

where fe P and g e Fm. In particular Mt is the set of all trigonometric poly-

nomials. Notice that Mm is a linear set and that T, when restricted to Mm, projects

Mm onto Fm. M0 will denote the set of trigonometric polynomials with mean

value zero. Finally, p' will denote the exponent conjugate to p: 1/p + 1/p' = 1.

It will be useful to consider a somewhat more general problem than was indi-

cated in the Introduction. Accordingly, for a given positive integer m and exponent

p we ask for which measures p is the projection T, when restricted to Mm, bounded

in L£. This is a more general problem : the continuity of T, when restricted to M,„

(for some m > 1), does not imply that T, when operating on all trigonometric

polynomials, is continuous. For p = 2 this is in [8]. For other exponents p this

may be seen by comparing Theorems 6 and 7.

2. It is well known T is not bounded in L*. Also, T, restricted to Mm, is not

bounded in L* for any positive integer m. See, for example, [14, p. 253]. This

situation continues for other measures.

Theorem 1. For any positive integer m, T, restricted to Mm, is not bounded

in L1.

Proof. Suppose on the contrary that for some m, T, restricted to Mm, is

bounded in L¿ :

j\Tf\dp^KJ\f\dp

for all/eMm.

For each real y let Ty be the linear operator mapping trigonometric poly-

nomials into trigonometric polynomials defined by

iTyf)ix)=fix + y).
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Notice that Ty commutes with T for each y, and that Ty maps Mm onto M,„. Let

v be any finite non-negative measure defined on the Borel sets of [ — n, n). Then

p * v, the convolution of p and v, is the non-negative Borel measure defined by

\fd(p * v) = j |/(x + y)dp(x)dv(y)

for all fe C. From the definition of p * v, the fact that Ty commutes with T and

that Mm reduces Ty, and the Fubini theorem we obtain

^\Tf\d(fi*v)£KJ\f\d(n*v)

for all/e M».

We have shown that T, when restricted to Mm, is bounded in L¿„.v for all

non-negative measures v. Since p * o is a positive multiple of o, T restricted to

Mm is bounded in L*, and this is a contradiction.

Our next theorem states that only absolutely continuous measures are relevant.

Helson and Szegö have given a proof of this [8, p. 127] based on a theorem of

Rudin concerning the boundary values of analytic functions. The proof we give

is different and is based on the theorem of F. and M. Riesz [14, p. 285] which

states that if v is a bounded complex Borel measure on [ — n, n) whose Fourier-

Stieltjes coefficients vanish for negative indices, then v is absolutely contin-

uous with respect to Lebesgue measure.

Theorem 2. Let m and p be given and suppose T, restricted to Mm, is bounded

in L£. Then 11 is absolutely continuous.

Proof. We assume there is a constant K such that

(5) ^¡Tfl^y1" ^K^\f\"dn)^

for all fe Mm. Define a linear functional (¡> on Mm by

<Kf)= ¡Tfdfi.

Since (Holder inequality)

|<K/)|=   (Jdp)w(||T/|"dp)^,

we obtain from (5)

|^(/)|^K(|dp)^(J|/|"dp)^,
and therefore

\<t>(f)â K (  jdpj
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for all fe Mm. This last inequality states that <p is a bounded linear functional

(in the uniform norm) on Mm. We may extend 0 as a bounded linear functional

to all of C and we may represent the extended functional as integration with a

bounded complex Borel measure v on [— n,n). Then

(6) JTfdp= jfdv

for all/e M,„. Since ei"xeMm for n g 0, (6) implies

I einxdv = 0

for n 5S 0. This and the F. and M. Riesz theorem shows v is absolutely continuous.

Since e'"x e M,„ for n^m, (6) also implies

/
ewxd(p - v) = 0

for n = m, and, again by the F. and M. Riesz theorem, p — v is absolutely con-

tinuous. This completes the proof of the theorem.

Because of the two preceding theorems we will assume from now on that

1 < p < co and that the measure u is absolutely continuous: dp = wda.

3. Suppose T, restricted to M„„ is bounded in Vw:

(7) (  [iT/CWor)1"^ ¡\f\pWdo j1'"

for all/eMm. (7) implies

(8) inf(   \\f+g\pwda^llp >0

where the infimum is taken over all/eP and geFm such that

Î\f\"wdo=  j\g\"wdo = l.

Conversely, if (8) holds, then it is easy to see that there is a constant K such

that (7) holds. Indeed, denote the infimum (8) by % and suppose x > 0. Write

|/|-(Jl/|N*r)w»

andlet/eP(/#0), g6F,„,and

'-<lt|/|/D-i.
1 hen
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and the definition of x gives

||g||^T-1||/+c/+g||^T-1||/+^||+t-1|C|||/||.

But

MI/|-IM-|/ll*l/+tl
so that

h\\è2x-1\\f+g\\

and this is (7) with K = 2t_1.

The condition (8) is the basis of a large part of what follows as was the case

in [8].

4. A theorem of Szegö [1, p. 256; 8, p. 108] states

inf   11 +/| "wdo = exp  (     log wd<7   )

where the infimum is taken over all/eF^ If log w is not summable the infimum

is zero.

Now (8) implies that 1 must be at positive distance from F,„ in the metric of Lp,

and it follows, as is easily seen, that 1 must also be at positive distance from Fx

in the metric of L£. Hence a necessary condition for T, when restricted to Mm, to

be bounded in L£, is that log w be summable .

If T, when operating on all trigonometric polynomials, is bounded in L£,

we can place a stronger size condition on w (Lemma 2). For this we need the

following lemma which extends a result due to Kolmogorov for p = 2 [8, p. 108].

Lemma 1. For 1 < p < oo

(9) inf(   (\i+f\pwdcT )1/p=(   iw-lllp-"do \~x'p'

where the infimum is taken over all/eM0. //w~1/(p~~" is not summable the

infimum is zero.

Proof. Since M0 is a linear subspace of Lfv, the Hahn-Banach extension theo-

rem shows that the infimum (9) is equal to

(10) sup gwdo

where the supremum is taken over all g e LPJ which annihilate M0 and satisfy

\g\"'wdcTz% 1./I
Denoting by M„ the annihilator in L£ of M0, we have geM0x if and only if

geLJ'and
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einxgwdo = 0f«
for n ^ 0. Therefore geMo only if geLp  and gw is constant a.c. with respect

to Lebesgue measure. Let g e Mq and write gw = c. Then

(11) f|g|P'wd<7=|c|P'   [w-1K"-l)do.

If iv  1/(p  *> is not summable, then (11) shows that M¿  contains only the zero

vector, and hence the supremum (10) is zero. If vv-1/(p_1)   is summable, then

\g\p wdo = l

only if
/I

|c|=( fw-1/(',-1>d(r)-w

and this gives (9).

Lemma 2. // T is bounded in lpw, then vv_1/tp_1)is summable.

Proof. Let/eM0. Then from

Up

i = (i+/)-r(i + f)-T(i+/)
and (7) we obtain

( íwí/tr]1/p^(2K + l)[   (\l+f\"wdo Y'

Therefore the infimum (9) is positive, and so w~1/<p~1) must be summable.

Lemma  3. T is bounded in Lp if and only if T is bounded in Lp-i/<P-i).

Proof. The proof consists of the two following observations. First, the dual

space of Lp is isometrically anti-isomorphic to Lp-i/(P-i) with the duality

given by

fgdo
/•

where/eLp and geLj-w,-». Second, the operator T is formally self-adjoint:

\fT~gdo¡Tfgdo=jj

for all trigonometric polynomials / and g.

5. We remarked at the beginning of this section that the continuity of T in

Lp when operating on all trigonometric polynomials does not follow merely from

the continuity of T when restricted to some Mm. However, if w~ 1/(p~ ''is summable

and for some m T, restricted to Mm, is bounded in lFw, then T is bounded in Lpv.
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For consider the projection of M¡ onto Mm : this is the operation on trigono-

metric polynomials which suppresses coefficients with indices between 1 and

m — I. We always have (Holder inequality)

(12) \\f\doz%  (   (V^-^dcrVW  [\f\pwdo\llp .

Now if w_1/(p_1) is summable, then (12) implies (as one can easily show) that

the projection of Mt onto Mm is bounded in Lp. Since T may be obtained by

first projecting Mt onto Mm and then projecting Mm onto Fm, T will be bounded

when operating on Mt if w_1/(p_1) is summable and T is bounded when re-

stricted to Mm.

Regardless of the summability of w_1/(p~1) we may always pass from p to a

larger exponent and conclude that T is bounded. More precisely:

Lemma 4. // T, when restricted to Mm, is bounded in Lp, then T, when opera-

ting on all trigonometric polynomials, is bounded in L™p.

Proof. Denote by x the infimum (8). Then the hypothesis of Lemma 4 implies

x > 0. Suppose now/eP and geFy satisfy

j\f\mpwdcr= j\g\mpwdcr=l.

Since fm e P and gme Fm we have

(i3) xs ( j\r-gm\pwdo y<p.

From the identity
m

r-gm=u-g) i/*_y-*
k = l

and the Holder inequality applied to the pair of conjugate exponents m and

m/im — 1) we obtain

/'
\r-gm\pwdcr

(14)"

^(   (\f-g\m'wdtr\1,m    (  f| f /*-V-*|mp/('"-1)wd<7 J0--1V-

Now

if I Z fk~1gm~k mp/(m_1) wdo Vm-1>/""'

(15)
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and another application of the Holder inequality (this time applied to the pair

of conjugate exponents (m — \)/(k — 1) and (m — l)/(m — k)) shows each in-

tegral on the right-hand side of (15) does not exceed one and therefore

(16) (Ï    t\fk~1gm~kn"'Km~1)wdtrYm~1)lmp^m.

Combining (13), (14), and (16) we obtain

x/m^ i   í\f-g\m'wda\il'"'

which implies the conclusion of the lemma.

We are now able to describe some weights w for which T is bounded in Vw.

It is known that T, when restricted to Mm, is bounded in L2, if and only if

(17) w = e" | D |

where u is a bounded real function and D belongs to H1 and satisfies

(18) | argD(x) - (m - l)x | g (n/2) - s a.e. (modulo 2%)

for some e > 0(3). For m = 1 and m = 2 this is in [8, pp. 123, 132]. The extension

to m = 3,4, ••• requires no new idea.

We also have as a corollary of an interpolation theorem of E. Stein [12, p. 485]

the following lemma.

Lemma 5. Let w¡,---,w„ be non-negative summable functions and suppose

T when operating on all trigonometric polynomials is bounded in L^ (j = 1,

•••,n)(4). Then T is bounded in Lpwfor

\/p= itj/pj, w= n*/"*
j=i       j=i

where the t¡ are non-negative with

Î tj = 1.
J-l

Combining (17) and (18), Lemma 4, and Lemma 5, we obtain

Theorem 3. Let p ^ 2, and let px, --^p,, be positive even integers and tu •••,!„

non-negative with
n n

Stj-i,    i/p= ltj/pj.
J-l j=l

(3) For m = 1, (17) and (18) imply w is of the form (4).

(4) Here it is essential that T operate on all trigonometric polynomials.
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Then T is bounded in Lpvfor

(19) w = e" f[ \Dj\'plP1
j«i

where u is a bounded real function and the Dj belong to H1 and satisfy

| argDjix) - ((p;/2) - l)x | g in/2) - e       a.e. imodulo 2n)

for some £ > 0.

6.  Lemma 6. Let w, Wy,---,w„ be non-negative summable functions such that

(20) Wj z% Cw a.e. on [- n,n)

and suppose there are measurable sets A¡ ij = 1, •■-,n) whose union is [— 7t,7r)

such that

(21) w ^ Cwj a.e. on A¡

where C is a positive constant.

Then if T is bounded in L,ps Q = 1, ■■•, n), T is also bounded in Lp.

Proof. Let K be such that

(22) j   \Tf\pWjdo z%KJ\f\"Wjdo

for j = 1, -.-jn and for all trigonometric polynomials/. Then (21), (22), and (20

imply

|   |T/|pvvd<T ^ /CC2||/|pwd(r,

and since the union of the A} is [ — n, n) this last inequality implies

(* | T/|p wdo ^ nKC2 | |/|p wdo.

The dual of Lemma 6 is :

Lemma 7. Let w,Wy,---,w„ be non-negative summable functions such that

(23) w ^ Cwj a.e. on [— n,n)

and suppose there are measurable sets A¡ ij = 1, ---,n) whose union is [— n,n)

such that

(24) Wj :g Cw a.e. on A¡

where C is a positive constant.

Then if T is bounded in Lp^ (/ = 1, •••, n), T is also bounded in Lp.



380 FRANK FORELLI [March

Proof. Lemma 3 and Lemma 6.

It is curious that Lemma 6 remains true if we assume only that T is bounded

when restricted to Mm for some m (with a corresponding change in the conclusion),

but that Lemma 7 is not true in this setting (Theorem 7 provides counterexamples).

Theorem 4. Let u and v be bounded real functions with || v ||œ < 7i/2, and let

Xy, --^Xn be distinct points modulo 2n. If p §; 2, T is bounded in Lpwfor

(25) w = e"f"   f[\eixj-eix\s'
J = i

where 0 S Sj = p — 2.   // 1 < p i£ 2, T is bounded in ~Lpwfor

J = l

w/iere p — 2 ^ Sj ̂  0.

Proof. Suppose first p is an even integer (p = 2m), n = 1, and w is given by

(25). If Sy = 0, T is bounded in L2, and therefore T is bounded in Lp(Lemma 4).

If sy = p - 2, (17) and (18) with(5)

show that T, restricted to Mm, is bounded in I?w, and therefore T, operating on all

trigonometric polynomials, is bounded in L^,. Using Lemma 5 to interpolate

between s, = 0 and s¡ = p - 2 shows T is bounded in Vw for 0 _ Sy g p — 2.

We have shown the theorem is true whenever p is an even integer and n = 1.

Using Lemma 5 to interpolate between even integers gives the first part of the

theorem with n = 1. The restriction n = 1 may be removed by using Lemma 7.

Indeed,if

w. = eu+° \eÍXJ-e'x\SJ

and 0 á Sj Js P — 2, the weights w, w„ ■■■, wn satisfy conditions (23) and (24) and

Tis bounded in L^..

The second part of the theorem may be obtained from the first part and

Lemma 3.

The weights given by (25) with n = 1 are of the form (19). On the other hand

we do not know if there are functions given by (19) which are essentially different

than those given by (25). Relative to this see [8, p. 133].

With Sj = 0 Theorem 4 becomes the theorem of Gaposkin mentioned in the

Introduction. Theorem 4 presents Gaposkin's theorem in a different form than

that in which it was given in the Introduction, but the two versions are equivalent

(5) e~»- '* belongs to Hi [14,p. 277] and so does | eix' - eix \p " V(m ~ '>* since this belongs to F.
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since the weights involved differ only by multiplication by factors bounded from

above and below.

If v is the periodic function whose value is r(x — n)/2 for 0 <x <2n where

— 1 < r < 1, Theorem 4 with n = 1 and xx = 0 becomes the theorem of Hardy-

Littlewood-Babenko mentioned in the Introduction (since the function conjugate

to v will be — r log 11 — e lx\ ). Theorem 4 also presents the Hardy-Littlewood-

Babenko theorem in a different form than that in which it was given in the intro-

duction. Again the different versions are equivalent since the weights involved

differ only by multiplication by factors bounded from above and below.

3. A condition for T to be bounded.

1. Define the following inner products in Lp :

(fg)=  j\f\"-2fgdp,

</,£> =  j\fg\r~lfgdp

where r = p/2. If p = 2, these two inner products coincide and give the usual

Hubert space inner product. Otherwise they are distinct and each possess one of

the distinguishing characteristics of an inner product: the first is conjugate-

linear in the second variable and the second is conjugate-symmetric.

Lemma 8 (6). Suppose A and B are sets of functions in lp such that

\\f\pdp = l

for allfe A U B, andfe A (feB) implies cfeA(cfeB) for all complex numbers

c with modulus one. Then

(26) inf( ¡\f+g\pdßyip >0

if and only if

(27) sup|(/,g)|<l

where the infimum and supremum are taken over all fek, geB.

Proof. Let fe A, g e B. Then (Holder inequality)

\(f+g)\f\p-2fdß\ = (j\f+g\pdn yip.

(6) For/; = 2 this lemma is in [8, p. 129]. Forp = 2 (26) and (27) are related by 2-2 p = r2

where p is the supremum (27) and t the infimum (26).
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Since the left-hand side of this inequality is 1 + (/, g) we have

(28) \l + if,g)\ú ( [|/+s|pdp)1/p.

Suppose (27) fails. Then there are functions fe A, geB such that if,g) is close

to 1, and therefore, because of (28), the norm of/+ g will be close to 2. Since

1 < p < co, Lp is uniformly convex [4, p. 403], and therefore the norm off— g

must be close to 0. Thus (26) also fails. We have shown that (26) implies (27).

On the other hand, it is clear from (28) that (27) implies (26).

Lemma 9. Let A and B be as in Lemma 8. Then the infimum (26) is positive

if and only if

(29) sup|</,g>|<l

where the supremum is taken over all/e A, geB.

Proof. We have

|(f.*)-</.*>|s¡  ll/l'-'kl-l/l'kl'M/i.

The right-hand side of this inequality does not exceed

Jii/rki-i/N^ + Jii/r-i/rkn^.
The first integral in this sum is bounded by

(Ji/r^)i/p'(|iki-ii/ip^)i/p
and the second by

(j\f\Pdri)ll2(j\\f\'-\g\'\2dpy>2.

Therefore for fe A, g e B

\(f,g)-<f,g>\
(30)

*(f\\g\-\f\'fr)u'+(j\\fir-\g\w*)v*.

If </>£> is close to 1, then

must be close to 0, and this implies that
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-\g\"\dp

is also close to 0. Therefore if </, g} is close to 1, the inequality (30) shows that

(f,g) is also close to 1.

On the other hand if (/, g) is close to 1, then

J"\f-g\pdp

is close to 0 ((28) and uniform convexity), and therefore both

-ifd*.    Jii/r-uri2^/
are close to 0. Thus if (f,g) is close to 1, the inequality (30) shows that </,g>

is also close to 1.

We have shown (for/eA, geB) that if either (f,g) or </,#> is close to 1,

then the other is also. Lemma 9 now follows from Lemma 8.

2. We will assume from now on that log w is summable since this must be so if

T, when restricted to Mm, is bounded in Lf,..

For 0 < s < co, Hs will denote the closure in the metric of L* of F [14, p. 271].

Thus if s ^ 1, Hs consists of those functions in L/ whose Fourier coefficients

vanish for negative indices.

We can now give a condition analogous to (3) for p > 1.

Theorem 5. T, when restricted to M„„ is bounded in Ifw if and only if

(31) sup I |/| r-1feimxe~i(llr)l03~wdcj <1

where r = p/2 and the supremum is taken over all f which belong to Hr and

satisfy

j\f\'dtr=l.

Proof. Our proof is the same as that given in [8] for p = 2. Since Fm = eimxF

and P = F, we have from (8) and Lemma 9 that T, restricted to Mm, is bounded

in L£ if and only if

(32) sup\j\fg\'-1fgei'"xwdtT

where the supremum is taken over all f, ge¥ with

i \f\" wdo= i |g|pwdo- = l

<1
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Since log vv is summable, the conjugate function log~w is defined. Let D be

the function

J) _ Vvl/Pg¡(l/P)l0g~iv

Then D belongs to Hp [14, p. 277] and, moreover, Dis an outer function [3; 10].

A function FeHp is said to be outer if

log|     Fdo\—     log | F | do.

The outer functions FeHpare characterized by the property that the linear

set/F, where/ranges over F, is dense in Hp. Proofs of this are in [3] for p = 2

and in [10] for p = 1. There is no difficulty in adapting these proofs to other

exponents p.

Since
w= |í)2|'-1DVí(I/r),og~w

the integral in (32) may be written

\\(fD)(gD)\r-\fD)(gD)eimxe-i(llr)los~v' do,

and therefore, because D is outer, the supremum (32) is equal to

(33) sup /i*r*fgeimxe~iillr)]os~wdo

where this supremum is taken over all/, geHp with

j\f\pdo=j\g\"do=L

Here we have also used that the mapping from Lpto I2 which takes/into l/l'-1/

is continuous in the metric topologies.

To complete the proof of the theorem we need only to observe that the supre-

mum (31) is the same as (33) since the unit ball of Hr is equal to the product of

the unit ball of H2r with itself [14, p. 275].

3. If w = 1, Theorem 5 states that the condition

(34) sup | (\f\"lffi do\<\

where r = p/2 and/ is in the unit ball of Hr is necessary and sufficient for T to

be bounded in Lp. In this case the proof is simpler since now no appeal to

Beurling's theorem on outer functions is necessary. There are two values of p for

which it is easy to see that (34) holds. If p = 2, the supremum (34) is obviously

zero. If p = A, the supremum (34) is bounded by 1/^/2.
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Indeed, iffe'x and |/| have Fourier series

I, ané"x, Z b„einx,
nal

then by the Parseval formula

¡\f\feixdo= ZflA,
J n^l

and now the Schwarz inequality applied to this last sum gives

jj|/|/e"da|<;( IJ«.|2)1/a( ÏJ*-!2)172-

Since |/| is real, f>_„ = bn, and hence

Z|i>„|2^(i/2)Z|ft„|2.

But

and thus

1-f \f\2do= Z|a„|2=Z|è„|2
J ngl

||/|/^da| áV>/2.

For other values of p it is not at all obvious that (34) holds, as indeed it must.

4. As indicated in the Introduction, we do not know how to describe, for a

given p and m, those weights w for which (31) holds.

We will conclude this section with two lemmas which will be needed in the

sequel.

Lemma 10. Suppose T is bounded in Lp, and let g be any real continuous

function. Then eg w is summable and T is bounded in Lpe~gw.

Proof. Suppose first that p g 2. By using Lemma 4 and interpolating it follows

that T is bounded in Ifw for r ^ p. In particular T is bounded in L2, and there-

fore vv must be of the form (4). Since g is continuous we may write g = gy + g2

where gy is a real trigonometric polynomial and g2 is a real continuous function

with || g2 || a, as small as we wish. Now eu+g' is bounded from above and below

and e*2 + ° is summable if || g2 + v || œ is smaller than jr/2, and therefore e*w is

summable. Moreover, since T is bounded in Lp, (31) must hold (with m = 1).

Then (31) will continue to hold if log "w is replaced by g2 + log~ w and | g2 ||œ

is sufficiently small, and this in turn implies that T is bounded in Lp«w.

If p > 2 the conclusion follows from the case just considered and Lemmas 2

and 3.

Lemma 11. Suppose T is bounded in Lp. Then for s sufficiently close to one,

ws is summable and T is bounded in Lí,*.
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Proof. As in the proof of Lemma 10 we assume first that p :£ 2 and conclude

that w must be of the form (4). Then ws is summable for s close to one since es " is

summable as long as || sv || œ < n/2. To show that T is bounded in L£s for s close

to one it suffices to show that T is bounded in L£». But this is implied by the

condition (31) (with m = 1) since v is bounded and Tis bounded in L£,ö.

If p > 2 the conclusion follows from the case just considered and Lemmas 2

and 3.

4. A special class of weights.

1. In this section we assume w is such that log~w is continuous except for

a finite number of simple discontinuities at xx, ■■■,x„. Let r¡ be the normalized

jump of log ~w at x¡ defined by

(35) nrj = log~ w(xj -) - log~ w(xj +).

For T operating on all trigonometric polynomials we have :

Theorem 6. T is bounded in L£ if and only if

(36) - 1 < Tj < p - 1

/or; = l,--,n.

When T is restricted to M2 a curious break appears in the admissible jumps.

We have :

Theorem 7. T, restricted to M2, is bounded in Vw if and only if

— 1 < r,- < p - 1

for j = 1, --^n with at most one exception rk which satisfies

— Í < rk< p — 1    or   p — I <rk<2p — 1.

For p = 2 Theorem 6 is in [8, p. 136] and Theorem 7, in a less general form,

is in [8, p. 133](7).

2. We begin with the proof of Theorem 6. Let J\ be the periodic function whose

value is (x — Xj + %)/2 for Xj - 2n < x < x¡ and whose value is 0 for x = x¡.

Then Jj is continuous except for a jump at Xj and, moreover, J¡ is the conjugate

function of log | eixj — eix\. With log~ w normalized by

2 log~w(x,-) = log~ w(xj -) + log~ w(xj +),

the function log~ w - £"= i rjjj is continuous, and therefore

(37) w = e+~g    t \eixj-éx\r

j = i

where c is a real number and g is continuous.

(7) Flett [5, p. 136] has shown that if w = | x |r for — n< x < n, then T, when restricted

to odd trigonometric polynomials, is bounded in £g, for — 1 < r < 2p — 1.
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Suppose now (36) holds. Because of Lemma 3 we may assume p ^ 2. Then

r¡ = Sj + tj where 0 ^ Sj ̂  p — 2 and — 1 < t¡ < 1. This splitting of rp the

representation (37), and the known sufficiency of the condition (36) for p = 2,

show that w is of the form (25).

We have shown that the condition (36) is sufficient. To see that this condition is

also necessary assume T is bounded in Lp. Because of the representation (37) and

Lemma 10,

(38) ni^'-'T'

is summable. Therefore each r¡ is greater than — 1. Denoting the function (38)

by w', we also have (Lemma 10) that T is bounded in Lp-. Hence

f] |ei*/_e'*|-'v/(p-i)
j = i

is summable (Lemma 2) and therefore each r¡ is smaller than p — 1. This com-

pletes the proof of Theorem 6.

3. We begin the proof of Theorem 7 with a lemma.

Lemma  12. Suppose T is bounded in Lp- and let

w = w'\l + eix\p.

Then T, restricted to M2, is bounded in Lp.

Conversely, if T, restricted to M2, is bounded in lpw and if

w' = w\l + eix\-p

is summable, then T, operating on all trigonometric polynomials, is bounded

in Lp..

Proof. Since the function conjugate to log w for — n < x < n is log~w' +

(px/2), the lemma is a corollary of Theorem 5.

4. That the condition of Theorem 7 on the r} is sufficient is immediate. If

— 1 < rk < p — 1, the conclusion follows from Theorem 6. If p — 1 < rk < 2p — 1,

the conclusion follows from the representation (37), Theorem 6, and first part of

Lemma 12 (we may assume xk = n since nothing is altered by a translation).

5. We now turn to the necessity of the condition on the r¡.

Lemma 10 remains true when T is restricted to M2. Indeed, if T, restricted to

M2, is bounded in Lp, then T, operating on all trigonometric polynomials,

is bounded in L2/ (Lemma 4). Therefore eg w is summable, and now (arguing as

at the end of the proof of Lemma 10) the condition (31) (with m = 2) shows that

T, restricted to M2, is bounded in Lpg w. Thus because of the representation (37)

we may assume
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(39) w= fi \eiXj-eix\rj
j" = i

where the x¡ are distinct modulo 2n. Since w is summable we always have — 1 < r}

for j = l,-.,n.

We are assuming that T, restricted to M2, is bounded in Lp. If — 1 < r¡

< p — 1 for j = 1, ••-,«, there is nothing to prove. Suppose then one of the r¡,

rx for example, is greater than or equal to p — 1.

We assert first that ry < 2p - 1 and - 1 < r¡ < p — 1 for; = 2, ••-,«.

If rt > p — 1, then

w' = w|eixi-eijr|-p

is summable, and therefore by the second part of Lemma 12 T is bounded in Lp,,

and the assertion now follows from Theorem 6. If rt — p — 1, w' is no longer

summable and the argument just given is not valid. However Lemma 11 also

remains true when T is restricted to M2 (use Lemma 4 to show that w = e" + "

where u and v are bounded and then argue exactly as in the proof of Lemma 11).

This throws us back to the case just discussed since we may consider ws where

s > 1, and the assertion follows.

6. The status of the r¡ is now p—l^r1<2p—1 and - 1 < r} < p - 1 for

j = 2, ••-,«. To complete the proof we must show rt > p — 1. Suppose, on the

contrary, r y = p — 1. We will show this leads to a contradiction.

Consider Lp -1/<„-1>. Since w is summable, it follows from the Holder inequality

that every function in Lp'-i/(,-i) is summable. We now claim that if g belongs to

Lp'_i/(p-n, then for a suitable constant c, c + g also belongs to Lp-i/(J,-i).

Indeed, denote by S the operation which maps trigonometric polynomials into

their conjugates (S/=/). Recall that M0 is the set of trigonometric polynomials

with mean value zero, and observe that T restricted to M0 is bounded in Lp

since T restricted to M2 is bounded in Lp. Since

2T/=/+iS/

for/eM0, S when restricted to M0 is also bounded in Lp. Since w~in"~1) is

not summable (this because rt = p — 1) the linear set M0 is dense in Lp(Lemma 1),

and thus the conjugacy operation S has a unique continuous extension (also de-

noted by S) to all of L^. Represent the dual space of Lp by Lp-i/<P-i) with the

duality given by

Jfgdcr

where/eLp and geLp-i/(P-i), and consider the operator S* adjoint to S.

S* is a bounded linear operator mapping Lp-i/(P-n into itself, and is defined by
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(40) jf^gdo = (sfgdo

for all/eL£, geLJ-i/i,-n) Now if

la/"*

is the Fourier series of the function g e Lp¿- m,- », then it follows from (40) that

-c+zZisnaneinx

is the Fourier series of S*g with

(41) c = - íslgdtT.

Thus geLJ'-iflp-D implies c + geLj-mp-.) with c given by (41).

7. Since it is no restriction to asume Xy = 0 we have

w- 1/(P- 1) . j ! _ eix | -1    pj   | c«»i _ ßi* | -,,/(,- 1) #

Since the r, are smaller than p — 1 for j = 2, ■••,«,

r]|ei*y-eí*|~,'j/(p~1)
J=2

is summable. Moreover this function is bounded from above and below in a

neighborhood of the origin.

The observations which follow appear in [7, p. 372]. See also [14, pp. 186-189].

For r > 0, the trigonometric series

(42) I n_1(lognrr sinnx

is the Fourier series of a continuous function gr such that

gr(x) s (n/2) | logx | _r for x -► 0 + .

Therefore, since w_1/(,'~1) in a neighborhood of the origin behaves like |x|_1

and is summable off this neighborhood, greLJ-i;(,-i) if rp' > 1. On the other

hand, the function conjugate to gr is continuous except at the origin, and there

g,(x) = -(1/(1 - r)) |log* |1 -' for x -> 0 +

if r < 1. Thus if 0 < r < 1, the integral

[ic + l^'w-^-^d^

diverges for all constants c. Choosing r such that 0 < r < 1 and rp' > 1 we get a

contradiction. This completes the proof of Theorem 7.
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8. For p = 2, the method used in [8] to show that the value p — 1 is not an

admissible jump is to actually evaluate the supremum (31) when w = 11 + e'x |r.

This is an alternative which does not seem to be available if p # 2.
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