
ON CERTAIN REPRESENTATIONS OF THE
MEASURE ALGEBRA OF A LOCALLY

COMPACT ABELIAN GROUP

BY

HORST LEPTIN

Throughout this paper let G be a locally compact abelian group. Furthermore,

let ¡%, resp. ^0> resP- ^œ> always be the Banach spaces of all bounded complex

Borel functions, resp. bounded continuous functions, resp. continuous functions,

which vanish at oo. Then we have <£ œ c ^0 cz á?, (€^ = #„ iff G is compact

and #0 = 88 iff G is discrete. Every continuous complex linear functional on

*€ x defines a bounded Radon measure on G and thus the set 9JÏ of all bounded

Radon measures is the dual space of #'œ. For the value of a measure p e9JÎ for a

certain function fe %'x we use the following notations:

ßif) = if dp = jfix)dpix).

The norm in 9JÎ is then defined as \p\ = sup ,f,&1 \pij)| with |/| = supc|/(x)|.

931 is a Banach algebra under convolution: For «, ve9JÎ, the product p * v is

defined as

J" * v(/) =    /(x + y)dpix)d\'iy).

For a complex function f on G let/* be defined as/*(x) =/(— x). Then we can

define for pe9Jt: p*(/) = pif*). The mapping p-> p* is an isomeric involution

on STJÍ. Let a be a point in G and £„ the corresponding point measure, defined as

£„(/) —fia). We have £* = £_a. For a = 0 the measure e0 = £ is the identity inSR.

Letfi1 be the convolution algebra of all Haar integrable complex functions on G.

If we identify geQ1 with the Radon measure Xgif) = jy(x)g(x)áx, we may

considerfi1 as a norm closed and symmetric ideal in SQÎ. Here "symmetric" means,

that with Xge2} always X* cz fil. In fact, we have even X* = Xgt.

Every positive peSSSl defines a regular Borel measure on G, so that all bounded

Borel functions are integrable with respect to p. So we can uniquely extend every

peíXíl to a bounded linear functional on 3$. For all definitions, results, etc.

here mentioned, also for further questions, see, e.g., [1; 2] or [3].
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1. For/e 3$, peffl we define

(TJ)(x) = p * sx(f) = f f(x + t)dp(t).

Then T„/is a bounded complex function on G and we have

IVI- sup\Tpf(x)\e\ß*£x\  |/|-M*|/|,
G

|A* |   = sup   |p(/)| = sup|r„/(0)| = sup|T„/| = |r„|,
l/lâl

hence | p | = | Tß \. We have

(1) T„ maps  #„ into  rëx,  #0 into  ^0 and & into 38.

Because the measures with compact carrier are dense in 9JÎ. and | p | = | T„ j we

need prove (1) only for positive p with compact carriers. If then / has compact

carrier, TJalso has compact carrier, if/ is continuous, it is uniformly continuous

on every compact subset of G. From these facts it follows easily that T(i %'œ c <ëœ

and Tp #0 c ^o- F°r every positive Radon measure and every directed set(J) of

continuous real functions / we have sup p(f) — p(supf) and therefore sup Tpf

= r,,(sup/) if sup/e 38. Therefore TJ is lower semi-continuous, if/ is lower

semi-continuous. Furthermore, we have Tß(limf„) = lim TJn if {/„} is a monotonie

sequence in 38. It follows that T„38c3S.

Obviously the Tß commute with the translations /-»/„, where fa(x) =f(x + a).

The following proposition yields a measurefree description of the measure al-

gebra :

(2) The mapping p-*Tß is an isometric ^'-isomorphism from S0Ï onto the

algebra si of all bounded operators of 'ë^, which commute with all translations

f-f. of <fw.
(Here the operator S* for a bounded operator S of #œ is defined as S*/=(S/*)*.)

Proof. Clearly p -» T/t is a linear and norm preserving mapping of 50Î into s/.

For the product we have

T*f(x) =  I f(x + t)dp * v(t) = \f(x + u + v)dp(u)dv(v)

= | TJ(x + v) dv(v) = TvTJ(x) = TJJ(x),

i.e., T^ = TßTv. Also

Tffm p* * Ex(f) = (p * Ex)*(f) = (Ap * 8,)(/*) = TJJ*) * = T*(j).

Let ,4 e -stf. Then /¿(/) = (Af)(0) defines a measure p e9JÎ and because A permutes

with the translations, we have

(') This means that, for each pair of functions /and g in the set, there exists a function h

in the set such that/ ^ h and g ^ hin the natural (pointwise) order.
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TJ(x) = p * 8_,(/) = (Afx)(0) = (AMO) = (4fJ(*X

i.e., Tpf= Af and consequently T,, = ^4.

2. A satisfactory description of all maximal ideals of the algebra 9JÎ is still an

unsolved problem and so any step forward in this direction may be of some

interest. In the case of the algebrau1 we know, that all maximal ideals or equiva-

lently all homomorphisms of fi1 onto the complex number field C are given by

means of the formula <bx(g) = jx(x)g(x)dx, where % is a continuous character of G.

The same formula gives a homomorphism of 9JÏ in C, if we replace g¿¿x by a general

measure p:

0*00 = J zôô^M*) = /<(*)■

In this way, as is well known, we may identify the maximal ideal space of £x with

the open complement of the hull of ß1 in the maximal ideal space of 9JÏ.

Furthermore, it is well known(2) that these homomorphisms are just those given

by minimal invariant subspaces of 38, invariant under the representation p-yTp

of 9JÍ in 38: Every minimal invariant subspace of 38 is of the form {ax}, aeC,

X a continuous character, and each such function space is a minimal invariant

subspace of 38. Now the question arises, if it is possible to obtain other homo-

morphisms of 9JÍ via minimal invariant subspaces in other reasonable represen-

tation spaces of 9JÎ. In this paper we will show that in the cases of the factor

spaces 2 = 38'/^0 and S = 38/^x the answer is negative. More explicitly we

shall prove the following

Theorem. If the locally compact abelian group G is separable, then the

factorspace 2> has no proper minimal invariant subspaces with respect to the

representation induced by the representation fi-*Tp of the measure algebra

9JÎ(G) ¿« 38. If G is not compact, then every minimal invariant subspace of ê is

generated by a function f=xg, product of a continuous character x and a

continuous bounded function g, having the property that for every aeG the

function gx:x -» g(a + x) — g(x) vanishes at infinity, i.e., lies in ft^. Conversely,

every function of this form /= xáf generates an invariant minimal subspace

modulo ^ and the homomorphism 0, which is defined by this subspace, is

identical with 3>z.

Call a function g e 38 slowly oscillating at infinity, if g(a + x) — g(x) vanishes

at infinity for every fixed a. Of course every ge <€œ oscillates slowly at infinity,

ut there also exist continuous functions not in W^, which are slowly oscillating

(2) Recall the fact, that every continous irreducible representation of a complex commuta-

tive Banach-algebra with unit is one-dimensional because the factor-algebra modulo the kernel

is a field. By Gelfand's and Mazur's theorem this factor-algebra is equal to C. Particularly

every proper minimal invariant subspace must have dimension one.



1963]    MEASURE ALGEBRA OF A LOCALLY COMPACT ABELIAN GROUP     537

at infinity. For example, let G be the real line and ft be any periodic differentiable

function with continuous derivative. Then gix) = ft(log(l + x2)) oscillates slowly

at infinity and is in (6^ if and only if ft is zero.

3. Let sé he any T-invariant subspace of J1, T the representation p-> Tß of

9JÎ in 38. If the function fe J1 generates modulo sé a minimal invariant sub-

space(2), there exists a homomorphism O of 9Ji in C, such that

TJ=S>ip)fimodsé)
or more explicitly :

(3) (T„/)fx) = 0(p)/(x) + H(p,x)

where Hip, x) is a function in sé for every pe9Jt. For p — zy we have (TEy/)(x)

= f(x + y) and <S>iey) = x(v) is a character of G. We write

H(er x) = Hiy,x).

Then we get from (3) :

(4) fix + y) = xix)fiy) + Hix,y).

Now let sé be always in %>Q, then H(x, y) is continuous in y for every fixed x and

from (4) follows immediately :

(5) /// is continuous in a single point, then it is continuous everywhere.

Theorem 1. Let G be separable. Let f be a bounded Borel-function on G,

which satisfies identity (4) with a inot necessarily continuous) character /. If

then the function Hix,y) is partially continuous in y, then f is continuous.

Proof. We choose a sequence of integrable positive continuous functions u¡

with Jujdx = 1 and lim;_œ J"ft(x)u¿(x)dx = ft(0) for every bounded measurable

function ft, which is continuous at 0. Let in general/! */2 denote the convolution

of the functions fx and f2 :

(fl*f2)(x)=   \fyix-t)f2it)dt.

For every continuous function ft on G, we then have lim ,_,„ (ft * «¡)(x) = ft(x).

We now write /¡fj>) = if*u/)iy) and H¡ix,y) = (/fix, • ) * u¡)(y). The functions

/, are all continuous and bounded and lim H ¡ix, y) = íf(x, y), because iZfx, • ) is a

continuous function of y. Let us assume that the bounded sequence {/¡(0)} con-

verges (otherwise we take a suitable subsequence). It follows from (4) for y = 0

that {/¡(x)} then converges for every x. But then the bounded function fix)

= lim¡^00/¡(x)is again measurable and satisfies the same identity (4). For the differ-

ence d =/ — /we then have

dix + y) = x(x)diy).

But then either à = 0, i.e., / = /, or x(x) =aYx)/rf(0) is measurable, hence con-



538 HORST LEPT1N [March

tinuous, and also d is continuous. Now /as a limit of a sequence of continuous

functions, according to a well-known theorem, (see e.g. [4, p. 164]), is continuous

in at least one point. It follows that/ = /+ ¿¿ is also continuous in at least one

point and so is continuous everywhere. This proves Theorem 1.

Corollary. The factor space 38/%^ has no minimal invariant subspaces.

We mention that according to a theorem of Rudin [2, p. 230] the kernel of the

factor representation of 9JÍ in 3) is equal to£\

Theorem 2. If in (A) H(x, ■ ) is in %'mfor every x andf is not in &«,, then x is

continuous and the function g = xf is a continuous function, which oscillates

slowly at infinity.

Proof. From Theorem 1 it follows that/is continuous. Now assume that/does

not vanish at infinity. Then there exists a sequence {yn} in G, which converges to

infinity and for which lim„^œ/(j>„) = a exists and is not 0. From (4) and

limí¿(x,y„) = 0 then follows lim„_00/(x + yn) = /(x)a. This shows that x

must be measurable and hence continuous. Of course g — xf is also continuous

and satisfies the relation

g(x + y) - g(y) = X(.x + y)H(x, y) e Vœ

for every fixed x.

The next theorem holds for general locally compact abelian groups.

Theorem 3. A subspace (/) of SS/^^ is invariant under the representation

T o/9Jl in 38/%? ̂ if and only if the function f, representative off—f+ ^'x, is of

the form f=xg, where x is a continuous character of G and g is a bounded

continous function, which oscillates slowly at infinity. The homomorphism <5

of 9JÎ, corresponding to (/), is identical with the homomorphism 07, corre-

sponding to the character x-

We remark that in the separable case the "only if" part of this theorem is an

immediate consequence of Theorem 2. For the general case we need a lemma :

(6) A function fon G converges to zero for x converging to infinity, if and only

//lim„_00/(x„) = 0/or every sequence {x„} a G with limn_a)x„ = oo .

We must show only that the condition is sufficient. This is obvious, if G is

countable at infinity, i.e., compactly generated. Now let G0 be a compactly gen-

erated open subgroup of G and e > 0. Let {x„} cz G be such that x„ — xm $ G0

for n^m. Then obviously lim„^00x„ = oo. It follows that |/(x)| < e on the

residue-classes of G0 with at most a finite number of exceptions, say Xt = x¡+G0,

/ = 1, ••-,«. Because X;is homeomorphic to G0, and is countable at infinity, there

exists a compact subset K¡cz X¡ with |/(x)| < e for x$K¡. Then K = \J"^XK¡

is again compact and for all x£K we have |/(x)|<e, which shows that

lim^oo/(x) = 0.
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Now let / generate an invariant subspace in 3$f£x. From (4) the following

identity follows:

(7) X(x)f(y) 4- H(x,y) = X(y)f(x) + H(y, x).

Now choose a sequence {y,} c G with lim^^ y, = oo in such a way that

lim f(y¡) = a and limx(v¡) = ß ^ 0 exists. In (7) set y =y, and take the limit.

Because limH(x,.v¡) = 0 for every x, we get

(8) Z(x)-a = /?■/(*) 4-n(x)

with h(x) = lim^^^y,, x). This function h(x) is measurable and as a limit of

continuous functions is continuous in at least one point [4, p. 164]. If/vanishes at

infinity, we have a = 0 and/= - ß_1h; consequently / is continuous in at least

one point and hence must be continuous everywhere. Therefore in this case/e (ëœ.

Iff does not vanish at infinity we may choose a # 0. Then (8) shows that x must

be measurable, hence continuous, and again/= ß~1(ax~h) is continuous. Then

g = xf oscillates slowly at infinity and f=xg has the form which the theorem

requires.

To prove the sufficiency of the condition in Theorem 3, let g be a bounded

continuous function slowly oscillating at infinity. Then for every sequence {v„}

tending to infinity,

"ni*) = g(x + v„) - g(y„)

defines a sequence of uniformly bounded continuous functions with lim„_oon„(x) = 0

for every x. Hence we have by Lebesgue's theorem for every bounded Radon

measure p: lim jh„(x)dp(x) = 0 which means

(F,g)(y,,)--p(l)g0O-0.

Therefore T„g — pH)g is in <ëx, which means, that g generates a minimal invariant

subspace (g) in 38/^^ with

Tn§ = KVê = ÄZo)l»      Xo the unit-character.

If x is a continuous character, then

iTpxg)ix) = J Xix + y)gix + y)dp(y)= x(x) |*g(x 4- y)d(p■ x)(y)

= Xix)i(i ■ xf (Xo)gix)(mod VJ = p(i)xs(x)(mod if j,

i.e., we have TJ^g)" = p(x)(xg)~, where (xg)~ = xs + %<<>• Now a reference

to (6) completes the proof of Theorem 3.

Finally we remark that Lemma (6) is trivial, if G is separable; thus in this case

the last paragraph already proves the theorem.
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ERRATA TO VOLUME 104

Joseph A. Wolf. Homogeneous manifolds of zero curvature, pp. 462-469.

Page 462, line 13 of §2. Delete the sentence "M" is complete if it is homo-

geneous." For if U is a nonzero totally isotropic linear subspace of jR", then

one can check that R"-UL is homogeneous but not complete.

Add the hypothesis that M" is complete in Theorem 1 (page 466) and in

Theorem 2 (page 467).


