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Differential Hopf algebras arise in several contexts in algebraic topology.

The Bockstein spectral sequence of an //-space is one example that has been

investigated by many authors [3; 1; 7; 8]. Borel [3] and Araki [1] proved al-

gebraic theorems about the structure of differential Hopf algebras of special

kinds. These special theorems enabled them to determine the odd torsion in

the cohomology of the exceptional Lie groups.

If X and Tare //-spaces and/:X-> Tis a fibre map which is multiplicative,

then the spectral sequence of / is a spectral sequence of Hopf algebras. This

situation was first discussed by J. C. Moore [17], and later by the author

[5; 6]. The techniques of [5] were later extended by the author (in unpublished

work) to prove theorems about the homology and cohomology suspensions,

i.e., when X is the space of paths of the //-space Y. The proofs rested upon a

general theorem about the structure of this spectral sequence. Some of these

suspension theorems had been proved by Moore using a different spectral se-

quence of Hopf algebras [12].

In this paper we make a study of differential Hopf algebras, and prove general

theorems on the structure of their homology. These theorems generalize the

results of Borel and Araki. Applied to the case of multiplicative fibre maps, we

obtain a general theorem about the structure of the spectral sequence (even in

the nonacyclic case), which, in particular, yields simple proofs of the suspension

theorems mentioned above. Applied to the Bockstein spectral sequence, we get

information on torsion in //-spaces.

This study of differential Hopf algebras depends on two spectral sequences

which may be defined in different circumstances. If one of them is defined, then

the terms of that spectral sequence satisfy the conditions necessary for the other

to be defined. Thus we get a spectral sequence for the term of the other spectral

sequence(2), and this spectral sequence has a very simple form which makes

it easy to calculate the form of its homology. Thus the structure of the limit
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(2) When this process is applied to the term of a spectral sequence, we find ourselves in the

position of calculating a spectral sequence for the term of a spectral sequence for the term of a

spectral sequence!
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term may be described very simply. The technique requires only that the differ-

ential Hopf algebra be either associative or coassociative. If it happens to be

associative and commutative, then the structure of the limit term of the spectral

sequence determines the algebraic structure of the homology to a large extent.

§§1,2 and 3 develop the general theory; §§4,5 and 6 are devoted to applications.

In §1 we define the nitrations we use to obtain our spectral sequences, the

first being that introduced in [16], the second being the dual filtration. In §2

we discuss the "biprimitive" form of a Hopf algebra. In §3 we obtain spectral

sequences for differential Hopf algebras in appropriate circumstances, and ob-

tain our main tool, a spectral sequence of biprimitive Hopf algebras, starting

with the biprimitive form of A, with limit the biprimitive form of H(A). In §4

we apply the results to the Bockstein spectral sequence of an if-space, and in

§5 to multiplicative fibre maps, where we obtain various transgression theorems.

In §6 we apply these results to Lie groups, or similar if-spaces, and get theorems

about existence of torsion in their homology, and other theorems.

We refer to [16] for the theory of Hopf algebras, and we employ the results

of [16] freely.

Much of this work overlaps with unpublished work of J. C. Moore on dif-

ferential Hopf algebras. I am indebted to him for many conversations.

1. Filtrations of Hopf algebras. We shall assume that all graded modules M

considered have M¡ finitely generated over K for all i, M¡ = 0 for i < 0, M0 = K,

the ground field, which will always be taken as Zp, p prime, or the rationals, Z0.

Definition. An algebra A over a field K is graded X-module A= 2,e0^¡

and a map of graded modules (f> : A ®A-*A (4>(A¡ ® Aj) çz Ai+j) such that there

exists a unit leA0 (4>(1 ® x) = (p(x ® 1) = x for any x e A).

Let A be an algebra, and let Ä = positive dimensional elements of A. Define

a decreasing filtration {F4^4} of A as follows:

F°A = A,       Fn+1A = (¡)(Ä ® F"A).

We set Eq0(A) = F"(A)/Fq+1(A) and E0 = 23£g. El is graded and we set

£«•' = (q + I) dimensional elements of El, so that E0 = 2g,i£o'• It *s easv to

check that E°0 = K and Eq-1 = 0 for / < 0.

For xeFq, x$F9+1, define x = {x} in Fq/Fq+1. For every xe,4 there exists

such a q, so x is defined for each x.

If A is an associative algebra, we may define the structure of an algebra on

EQ by x • y = xy.

Proposition 1.1.   Let A and B be associative algebras.

(i) E0(A) and E0(B) are associative algebras.

(ii) E0(A ®B) = E0(A) ®E0(B), where the tensor product of two algebras

is made an algebra by the rule (a ®b)-(c ®d) = ( —l)Mac ®bd, dimb = p,

dim c = q.
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(iii) A homomorphism f:A-*B induces a homomorphism f0 :E0(A)-» E0(B).

(iv) Eq = indecomposable elements of E0, i.e., no element of £¿ is a pro-

duct and Eq generates E0.

Proof,  (i) FPA- FqA c Fp+qA since A is associative and thus the multiplication

in E0(A) is well defined and E0(A) is an algebra, obviously associative.

(ii)  A®B = Ä®B + A®B. Hence if F"(A ®B) = Hi+j = pFlA ®FJB, then

FP+1(A®B) =  (Ä®B + A®B)F"(A®B)

I       F1 A® FJB.
t+j=p+i

Hence EP0(A ®B)= I,+J=p£'0(^) ®EJ0(B) and (ii) follows.

(iii) and (iv) are obvious.

Definition. A coalgebra A over K is a graded /C-module A together with a map

\j/ : A -> A ® A of graded modules such that, for x e Ä, \]/x = x ® 1 + 1 ® x

+ Zxj ®x'¡, where 1 eA0 = K, x¡, x[e Â.   A   is   coassociative   if   (>J/®í)oi¡/

= (i ®4/)o\¡/.

Let A be a coalgebra over K, and let p:A-*Ä be the natural projection,

i : À c A. Define \j/ : À -► Ä ® Ä, by \¡/ = (p ® p)o \j/o i. Define \¡/„:A^Ä® ■•■ ®Ä

(n + 1 times) by \¡/0 = p and \¡/n+l = (i/r ® 1 ® ••• ® 1) o i^,„ and let GM = kernel

i^p. Then GM = A0 and {Gp A} is an increasing filtration of A. G"A £ Gp+iA,

[JPGPA = A. Set 0E"(A)= CA/G"'^ and 0E(A) = ZP o^"^)-

The dual A* = Hom(y4,K) of the coalgebra A is an algebra, and it is easy to

see that FP+1A* = annihilator of G"A, i.e., Fp+1 and G" axe dual filiations.

If A is coassociative, we may define a coalgebra structure in 0E by *P0(x) = (\¡ix).

Proposition 1.2.   Let A and B be coassociative coalgebras.

(i)   qE(A), 0E(B) are coassociative coalgebras.

(ii)   0E(A ®B) = 0E(A) ®0E(B) as coalgebras.

(iii) A homomorphism f : A -* B of coalgebras induces a homomorphism of

coalgebras f0 : 0E(A) -* 0E(B).

(iv) P(0E(4)) = o^1^) (P(oE(A)) = the primitive elements of 0E(A), i.e., the

elements x such that ^VqX = x ® 1 + 1 ® x).

The proof is similar (dual) to the proof of Proposition 2.1.

Definition. A Hopf algebra over a field K is a (graded) module A over K such

that A0 = K, A,=0 for ¿<0, equipped with maps i/f :A-*A®A, and <j> ;A®A-+A

such that

(1) <p makes A a graded algebra over K,

(2) i¡/(x) = x®l + l®x+ Zx¡ ® x/for x e Am, m > 0, where 0 < dim x; < m,

0 < dim xi <m(\]/ makes A a graded coalgebra).

(3) ^ is a map of algebras, where A ® A is made an algebra by defining

(a ®b)-(c ®d) = (-iyq(f>(a ® c) ® 4>(b ®\d),

where beAp,  cë[Aq.
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If A is an associative Hopf algebra, then i/^:/l->/4®y4isa map of algebras

which induces a Hopf algebra structure in E0(A). If A is a coassociative Hopf

algebra, the product tf> :A ®A-+A is a map of coalgebras, which induces a

Hopf algebra structure in 0E(A).

Proposition 1.3. (i) If A is an associative Hopf algebra, thenE0(A) is a Hopf

algebra and Eq(A) cz P(E0(A)), so that E0(A) is primitively generated.

(ii) If A is a coassociative Hopf algebra over Zp, then 0E(A) is a Hopf al-

gebra, 0E(A) is associative, commutative and Ç(0E(A)) = 0   (where   £(x) = Xe).

(iii) If A is an associative Hopf algebra, then E0(A) and 0E(A*) are dual

Hopf algebras.

Proof, (i) *F0 : E0 -* E0 ® E0 preserves filtration, and since E° = K,

El c P(E0). El generates E0 by (l.l(iv)).

(iii) follows easily from the fact that the two nitrations are dual. Then (ii)

follows from (i) and (iii), together with [16, Theorem 4.9]: A Hopf algebra A

over Zp is primitively generated if and only if the dual Hopf algebrad* = Hom(A,Zp,

is commutative, associative, and S,(A*) = 0, (see theorem 2 below).

Proposition 1.4. (i) // A is an associative, commutative Hopf algebra over

Zp, then E0(A) = A as algebras.

(ii) If A is a coassociative, cocommutative Hopf algebra over Zp, then 0E(A) s A,

as coalgebras.

Proof, (i) follows from Proposition 1.1 (ii) and Borel's theorem on the struc-

ture of Hopf algebras [2, Theorem 6.1] and [16]. (ii) is simply the dual state-

ment of (i).

2. Biprimitive forms.

Definition. A Hopf algebra A is said to be primitive if there exists a set of

primitive generators for A. A will be called coprimitive if the primitive elements

of A are indecomposable. We shall say A is biprimitive if it is both primitive

and coprimitive.

It is easy to see that A coprimitive is equivalent to A* primitive (^4* = the

dual Hopf algebra).

We recall a result of Milnor and Moore [16, Theorems 4.8 and 4.9] (we in-

clude a proof in §7) :

Theorem 2.1. A Hopf algebra A over Zp, p i= 0, is coprimitive if and only

if A is associative, commutative and all pth powers of elements of À are zero.

A Hopf algebraZover the rationals is coprimitive if and only if its multiplica-

tion is associative and commutative.

Corollary 2.2. If A is a coprimitive Hopf algebra overZp, then the integers

rj = rank^4¡ (as a Zp-module) determine the algebra A completely. In other
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words if A and B are coprimitive Hopf algebras over Zp, and if rank A¿ = rank B¡

for all i, then A is isomorphic to B as algebras.

Proof. By Borel's Theorem [2, Theorem 6.1] and Theorem 2.1, A = (££),A(x¡)

as an algebra, where {x,} are a set of generators for A and A(xt) = Zp[x;]/(xf)

when dim x¡ is even, A(x¡) = A(x¡) = exterior algebra on x¡, when dimx¡ is

odd (it is understood that xp= 0 if p = 0). Hence the dimensions of the genera-

tors X; determine A completely as an algebra.

Let us assume by induction that r„ i < n, determines A completely in di-

mensions less than n. Then rank Dn, where D„ = decomposable elements of

dimension n, is determined. Then, r„ — (rank D„) = number of generators of

dimension n, which proves the corollary.

Corollary 2.3. If A is a biprimitive Hopf algebra, then the numbers r¡

= rank A¡ determine the Hopf algebra A completely.

Proof. If A is primitive, the generators of A may be chosen primitive which

determines the diagonal map of A.

Definition. Let A be a Hopf algebra, B a biprimitive Hopf algebra. B is called

a biprimitive form of A if rank 4¡ = rank B¡ for all i.

Corollary 2.4. Any two biprimitive forms of a Hopf algebra are isomorphic

(as Hopf algebras).

If A is associative, then £0G4) is primitive by Proposition 1.3 (i). If A is co-

associative, then 0E(A) is coprimitive by Proposition 1.3(h). On the other hand

a primitive Hopf algebra is coassociative, and a coprimitive Hopf algebra is

associative.

Lemma 2.5. If A is primitive, then 0E(A) is biprimitive. If A is coprimitive

then E0(A) is biprimitive.

Proof. The statements are dual so that it suffices to prove one of them. We

will prove the second. That A is coprimitive is equivalent (by Theorem 2.1) to A

being associative, commutative, and having pth powers of positive dimensional

elements zero. By Proposition 1.4 (i) E0(A) = A as an algebra so that E0(A) has

these properties and E0(A) is also coprimitive. But E0(A) is primitive by Pro-

position 1.3 (i), so that E0(A) is biprimitive.

Corollary 2.6. If A is an associative Hopf algebra, then 0E(E0(A)) is a

biprimitive form of A. If A is a coassociative Hopf algebra, then E0(0E(A))

is a biprimitive form of A.

If A is associative and commutative by Borel's Theorem E0(A) = A as an

algebra.

If B is associative, commutative and primitively generated, over Zp, p + 0,

it is easy to show that 0E(B) is obtained from B simply by truncatirg each
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polynomial ring to height p and introducing new generators for each pth power.

Explicitly, if B = 0¡B¡ where B¡ is a Hopf algebra on one generator, then

o£(B) = (g)oW.
and

0£(A(x;)) S  A(x,.),

while

oEÍZTxJ/x?') = <g)Z,KJ/«,
k = l

where xf'     is a representative of Çk.

Hence we get the following theorem which will be used repeatedly to investi-

gate a Hopf algebra via its biprimitive form.

Theorem 2.7. Let A be an associative, commutative Hopf algebra over Zp.

As an algebra, the biprimitive form of A is obtained from A by replacing tensor

product factors of the form Zp[x]/(xp/) 6>»®f=iZp[iJ/(5f) where xp'~l re-

presents £¡.

If p = 0, we are to take xp= 0. That is, the theorem says that A is isomorphic

as an algebra to its biprimitive form, if we have rational coefficients.

3. Differential Hopf algebras.

Definition. A differential Hopf algebra is a Hopf algebra A with a differential

d (d2 = 0) such that the product and diagonal maps <p : A ® A -* A and

\¡/ : A -* A ® A axe maps of differential modules (where A® A has the usual

tensor product differential, d(a ®b) — (da) ®b + ( — l)pa ®db, if aeAp).

If A is an associative differential Hopf algebra, then d preserves the filtration

F" of §1 of the algebra A, i.e., d(F"A) <= F"A.

Theorem 3.1. Let A be an associative differential Hopf algebra. Then as-

sociated with the filtration FPA we get a spectral sequence of associative, prim-,

itive Hopf algebras Er, 0 ;S r ^ co (£0 = E0(A) as in §1).

Proof. If A is associative, then ^>:,4®,4->,4isa map of filtered modules

(which induces the algebra structure of E0(A)). Hence </> is a map of filtered

differential modules and hence induces a map of spectral sequences

4>r:Er(A®A)^Er(A), O^r^co. But Er(A ® A) = Er(A) ®Er(A) so that (pr

makes Er(A) an algebra. Since \j/ :A-* A ®A is a homomorphism of differential

algebras, it induces i¡jr : Er(A) -* Er(A) ® Er(A) which makes Er(A) a Hopf al-

gebra. Since <¡>r and \¡/r commute with dr (being maps of spectral sequences),

it follows that {£r} is a spectral sequence of differential Hopf algebras.

Since (j) is associative, E0(A) is associative (see Proposition 1.1), and primitive

see Proposition 1.3(f)). Then the following lemma will complete the proof of

the theorem (by induction).
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Lemma 3.2. Let A be a differential Hopf algebra over Zp. (a) If A is asso-

ciative, then H(A) is associative, (b) If A is primitive, then H(A) is primitive.

(c) If A is coprimitive, then H(A) is coprimitive.

Proof,   (a) is obvious, while (b) and (c) are dual.

To prove (c) we use Theorem 2.1, so it suffices to prove that H(A) is com-

mutative, associative and that all pth powers of positive dimensional elements

of H(A) are zero. But these properties all follow easily from the corresponding

properties of A, so that the lemma follows.

The dual theorem below may be obtained directly from Theorem 3.1 by

duality.

Theorem 3.3. Let A be a coassociative differential Hopf algebra. Then

associated with the filtration Gq, we get a spectral sequence of coassociative, co-

primitive Hopf algebras, rE, 0 = r = oo (0E = 0E(A) as in §1).

Now a primitive Hopf algebra A is coassociative, and a coprimitive Hopf

algebra B is associative (see Theorem 2.1). Hence we may use the filtration

Gq on a primitive A, or the filtration Fp on a coprimitive B.

Lemma 3.4. Let A be a primitive differential Hopf algebra. Then <„E(A) is

a bi primitive form of H (A).

Proof. œE(A) is the graded module associated with a filtration of H(A), by

the usual theory of spectrals sequences (see [11]). Hence rank (^(A))9 = rank Hq(A)

for each q (total degree q in œE(A)). Then it remains to show XE(A) is biprimi-

tive. By Lemma 2.5, 0E(A) is biprimitive. But it follows from Lemma 3.2 that

ifr£ is biprimitive, then r+1£ = if(r£) is biprimitive, and the lemma follows

by induction. (Note that for any given total degree q, (^E)9 = (q+1E)q,

so that it involves only a finite number of steps to prove the theorem in any

given dimension, and thus the induction is valid.)

We immediately get the dual :

Lemma 3.5. Let A be a coprimitive differential Hopf algebra. Then EX(A)

is a biprimitive form of H(A).

Then in the spectral sequence Er(A) for an associative differential Hopf al-

gebra A, we may take the spectral sequence SE for each term.

Lemma 3.6. Let A be an associative differential Hopf algebra. Then the

spectral sequence sE(Er(A)) converges to 0E(Er+l(A)) (as s->oo), i.e.,

œE(E,(A)) £ 0£(£r+104)), as Hopf algebras.

Proof. Er(A) is primitive, by Theorem 3.1. Hence œE(Er(Aj) is a biprimitive

form of H(Er(A)) = Er+i(A) by Lemma 3.4. Since Er+1(A) is primitive,

0£(£r+¿A)) is also a biprimitive form oîEr+1 (A) so that wE(Er(A)) S 0£(£r+i(A))

as Hopf algebras, by Corollary 2.3.
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We get by duality:

Lemma 3.7. Let A be a coassociative differential Hopf algebra. Then the

spectral sequence Es(rE(A)) converges to E0(r+1E(A)) (as s-»oo), i.e.,

EMA)) S £0(r+1£L4)) as Hopf algebras.

Now we come to our main result.

Theorem 3.8. Let Abe a differential Hopf algebra, and suppose A is either

associative or coassociative. Then there exists a spectral sequence of biprimitive

Hopf algebras with the first term the biprimitive form of A and last term the

biprimitive form of H(A).

We shall refer to this spectral sequence as the biprimitive spectral sequence of A.

(Note that by spectral sequence we mean £r with 0 ^ r ^ a, where a is some

ordinal, rather than the usual convention where a = co the first limit ordinal. In

the proof below a = co • co.)

Proof. Let A be associative. Then in the spectral sequence E(Er(A)),

aoE(Er(A)) = oE(Er+1(A)) by Lemma 3.6, so that 0E(Er(A)), ^(EXA)),-,

xE(Er(A)) = 0E(Er+1(A)), i£(£r+1(y4)), ••• is a spectral sequence. Thus juxta-

position of the spectral sequences {S£(£0L4))}, {^(E^A))},--- is the spectral

sequence required.

If A is coassociative, we take {ES(0E(A))}, {EsdE(A))}, •••, using Lemma 3.7,

which completes the proof.

Thus questions about the biprimitive form of H(A) can be reduced by Theorem

3.8 to questions about the homology of biprimitive differential Hopf algebras.

These are described below.

A differential Hopf algebra B is said to be an elementary differential Hopf

algebra of type I if B = (x) ®Zp[y]/(yp), x, y primitive, dx = y, dim x odd,

dim y even. It is of type II if dy = x, everything else as in type I. Such algebras

are clearly biprimitive.

A biprimitive differential Hopf algebra A is said to be of type I (resp. II) if

A s®,/?; as differential Hopf algebras, where B¡ is an elementary differential

Hopf algebra of type I (resp. II) for each i. A is said to be of type III if d 3 0.

Theorem 3.9. Let A be a biprimitive differential Hopf algebra over Zp.

Then A is the tensor product of differential Hopf algebras of types I, II, and III

(as  a  differential Hopf algebra).  Explicitly A ^^¡K¡® (&jMj®Q where

K¡  = A(x,)<B)Zp[yi']/(yp),    dx¡ = yu xuyt primitive,

Mj = A (£,) ®ZP[>/j]/0?j)>     drlj = Zp tj,Vj primitive,

dimx,-,^ odd, dimy^- even, Q a biprimitive Hopf algebra with d = 0.

Proof. Since A is biprimitive, any basis of PL4), the primitive elements of

A, will be a set of generators of A satisfying the hypothesis of Borel's Theorem.
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Then as a Hopf algebra, A will be the tensor product of the algebras generated

by each of these generators, truncated polynomial algebras of height p for even

dimensional generators, exterior algebras for odd dimensional generators.

Then we may find modules F, G, J, with P(A) = F + G + J, d(F) = G and

d|F is an isomorphism of F with G, d(J) = 0. If M+ (M_) denotes the even

(odd) dimensional elements of M (M any module), then (g); K¡ is generated

by F_ + G+, ÇQj Mj is generated by F+ + G_, Q is generated by J.

Theorem 3.10. (a) Let K = A (x) ®Z„[y]/(yp) with dx = y, dim x odd.

Then H(K) = A({x/-1}), if p * 0; H(K) = Z0 if p = 0.
(b)LeiM= A© ®Zp[i7]/07p) with dn = Ç, dim £ odd. T/ien if(M)

= AW1}), «/ P * 0; H(M) = Z0 if p = 0.
(c) // d(ß) = 0, if(ß) = Q.

This theorem follows immediately by direct computation.

Theorem 3.11. Let A be a differential Hopf algebra which is either as-

sociative or coassociative. If A is finite dimensional, i.e., A¿ = 0 for large i,

then the biprimitive form of H(A) has the same number of odd dimensional

generators as the biprimitive form of A.

Proof. This follows from Theorems 3.8, 3.9, and 3.10. For we need only

verify this in differential Hopf algebras of types I, II, and III where it is obvious.

Thus the only way an odd dimensional generator may disappear (e.g., in S£(£,L4)))

is by a process of replacement by new odd dimensional generators, whose di-

mension goes to oo, which contradicts the finite dimensionality of A. Note that

if the coefficients are the rationals Z0, the finite dimensionality implies that

d(A) = 0.

Corollary 3.12. Let A be an associative, commutative, differential Hopf

algebra. If A is finite dimensional, then H(A) has the same number of odd

dimensional generators as A.

Proof.   This follows immediately from Theorem 3.11 and Theorem 2.7.

This Corollary is due to J. C. Moore (unpublished).

Further we have:

Theorem 3.13. Let A be a differential Hopf algebra which is either asso-

ciative or coassociative. Suppose Am^0 and A¡ = 0 for i > m. Then Am = Zp

= Hm(A) and Ht(A) = 0/or i > m.

Proof. This is easy to verify for a biprimitive differential Hopf algebra, so

that the theorem follows by applying the biprimitive spectral sequence of A.

4. Applications to the Bockstein spectral sequence. In this section we apply

our results to studying the Bockstein spectral sequence of an if-space. As a con-
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sequence we get a theorem describing the Bockstein spectral sequence of a finite

dimensional if-space.

The exact coefficient sequence 0->Z-»Z-»Zp->0(pa prime, as usual) leads

to a homology (or cohomology) exact couple:

H(X) -> H(X)
\ /

H(X;ZP)

The spectral sequence of this exact couple is called the homology (or cohomology)

Bockstein spectral sequence {Bk} (or {Bk}) of X, mod p. In case X is an if-space,

and if ¡(X) is finitely generated for each i, the homology and cohomology Bock-

stein spectral sequences are dual spectral sequences of Hopf algebras. (For de-

tails and a thorough discussion of the Bockstein spectral sequences see [7].) We

denote by ßk and ßk the differentials in Bk and Bk, respectively.

Since the Bockstein spectral sequence in cohomology modp of an if-space

is a spectral sequence of associative, commutative Hopf algebras, the discussion

of §3 applies. Thus for each teim of the spectral sequence we have a spectral

sequence of biprimitive Hopf algebras. Using the results of [7], we may describe

the spectral sequence more precisely in the case of a finite dimensional H-space.

Theorem 4.1. Let X be a connected H-space with H¡(X) finitely generated

for each i, and H¡(X;Zp) = 0 for j > n. Then in sE(Er(Bk)) (Bk = the kth term

of the cohomology Bockstein spectral sequence mod p of X), all even dimensional

primitive elements are cycles.

This theorem is dual to the following theorem and equivalent to it.

Theorem 4.2. Let X be as in Theorem 4.1, Bk= the Bockstein spectral se-

quence in homology modp of X, Bk — (Bk)*. Then all odd dimensional primitive

elements of Em(tE(Bk)) are cycles.

To show Theorem 4.1 is equivalent to Theorem 4.2, we note that B* = (Bk)*,

rE(A*) = (Er(A))*, £m(B*) = (m£(B))* (as differential Hopf algebras in each case).

It follows that £m(,£(B*)) = (mE(Et(Bk)))*.

The following lemma follows immediately from the definitions:

Lemma 4.3.   If B is biprimitive, then P(B*) = (P(B))*.

For Q(B*) = (P(B))*, and the map of P(B*) into Q(B*) is an isomorphism.

Let D = sE(Er(Bk)). Then Theorem 4.1 asserts that d :P(fJ2")->P(Z>2n+1)

is zero. By virtue of Lemma 4.3 this is equivalent to d* :P(D2n+i)->P(D2n)

being zero, which is Theorem 4.2.

We shall prove a slightly stronger theorem which implies Theorem 4.1.

Theorem 4.4. Let X be a connected H-space with H¡(X) finitely generated

for each i and H¡(X;Zp) = 0 for j > n (for some n). Then in Er(Bk), all even

dimensional primitive elements are cycles under dr.
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Proof of Theorem 4.4. From the results of §2, it follows that the even dimen-

sional primitive elements of £0(£*) are represented by even dimensional genera-

tors and their iterated pth powers in Bk. Since ßk, the differential in Bk, is a de-

rivation and Bk is associative and commutative, the pth powers are cycles in Bk.

Hence the primitive elements in E0(Bk) corresponding to pth powers in Bk axe

permanent cycles in Er(Bk). Therefore, to prove Theorem 4.4, it suffices to con-

sider primitive elements of Er(Bk) which are represented by elements xeB2m

which are indecomposable.

Lemma 4.5.   ßk(B2km) ̂ßk(D), where D = the decomposable elements of B2m.

Proof. If ßkx$ßk(D), then there is an element yeB2m+1, with y(ßkx) ^ 0

and y(ßkD) = 0. Hence (ßky)(x) =* 0 and (ßky)(D) = 0, i.e., ßky í 0 and is pri-

mitive, which by [7, Theorem 6.1], contradicts the hypothesis that HJJÍ ;Zp)

is a finite dimensional Zp module  (HJ(X ;ZP) — 0 for ; > n). Hence ßkx e ßk(D).

Let x e Bk2m be an indecomposable element representing a primitive element

zeEl(Bk) = F\Bk)/F2(Bk). We shall show that z is a permanent cycle in Er(Bk)

which will prove the theorem. If ßkx i= 0, then ßkx = ßkw, where weD = F2 by

Lemma 4.5. Then z = {x} — {x — w} in £¿ = F1/F2 and ßk(x — w) = 0. Hence

z is a permanent cycle,    q.e.d.

Theorem 4.6. Let X be an H-space, with H+(X) finitely generated. Then

there is spectral sequence of biprimitive Hopf algebras whose first term is the

biprimitive form of H*(X;Zp) and whose last term is the biprimitive form of

BQD = (H*(X)/torsion) ®Zp. Each term in the biprimitive spectral sequence

is a tensor product of differential Hopf algebras of types I and III.

Proof. The spectral sequence is obtained by identifying the term „£(£„(5^))

with 0E(E0(Bk+l)) in the corresponding spectral sequences for Bk, Bk + i, from

Theorem 3.8. The remainder of the theorem follows from Theorem 3.9 together

with Theorem 4.1.

Applying Theorem 4.6, together with the results of §2, we get:

Theorem 4.7. Let X be an H-space, with H+(X) finitely generated. If

H*(X;Zp) has a generator of dimension 2m — 1, then H*(X;Q) (Q = rationals)

has a generator of dimension 2mpq — 1, for some q, 0 ^ q < oo. // H*(X;Zp)

has a generator of dimension 2m, then H*(X;Q) has a generator of dimension

2mpk — 1 for some fc, 0 < fe < co.

Proof. This follows easily from Theorem 4.6, the results of §2 (e.g., Theorem

2.7), and the fact that Bœ is an exterior algebra on odd dimensional generators

(see [7, Corollary 4.13]). This last fact shows that fc > 0, since the generator

in dimension 2m must bound in the biprimitive spectral sequence, and we get

a nontrivial algebra of type I.
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We consider a special case:

Theorem 4.8. Let X be an H-space with H%(X) finitely generated, and

suppose that H*(X;Q) = f\(z). Then, if p # 2,

m

if*(*;Zp) = A(x) ®   (g) Zpiy¡\/(y1%   h, = p"' ,
i = l

as an algebra, where dimyi+1 = h¡dimy¡, dim^ = 1 + dimx = 2q, and

dimz = 2qp" — 1, where a = 2™=i ";• If P = 2, i/je conclusion is the same ex-

cept when dimx = l, when we allow the possibility that y¡ =x2. Note that

m = 0 is allowed, i.e., H*(X;ZP) may be an exterior algebra A(x).

Proof. Since H*(X;Q) = A(z), it follows that if*(X)/torsion = A (z) so that

Bœ = (H*(X)/ torsion) ® Zp = A(z) (where A(z) means the exterior algebra

on one generator over the appropriate ring or field in each case). Hence the bi-

primitive form of Bœ is the exterior algebra on one generator. Then by Theorem

3.11 (applied successively to each term Bk of the Bockstein spectral sequence),

Bj = H*(X;Zp) has only one odd dimensional generator in its biprimitive form.

Hence

0E(E0(Bi)) s A (x) ® (8) Zp\wÄ/(wp).
i=i

If we can prove that dimu^ = (dimx) + 1 and dim wi+1 = p(dimw,), then the

result will follow from Theorem 2.7.

Since all the w,'s are permanent cycles by Theorem 4.1, if x is also a cycle

then the differential is zero in 0£(£0(B1)), so 1£(£0(B1)) = 0E(E0(El)). Similarly

0E(E0(B1)) = 1E(E0(Bl)) = -=sE(Er(Bl) where finally sdx # 0 in S£(£,(B()).

Then sdx = w1 (assuming the w¡'s are numbered appropriately) and by Theorems

4.6 and 3.10,

s+1£(£r(B()) = H(s£(£r(B,))) = A (xx) ® <g) Zp[w[}/(wf),
1=2

where Xj = {xwï-1}, dimxt = p(dimw!) — 1, dimw! = dimx + 1. Continuing

in a similar fashion, we get that w2 = dxx in some term of the spectral sequence,

so that dim w2 = p(dim wj. We may continue this argument to show that

dimwi+1 = p(dimw() for all i, since each vv,- must be a boundary in some term

of the spectral sequence, since the limit is an exterior algebra. This completes

the proof.

Theorem 4.8 will be the basis of a thorough study of such if-spaces which

are rational homology spheres, which will appear elsewhere [9].

5. Applications to multiplicative fibre maps. In this section we study the

spectral sequence <%r of a multiplicative fibre map of one if-space to another.

J. C. Moore [17] has pointed out that over a field of coefficients, this spectral
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sequence is a spectral sequence of Hopf algebras. Using the techniques developed

in §3 we derive some theorems about the structure of such spectral sequences,

getting transgression theorems which generalize various known results (see

[12, exp. 7; 5]). These results are then applied to study relations between the

homology and cohomology of an //-space and its loop space.

Let £ and B be //-spaces, with multiplications p : E x E -*■ E and p' :B x B-*B,

and let/:£-+5 be a fibre map such that/°p = p' ° (fxf). We call/ a multi-

plicative fibre map(3).

Clearly the fibre F =/_1(e) (e = unit of B) is an //-space, with p as its mul-

tiplication. Let us always assume that B and F axe connected.

Lemma 5.1.   nx(B) acts trivially on H^.(F;K) for any  coefficient group K.

Proof.   The action of n^B) on H*(F;K) may be described as follows:

Let (¡) : I -> B, </>(0) = 4>(l) = e, represent an element a e n^B). Consider <p

as a homotopy of the constant map of F -> B. Then covering the homotopy 4>,

we can find a homotopy $ of the identity map of F->Fc£, <E>:Fx/->£,

wi'h/°$ = (/) (so that for any value of t, 0(F x i) c/-1(0(i))). Then k:F->F

is defined by fc(x) = 0(x, 1), and its image is in F since /°<E>(x, 1) = $(1) = e.

Then k^:Hjf(F;K)^Hif(F;K) is the automorphism induced by aen^B),and

it can be shown to be independent of the choice of 4> representing a, or of O

covering (j).

We shall show that $ may be chosen in such a way that fc is homotopic to

the identity map, so that fc* = identity. We construct 3> as follows:

Consider (/>:/-> B as a homotopy of the projection of the map of one point

into F, namely the inclusion of the unit e of £. Let h : I -* £ be a lifting of this

homotopy,  so that  h(0) = e, f(h(t)) = <p(t).  Define <D : F x I -* E,   by í> (x, i)

= p(x, h(t)). Then i> is continuous and

/(<D(x,0)  = f(p(x,h(t)))

= p'(f(x),f(h(t))) = p'(e,<p(t)) = <p(t)

since xeF =f~\e). Then fc(x) = 0(x, 1) = p(x,y) where y = h(l).   Since F is

connected, there is path g : I -»• F with g(0) = y, g(\) = e. Then H(x, s) = p(x, g(s))

defines a homotopy between fe and the identity, i.e., H(x,0) = fe(x), H(x, 1) = x.

Hence fc* = 1 and the lemma is proved.

Since the diagram

£ x £-—  —»£

BxB

(3) It is easily shown that iff is a homotopy multiplicative fibre map (i.e.,/ °p~p' °(fxf)),

then p ~ p, such that/is a multiplicative fibre map when E is equipped with the multiplication

p. In fact iff : E->- B is a homotopy multiplicative map, then there is a multiplicative fibre map

f':E'^- B', with E S £', 5 = B', and /' equivalent to / (in an obvious sense).
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is commutative and/x/is a fibre map, p and p' induce maps of spectral se-

quences in homology and cohomology. Let us assume that H¡(B), Hj(F) are

finitely generated for all i, j.

Let K be a field, $r the cohomology spectral sequence (over K) of the fiber-

ing/. Then it follows from the results of [13] (cf. [17]) that £r(fxf) = Sr(f)

® Sr(f) (with the tensor product differential). Hence p together with the dia-

gonal map induces a Hopf algebra structure in the spectral sequences associated

with /. In particular S2(f)^H*(F;K) ®H*(B;K) as Hopf algebras.

In general, since the product map and the diagonal map preserve both filtration

and total degree it follows that <fr is a bigraded Hopf algebra. As usual we will

use the filtration degree p and the complementary degree q as our gradations

(complementary degree = total degree — filtration degree). Then

dr:é'P-q^^p+r-9~r+i .

Let us now consider such bigraded differential Hopf algebras.

Let A be a bigraded differential Hopf algebra over Zp. If

d : Ap'9->Ap+r-q-r+1

then we shall say d has bidegree (r, 1).

Lemma 5.2. If A is associative and d has bidegree (r, 1) then ES(A) is a

spectral sequence of bigraded Hopf algebras, and ds has bidegree (r, 1).

Lemma 5.3. If A is coassociative and d has bidegree (r, 1) then SE(A) is a

spectral sequence of bigraded Hopf algebras, and sd has bidegree (r, 1).

Lemma 5.4. Let A be a bigraded associative, commutative Hopf algebra.

Then E0(A) =■ A as bigraded algebras.

Lemma 5.5. Let A and B be biprimitive, bigraded Hopf algebras. Then

A and B are isomorphic bigraded Hopf algebras if and only if rank(Ap'9)

= rank(Bp,?) for all p and q.

The proofs of these lemmas are routine extensions of similar proofs about

graded Hopf algebras.

Using Lemmas 5.2, 5.3 and 5.5 we may extend Theorem 3.8 to the bigraded

case in an obvious manner:

Theorem 5.6. Let A be a bigraded differential Hopf algebra with dif-

ferential d of bidegree (r, 1). Suppose A is either associative or coassociative.

Then there exists a spectral sequence of biprimitive, bigraded Hopf algebras

with differentials of bidegree (r, 1), the first term of the spectral sequence being

the biprimitive form of A, and the last being the biprimitive form of H(A).

We omit the proof, referring to the proof of Theorem 3.8.
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Theorems 3.9 and 3.10 describe the homology of biprimitive differential Hopf

algebras. We shall not write down the bigraded versions of these theorems, but

simply use them, referring to the singly graded versions.

The following technical lemma and its consequence are the main tools we

shall need.

Lemma 5.7. Let A be a bigraded, biprimitive differential Hopf algebra with

differential d of type (r,l), r > 1. Suppose further that A = B ®C ®J, where

B= Z^°=o A°'q = the Hopf subalgebra of A of elements of filtration zero,

C= Zp°=o^P'0 = the Hopf subalgebra of A of complementary degree zero,

J = an exterior algebra on odd dimensional generators. Then H(A) = B'

®C ® J', where B' = T,q=0H0'q(A), C = 1P=0HP'°(A) and J' is an exterior

algebra on odd dimensional elements. Further B' is generated by the cycles

in P(B), C is generated by the cycles in P(C) which do not bound, and the

generators of J' are the cycles of P(J) which do not bound and generators of

the following two types: {yp~1(dy)}, where yeP(B) and {x(dx)p~1} where

dxeP(C).

Proof. First we note that since d is of type (r, 1), r > 1, it follows that no

element of B is a boundary, and that all elements of C are cycles. Further, in

an even total degree, all primitive elements are sums of primitive elements

of B and C, i.e., P(A) = P(B) + P(C), in even total degrees. Then the lemma

follows from Theorems 3.9 and 3.10 (in their bigraded interpretation).

Now we are in a position to prove the main theorem describing the spectral

sequence of a multiplicative fibre map.

Theorem 5.8. Let Sr be the spectral sequence over Zp of a multiplicative

fibre map. Then Sr^Br ® Cr ® Mr ® Nr, r ^ 2, as algebras, where Br = S0/*,

Cr = £*'° (Br and Cr are sub-Hopf algebras of <fr) Mr = A(xi,--.,xk),

Nr = A(w1,-.-,w¡), where filtration degree of x¡ < r for 1 ^ i <¡ fe, and comple-

mentary degree Wj<r—l, for liS/gZ. Further, for each i, 1 ^ i ^ fc,

dimx¡ = pq'(2m¡) + 1, where 2m¡ = the dimension of some generator of H*(F;Zp)

= S\'*, and for each j, 1 £j g Z, dimvv,- = p'1(2nf) - 1, where 2n¡ = the dimen-

sion of some generator of H*(B;Zp) = S*'°.

Proof. Since S2 = H*(F;K) ®H*(B;K) the theorem is true for r = 2, with

M2 = N2 = Zp. We proceed by induction, assuming the theorem true for Sr.

For any Hopf algebra L, denote by °L its biprimitive form. It is obvious that

°(L ® L') s °L ® °L'. Then Vr = °Br ® °Cr ® °Mr ® °Nr.

Since êr is associative we may apply Theorem 5.6, so that there is a spectral

sequence of biprimitive, bigraded, Hopf algebras, whose first term is °Sr and

whose last term is Vr+1. Now Vr satisfies the hypothesis of Lemma 5.7 with

B = °Br, C = °Cr, and J = °Mr ®°ZVr. By Lemma 5.7, the homology of such
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a Hopf algebra has the same form, so that every term of the spectral sequence

satisfies the hypothesis of Lemma 5.7.

Then repeated use of Lemma 5.7 on each term of the spectral sequence of

biprimitive Hopf algebras yields the result that Vr+1 = 0Br+1 ®°Cr+1 ®J",

where J" is an exterior algebra on odd dimensional generators, °Br+1 = °^°|*,

°Cr+j = °S *+°. The way in which generators off" arise is described in Lemma 5.7.

In particular we get that generators of the form {yp~1(dy)} (yeP(B)) have filtra-

tion degree r since y has filtration degree 0 and d increases filtration by r. Simi-

larly generators of the form {x(dx)p~1} (dxeP(C)) have complementary degree

= r — 1, since dx has complementary degree 0, and d reduces complementary

degree by r — 1. Hence we get these two new types of generators in °Sr+1, the

other generators coming from generators of °<?r. Note that primitive elements

in °ffr0-* and V*'° have the same dimension as the generators of <??'*, S*fi, or

pth powers of generators by Theorem 2.7. Thus if we put generators of the form

{yP-i(dy)} in °Mr+l,{x(dx)p-1} in °Nr+1, it follows that °*r+1 = °Br+1 ® °Cr+i

® °Mr+1 ®°Nr+1. The result for «fr+1 now follows from Theorem 2.7 (in

its bigraded version).

If p =£ 2, the fact that for the odd dimensional generators of Mr+1, Nr+l, x¡, wjy

we have xf = w2 = 0, follows immediately. When p = 2, if some xf or wf were

9¿ 0, then by Theorem 2.7, we would get an even dimensional generator in °&p+1

with p # 0 and q =£ 0, which is not the case. Hence xf = w) = 0, and

these elements generate exterior algebras Mr+1, Nr+1 in <?,+1, which concludes

the proof.

From Theorem 5.8 we may deduce a number of corollaries.

Corollary 5.9. The primitive elements of ST (the homology spectral sequence

of a multiplicative fibre map) are of four types:

(i)    Those of filtration zero (i.e., in  <?0r,*)-

(ii)   Those of complementary degree zero (i.e., in <^*>0)-

(iii) Elements of filtration < r, of dimension p9(2m) + 1 for some q _ 1,

where 2m = dimension of a generator of H*(F;Zp).

(iv) Elements of complementary degree < r — 1, of dimension p'(2n) — 1,

for some t _ 1, where 2n = dimension of a generator of H*(B;Zp).

Proof. P(<0 = (Q(£r))*, where Q(Sr) = the indecomposable elements of

Sr = F1($¿)/F2(<o¿). From Theorem 5.8 we see that the indecomposable elements

of &r have nitrations, dimensions, etc., of the four types listed.

Corollary 5.10. The primitive elements of Sr are of the four types, as in

Corollary 5.9.

Proof. According to [16, Proposition 4.23] any primitive element in an as-

sociative, commutative Hopf algebra over Zp which is decomposable is a pth
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power. By Theorem 5.8, the indecomposable elements of êr have the four types

listed. But if £ : gr -+ Sr is defined by Ç(x) = xp, then {(*,) = £(£„) ® C(Cr) (for pth

powers are zero in an exterior algebra, e.g., Mr, Nr). Hence the primitive ele-

ments of Sr which are decomposable are either of type (i) or (ii), which completes

the proof of the corollary.

Corollary 5.11. // xeP(Sh;k) and if either h # 0, or h =■= 0 and

k 5e p'(2n) — 2, for any t ^ I, for 2n = dimension of any generator of H*(B;Zp),

then x is transgressive.

Corollary 5.12. // y eP(é"¡s) and if either s # 0 or s = 0 and I # pq(2m) + 2

for any q S: 1, and for 2m = dimension of any generator of H*(F;Zp), then y

is transgressive.

Recall that an element xe $hr'k is called transgressive if d¡x = 0 for j < k — 1,

i.e., if all dj axe zero on x except possibly for dt_x which sends x to (S't-i-

If x is primitive, then d¡x is primitive. Of the four types of primitive elements in

Corollary 5.9, types (i) and (iii) cannot be boundaries. Hence dfx is either of

type (ii) or (iv). If d¡x is of type (iv) then dim x = p'(2n) — 2. Otherwise djX

has complementary degree zero (type (ii)) and x is transgressive, and Corollary

5.11 follows. Corollary 5.12 follows by a similar argument utilizing Corollary 5.9.

We now restrict our hypothesis to a special case of great interest.

Let X be a connected //-space, £ the space of paths of X starting from the

identity, f:E-+X, the projection. Then/is a multiplicative fibre map, and the

fibre /_1(e) = QX, the loop space of X. Let us suppose further that X is simply

connected, so that QX is arcwise connected. Let Sr (resp. Sr) be the

spectral sequence of/ in cohomology (resp. homology) modp, where p is prime

as usual.

Since £ is contractible we may define the suspension maps

a* : H\X;G) -> /Zi-1(Q;G),    for i> 1,

a* : H{Çl;G) - Hi+1(X;G),   for i ^ 1,

as follows: a* = §*~1f*j*~1^ ^ = j"1/*^^1 where j : X -» (X, e), and

«5* ://i_1(fi;G)->/f(£,n;G) and d* ://i+1(£,Q;G)-//;(fi;G) are the boundary

operators associated with the pair (£,C2). The following are well known properties

of the suspensions:

(1) a* and a* annihilate decomposable elements.

(2) a* and a# axe dual maps if G is a field.

(3) x = cr*y if and only if x is transgressive (its "transgression image" is y).

Similarly for «j*.

Let, as usual, P(A) be the primitive elements, Q(A) = Ä/ÄÄ, A a Hopf algebra.

Then o*(Q(H*(X;Zp))) c P(H*(CïX ;ZP)), o*(Q(H*(ÇlX;Zp))) c P(H*(X;ZP)). Ap-

plying Corollaries 5.11 and 5.12 we get:
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Theorem 5.13. Let X be an arcwise connected, simply connected H-space.

Then

o*:Q(Hk(aX;Zp)) - P(Hk+1(X;Zp))

is mono for k ^ p'(2n) — 2, where 2n — dimension of some generator of

H*(X;Zp), t _ 1, and a^ is epi for k =£ p9(2m) + 1, 2m = dimension of some

generator of H*(QX;Zp), q _ 1. In particular, a^ is mono if k^= —2 mod (2p),

epi if k ^k 1 mod(2p).

This result generalizes a result of J. C. Moore [12, exp. 7, Theorem VI, 4].

The proof follows easily from Corollaries 5.11 and 5.12, using the dualities of

er* = (a^)*, and P(A*) = (Q(A))*, etc. It is easy to obtain a similar result for

cohomology:

Theorem 5.14.   Let X be an arcwise connected, simply connected H-space.

Then

a* :Q(Hl(X;Zp)) -> P(Hl~\ÇlX;Zp))

is mono for I ^ pq(2m) + 2, where 2m = dimension of some generator of

H*(QX;Zp) g = 1 and a* is epi for I ^= p'(2n) — 1, 2n = dimension of some

generator of H*(X;Zp), t _ 1. In particular a* is mono if Z fé 2 mod (2p), epi

if Ijk - lmod(2p).

This follows from Theorem 5.13.

Theorem 5.13 was used by Liulevicius [15] to deduce some properties of

certain universal examples for cohomology operations.

These theorems may be used to compute homology of loop spaces. As a simple

application of Theorem 5.13, we have the following(4) :

Theorem 5.15. Let X be an arcwise connected, simply connected H-space.

Suppose H*(X;K) = A(xi, •••,xm, •••), an exterior algebra on generators

xux2,---, dimx,-= 2n¡ + 1, K a field. Then if+(QX;K) = K{_yu -,ym, ••■],

dim,yi = 2ni, x^y,) # 0.

Proof. If characteristic of K = p, then H*(X;K) = H*(X;Zp) ®K, and

H*(QX;K) = H*(QX;ZP) ®K. Then it suffices to prove the theorem for K = Zp

(Z0 = Q, the rational numbers).

Since P(HJJi;Zp)) = (Q(H*(X;Zp)))*, it follows that there are elements

x.ePCrfa^ + ̂ A'îZ,,)) such that x¡(x¡) =^ 0. By Theorem 5.13, there are elements

yieí/2n¡(QZ;Zp) such that x¡ = a^(y¡), for all i. Define a filtered differential

Hopf algebra A, by A = K[y1,—,ym,—"\   ®  A(xu—,xm,—),  with dx¡ = yh

(4) The referee lias pointed out that this theorem follows  without the  hypothesis  that

X is an if-space, by using the spectral sequence of the cobar construction.
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filtered by degree in A (xj ,•••), Xi,y¡, primitive. If Sr = the spectral sequence of

the space of paths of X (mod p), we define a map of Er(A) (r ^ 2) into £',

by induction. E2(A) £ A, so we define f2(y{) = yieS1 = H*(QX;ZP) ®Hif(X;Zp),

f2(x¡) = x¡ e S2. Since X[y1; •••] is a free associative, commutative algebra, we may

extend/2 to K[y1,-..~\ into //*(fiX;Zp) s ê2. Unfortunately, since H*(X;ZP)

may not be associative, we must exercise more care defining the map on

A(x1; •■•). We choose a fixed order of multiplication (or parenthesizing in pro-

ducts) in H*(X;ZP) and extend the map/2, already defined on the generators

x,-, to all of A(*i>"0 by using the fixed order of multiplication in H+(X;ZP).

Note that this is a homomorphism of the coalgebra A(*i»"0 into the coalgebra

H*(X ;ZP) since the x¡ e P(H*(X ;ZP)). Thus the dual map/2 :H*(X ;Zp)->( A(*i." ■))*

is a ring homomorphism, and a set of generators (x¡)* e image f2, so f2 is onto

(A(xi, ■•■))*■ Since (A(x1; •••))* and H*(X;ZP) have the same rank over Zp in

each dimension it follows that/2 and hence/2 are isomorphisms in complemen-

tary degree zero, i.e.,/2 : A(xL ,■■■) ->H*(X;ZP) is an isomorphism.

Since the x e H*(X;ZP) are transgressive, xl = a#yi, it follows that we may

define f by induction, starting from f2, to be a homomorphism of spectral

sequences. Further, it is easy to check that A is acyclic, so/œ is an isomorphism.

Hence by the Comparison Theorem for spectral sequences (see [18] or [14,

Proposition 5.3]) f2 is an isomorphism on é'l^, i.e.,/2 :K[yl,---~\-*Hit,(SlX;Zp)

is an isomorphism, and the theorem is proved.

Theorem 5.14 may be used in conjunction with the results of [10] to compute

the homology ring H^(ÇlkskX;Zp) for k<2p as a certain functor of H^(X;ZP),

which was the main result of [5].

6. Applications to Lie groups. In this section we apply the results of §§4

and 5 to studying homology of Lie groups, or more generally, //-spaces whose

homology is finitely generated, and whose loop space has no torsion in homology.

We prove theorems on which dimension torsion can first occur in the homology

of such an //-space and the relationship of this dimension with the dimension

of generators in the rational cohomology. We also show that for such an H-

space X, H%(X;Zp) is associative and commutative, if and only if H*(X; Zp)

is primitively generated.

Since the homology of all Lie groups is now known, the results on torsion

contain nothing new in this case.

Suppose now that X is an //-space, arcwise connected and simply connected,

such that H%(X) has no torsion. We recall that it is a theorem of Bott [4] that

if G is a Lie group, then //^(QG) has no torsion. If H*(X;Q) is finitely generated,

then by Hopfs Theorem (see [16]) H*(X;Q)= A(*i ■••,^m)> so Theorem 5.15

applies, and H^(QX;Q) = Q[yu — ,y^\ and in particular Hq(Q.X;Q) = Hq(QX;Q)

= 0 if q is odd. Since H*(QX) is torsion free, H*(£IX) -> H*(ÍIX;Q) is mono.

Hence we get:



172 WILLIAM BROWDER [April

Lemma 6.1. Let X be an H-space, connected and simply connected such

that H*(X;Q) is a finite Q module, and H^QX) has no torsion. Then Hq(QX) = 0

for q odd, so that Hq(QX;G) =0 for q odd, or any coefficient group G.

This implies that image a* = 0 in Hq(X;G) for q even. Then we get

Theorem 6.2. Let X be a connected, simply connected H-space, with H*(X;Q)

a finite Q module and H%(Q,X) torsion free. Then P(H2m(X;Zp)) = 0 if m ^k 1

(mod p).

For P(H2m(X;Zp)) = image a*, when m^l(modp), by Theorem 5.13.

Lemma 6.3. Let A be a differential Hopf algebra over Zp, A0 = Zp, and

suppose d(Ak) = 0 for k< m. Then d(Am) ç P(A).

The proof is straightforward (see [8, Lemma 8.13]).

Lemma 6.4. Let X be a connected H-space, with H¡(X;Zp) = 0 for i> N,

for some N. Let s be the smallest integer for which HS(X) has p-torsion. Then

s = 2m, and if p ^ 2, then Hs(X;Zp) has a primitive element. Further, if p = 2,

and m is even, then HS(X;Z2) has a primitive element.

Proof. In the Bockstein spectral sequence Bk in cohomology modp of X,

the lowest dimensional element xk in image ßk is primitive by Lemma 6.3. The

lowest dimensional xk (call it x) occurs in dimension s, i.e., in the dimension

where p-torsion first occurs in H*(X). Let x = ßky, B\ = B\ = ■■■ = B\,

q 1% s. Since x is primitive, if s is odd, then x is indecomposable, by [16, Propo-

sition 4.23]. But then s — 1 = dim y is even, so that x = ßky is decomposable,

by Lemma 4.5. This is a contradiction, so that s must be even, s = 2m.

Now By = Bœ in dimension < s — 1, so that all generators of By of dimension

< s are odd dimensional. If p ^ 2, then there are no nonzero pth powers in

B\, since pth powers of odd dimensional generators are zero. By [16, Propo-

sition 4.23] if x is decomposable, it is a pth power, since x is primitive. Hence

x is not decomposable, so HS(X;ZP) has a primitive element, dual to x.

If p = 2, and if x is decomposable, then x = u2. If g is an odd dimensional

generator of if2n + 1(Z;Z2), then g2 = Sq2n+1g = Sq1 Sq2nge image ßy (ßy = Sq1).

Hence, squares of odd dimensional generators g, are zero if dimg< m, since

g2 is a boundary and there are no boundaries in dimensions < s = 2m. If x = u2,

therefore, u must be a generator, hence odd dimensional, and m is odd. If m

is even, then x is indecomposable and HS(X;Z2) has a primitive element, dual

to x. This completes the proof of the lemma. (Note that by the above argument,

if P(HS(X;Z2)) = 0, then the 2-torsion in HS(X) is of order 2.)

Lemma 6.5. Let X be as in Lemma 6.4, and let t = the smallest integer such

that H'(X) has higher p-torsion, i.e., elements of order p2. Then t is even,

and H,(X;ZP) has a primitive element ¿j, {£} = £' ^ 0 in Br, /L£' # 0, for some

r> 1.
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Proof. By an argument identical with that in the proof of Lemma 6.4, we

may conclude that if x is a lowest dimensional element in the image ßr, r > 1,

in Br, then x is indecomposable in B2 and t is even. Note that B\ = B\ = ■■■ = B9,

for q _ t, if we suppose r is the smallest integer > 1, such that image ßr ^= 0 in

B'r, and  t is smallest integer such that some image ßk # 0 in   B'k, k > 1.

If we consider the spectral sequence Eq(By) in dimensions < t, we find that

Ex(By) = B2 as algebras, in these dimensions, since both are exterior algebras

on odd dimensional generators in dimensions < t, and the ranks are the same

in dimensions _ t. Further E0(By) s By as algebras. Since Eœ(By) is an exterior

algebra in dimensions < t, it follows that each even dimensional primitive

element of dimension < / of ^(B^l must bound in the spectral sequence. Since

generators are in filtration 1, dq increases filtration by q, and dq is zero on ele-

ments of filtration zero, it follows that eachi such even dimensional generator must

bound in E0(By). Then £X(B,) is generated by odd dimensional elements so that

if p / 2, Ey(By) = £Q0(B1)s B2 in dimensions S t.

We now show that if x is indecomposable in (E^By))', then there is an in-

decomposable element x' in E0(By), {x'j = xeEx(By). Consider the Hopf sub-

algebra of E0(By) generated be elements of dimension < t, and their boundaries.

This is a differential Hopf subalgebra of E0(B1); every even dimensional generator

is primitive and a boundary. Its homology is generated by odd dimensional

primitive generators. Similarly, the Hopf subalgebra C of Er(By) generated by

elements of dimension < t and their boundaries, is generated by odd dimensional

primitive generators for r > 0, and the homology if(C) also has this property.

Hence, an indecomposable element xeEr+l(By) indimension t cannot be in the

image of if(C), so that if x = {x'}; x' eEr(By), then x' is indecomposable.

Hence if x is a lowest dimensional element in image ßr (r > 1) in B\,

then for any x' eB[ with {x'} = x in B2, x' is indecomposable in By = H*(X;ZP).

Hence since there is an element in B/, which is not a boundary modulo decom-

posable elements, it follows that there is a primitive element in Ht(X;Zp), which

is a cycle under ß \ and has a nonzero boundary in Br. This completes the proof

of Lemma 6.5.

We may now apply Lemmas 6.4 and 6.5 and Theorem 6.2, to get:

Theorem 6.6. Let X be a connected, simply connected H-space with

H¡(X;Zp) = Ofor i > N,for some N, and suppose H^(QX) has no torsion. Then

if HS(X) has p-torsion, and H'(X) has no p-iorsion for i < s, then s = 2m and

m = 1 modp. Similarly, if t is the lowest dimension for which H'(X) has higher

p-torsion (p2-torsion), then t = 2q, and q = 1 modp.

Proof. Ht(X;Zp) = 0 for i>N implies that ff(Z;ß) = 0 for i > N. Hence

Theorem 6.2 applies, and P(H2m(X;Zp)) = 0 if m f= 1 modp. But by Lemmas 6.4

and 6.5, P(H2m(X;Zp)) # 0, and P(H2q(X;Zp)) # 0, unless p = 2 and m is odd.
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But in case p = 2, m = 1 mod 2 is exactly the statement that m is odd.    q.e.d.

If P(H2m(X;Zp)) ¥= 0, then Q(H2m(X ;Zp)) * 0, or in other words, H*(X;ZP) has

a generator of dimension 2m. Then we may apply Theorem 4.7 to the situation

of Theorem 6.6, and we get:

Theorem 6.7. Let Xbea connected, simply connected H-space, with H¡(X;ZP)

= Ofor i > N,for some N, and suppose H^QX) has no torsion. If H*(X) has

p-torsion, then H*(X;Q) has a generator of dimension 2mpk — 1 for some k 2:1,

where m = 1 modp, and 2m is the lowest dimension where H*(X) has p-torsion.

If H*(X) has higher p-torsion, then H*(X;Q) has a generator of dimension

2qpl — 1 for some I ^ 1, where q = lmodp, and 2q is the lowest dimension

where H*(X) has higher p-torsion.

Remarks.  (1) It will be shown in [9] that in Theorem 6.7, Z 3: 2.

(2)   Theorem 6.7 can be extended to the nonsimply connected case by using

the results of [6].

Now we turn to the problem of commutativity of H*(X;ZP).

Theorem 6.8. Let X be a connected, simply connected H-space with Hi(X;Zp)

= Ofor i > N,for some N, and H%(QX) torsion free. Then H^(X;Zp) is asso-

ciative and commutative if and only if H*(X;Zp) is primitively generated

(H*(X;Zp) is primitive).

Proof. By [16, Theorem 4.9] (Theorem 2.1), H*(X;ZP) is primitive if and

only if H*(X;Zp) is associative, commutative and has all pth powers zero, i.e.,

u" = 0 foriany ueHq(X;Zp), q > 0. It remains only to show then, that if H*(X;ZP)

is associative and commutative, then wp = 0 for any ueHq(X;Zp). The map

C '.H^X&p)-* H%(X;ZP) given by C(x) = xpisa map of Hopf algebras if H^(X;ZP)

is associative and commutative. Hence the lowest dimensional element up in

image £ is primitive, and if p # 2 its dimension is divisible by 2p (since u must

be even dimensional in order that u2 =¿ 0). But by Theorem 6.2, P(H2m(X;Zp)) = 0

unless m = 1 modp, so that if p =£ 2 image Ç = 0 and up = 0 for all u e Hq(X;Zp),

q>0.
If p = 2, a similar argument shows that the lowest dimensional ueHq(X;Z2)

such that u2 # 0 occurs in an odd dimension q. If u were decomposable then

u2 = 0. Hence u is indecomposable. But, since H*(X;Z2) is biassociative and

bicommutative, we have that P(Hq(X;Z2)) s Q(Hq(X;Z2)) for q odd, i.e., the

odd dimensional generators of H^(X ;Z2) may be chosen primitive. Hence there

exists u'eP(Hq(X,Z2)), with u'2 # 0. By Theorem 5.13, u' = a*y. Then by [14,

Theorem 5.1] or [10; Theorem 2] u'2 = a^Q^y)), and g1(y)6//2?_1(iJX;Z2).

But H2q-1(QX;Z2) = 0 by Lemma 6.1, so that u'2=0, and u2 = 0 for any

u e Hq(X ;Z2), for q > 0. This completes the proof of the theorem.

Remark. This theorem may also be extended to the nonsimply connected

case, if p # 2 using results of [6]. We assume that if X is the universal covering
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space of X, that if*(QZ) has no torsion. Then, by the results of [6], if H*(X;ZP)

has a generator of dimension > 2, H*(X ;ZP) has a generator of the same dimen-

sion. Thus, if p # 2, and some u"^0 in H^(X;Zp), then if^(X;Zp) has a pri-

mitive element of dimension 2mp, m _ 1, so H2mp(X;Zp) contains a generator.

Then H2mp(l;Zp) also contains a generator, so that P(H2mp(ï ;ZP)) y¡= 0 and

the remainder of the proof is the same.

7. Appendix. In this section we sketch the proof of Theorem 2.1 [16, Theorem

4.9], for completeness. The proof presented is that of [16] with modified notation.

Let A be a Hopf algebra over Zp with commutative, associative multiplication,

and such that xp = 0 for xeÄ. Let yeP(A). We wish to show that y is inde-

composable. The proof proceeds by induction on the number of generators of A.

Since for any fixed m, Am is contained in some finitely generated Hopf subal-

gebra of A, if we prove Theorem 2.1 for all finitely generated Hopf algebras, it

follows for all Hopf algebras.

Let A have n generators, let B be the Hopf subalgebra of A generated by the

first n — 1 generators (ordered by increasing dimension). Let C = A/BA (C = .4//B

in the notation of [16]). Then C is a Hopf algebra (because A is associative and

commutative and B is a Hopf subalgebra), the map/: A -* C is a homomorphism

of Hopf algebras, and C = Zp[z]/(zp) where z —f(y), y being the nth generator

of A. The element z generates P(C). Hence f(y) = az, XeZp. If 2^0, then

f(y) is indecomposable, so y is indecomposable and we are done. If X = 0, then

y e kernel/ = BA, i.e., y = 2¡ = 0 b¡y', f>¡ei?,wherey0 = l. We shall show that q = 0,

i.e., that yeB, so that yeP(B), so by the induction hypothesis, y is indecom-

posable in B, i.e., y is a generator of B. But the generators of B are a subset of the

generators of A, so that y is indecomposable in A. It remains to show that q = 0.

Clearly \¡iy — y ®1 + 1 ® y + ß, where QeB ®B. Let us take the element

\¡/yeA ®A, and apply 1 ®/ : A ® A -* A ® C. Finally project A ® C onto

A ® Cmq where y e Am. Then y goes to bq ® yq in A ® Cmq. But y primitive in A

implies that image y in A ® Cmq is 1 ®/(y) = 0, so that bq = 0, and by induction

down on q, yeB and we are done. This proves Theorem 2.1 in one direction.

Suppose the primitive elements of A are indecomposable. Define [a,fo] = ab

— (—l)"ßba, for a eAx, be Aß. One can show that the lowest dimensional element

of the form \_a,b] # 0 is primitive. Since primitive elements are indecomposable,

it follows that [a,fo] = 0 for all a,b e A, and A is commutative. A similar argument

using the operation (a,b,c) = (ab)c — a(bc), shows that A is associative. The

map i :A^>A defined by £(x) = xp is a map of Hopf algebras over Zp if A is

associative and commutative. Hence the lowest dimensional nonzero element

xp in image £ is primitive and decomposable. It follows that xp = 0 for all

xeÄ and Theorem 2.1 is proved.

Note that the proof of Theorem 2.1 for rational coefficients is the same, except

that the condition xp = 0 no longer plays a role.
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