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1. Introduction. In this paper the relationships between certain extensions

of totally (linearly) ordered groups (o-groups) are studied. The additive notation

is employed although the groups are not, in general, assumed to be abelian. The

four types of extensions considered are defined as follows :

Let G S H be o-groups.

(a) H is an a-extension of G if for every 0 < he H there exists ge G and a

positive integer n such that h ^ g ^ nh.

(b) H is a b-extension of G if for every 0 < n e H there exists g e G and a

positive integer n such that g ^ n :£ ng.

(c) H is a c-extension of G if for every 0 < h e Ü there exists g e G such that

for all integers n, n(h — g) < h.

(t) H is a t-extension of G if for every h,h',h"eH with h < h' < h" there

exists g e G such that h < g < h".

If xe {a, b,c,f}, G is x-closed if G has no proper x-extensions. The connect-

ing notion between the different types of extensions is that of sequences in o-

groups; of particular importance are cauchy sequences (definition in §2) and

pseudo sequences (definition in §3). Several authors have discussed similar con-

cepts, but in different or more special cases. Cohen and Goffman [3 ; 4] consider

cauchy sequences in abelian groups; Everett and Ulam [8] consider countable

cauchy sequences; Banaschewski [1] deals with cauchy filters in partially

ordered groups; Gravett [9] relates pseudo sequences to c-extensions in divisible

abelian groups.

§2 contains definitions and a basic lemma concerning sequences. It is also

shown that every r-extension and every c-extension is a ¿-extension, and that

every b-extension is an a-extension. Some results concerning r-extensions and

cauchy sequences ("j" theorems) are stated without proof. In §3 some theorems

("C" theorems) concerning pseudo sequences and c-extensions, including ana-

logues to the "T" theorems, are proved. In §4 are stated the "B" theorems

concerning sequences and b-extensions with proofs only sketched, as the proofs
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are mostly similar to those in §3. In §6 are examples which illustrate the limita-

tion of the theory. The system of numbering is such that Theorems Ti, Ci, and

Bi are analogues.

2. Cauchy sequences and i-extensions. Throughout this paper G will denote

an o-group. The pairs (Gy,Gy) of convex subgroups of G such that Gy covers Gy

are called convex pairs. Gy is normal in Gy and Gy/Gy is o-isomorphic to a sub-

group of R, the additive group of real numbers. The groups Gy/Gy are called the

components of G. If A and B are subsets of G, A < B means every element of A

is less than every element of B. For g e G, | g | is the max of g and — g.

A sequence (in G) is a collection {sx | a e A} of elements of G such that A is a

well-ordered set with no final element. The breadth of a sequence {sx} is the inter-

section of all convex subgroups C of G satisfying:

(1) C is covered by a convex subgroup C.

(2) For each geC \C there exists peA such that if a, ß > p then sx — sßeC

and sx- sß + C <\g\ + C

Note that the breadth is a convex subgroup. Here and in several places later

on the definition is "one-sided" due to lack of commutativity. This would more

appropriately be called "left breadth," the "right breadth" being defined sim-

ilarly. The introduction of this complexity seems, however, to be of no par-

ticular aid.

An element s of G is a limit of the sequence {sa} if for every convex pair (C,C)

such that C contains the breadth of {sx} and for every geC \C, there exists

v e A such that if a > v, sx — seC and \sx — s\ + C <\g\ + C. We say {sx}

converges to s.

Lemma 1.    If r and s are limits of {sx}  then r — s lies in the breadth of {sx}.

Proof. By way of contradiction, if r — s is not in the breadth B then

r-seC'\C where (C,C) is a convex pair and BçzC. Now for all sufficiently

large a, 2\sx — r\ + C<\r — s\ + C. For C'/C is o-isomorphic to a subgroup

of the real numbers, and if C'/C is not discrete then there exists g e G such that

2|g| + C<|r — s| + C and by assumption, for all a large enough, Is,, — r\ + C

< \g\ + C. If C'/C is discrete it is cyclic generated by some f + C; then for

all a large enough | sx - r | + C < \f | + C so that sx — reC, in which case

2\sx- r\ + C = C <\r - s\ + C. Choose a so that sx-r, sx — seC and

2\ sx - r\+ C <\r - s\ + C and 2\ sx - s\ + C <\ r - s\ + C. Then

\r-s\ + C = \r-sa + sx-s\ + C ^ \sa-r\ + \s„-s\+C <\r - s\ + C,&

contradiction. Hence r — seB.

Lemma 2. Let H be an a-extension of G. If {gx} is a sequence of elements

of G, if N is the breadth of {gx} in G, and if B is the breadth of {gx} in H, then

BnG = N.    If geG is a limit of {gx} in G then g is a limit of {gx} in H.

Proof.   (K,K') is a convex pair of if if and only if (K n G, K' C\ G) is a con-
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vex pair of G. In the definition of breadth, it is required that the differences

gx — gß become arbitrarily small in certain components K'/K and K' n G/K n G,

respectively. As K' n G/K nG Z K'/K are subgroups of the real numbers, the

differences in question become small in K' nG/XnG if and only if they be-

beco me small in K'/K. A similar remark holds for the differences gx — g.

A sequence {sx} is a left cauchy sequence if its breadth is 0. {sx} is a cauchy

sequence if both {sx} and { — sa} are left cauchy sequences. Example 1 of §6

contains a left cauchy sequence which is not a cauchy sequence.

In the topology generated by the open intervals, every o-group is a topological

group. It is easily seen from the definition that if is a f-extension of G if and only

if G is dense in H in the order topology. Banaschewski [1] has shown that the

topological completion t(G) of an o-group G is an o-group which extends the

order of G. Banaschewski's proof, as well as the earlier and less general ones of

Cohen and Goffman [3] and Everett and Ulam [8], proceeds by completing G

via "dedekind cuts." It is also possible to construct t(G) by choosing cauchy

sequences of appropriate length, showing that they form an o-group under term-

wise addition, and continuing in a manner analogous to the cauchy sequence

construction of the real numbers. The proof of this, from which the following

results easily follow, is notationally involved and sufficiently similar to the clas-

sical results that the details are omitted here.

Theorem Tl. If H is a t-extension of G and heH\G then there is a cauchy

sequence of elements of G with limit h (and with no limits in G).

Corollary T2.   If every cauchy sequence in G has a limit then G is t-closed.

Let T be an ordered set, and for each y e T let Ry be a subgroup of the real

numbers. The group H(T,Ry) consisting of those functions in the large direct

sum of the Ry whose support is inversely well ordered, is called a Hahn group,

and is ordered by calling a function positive if it is positive on the largest element

of its support.

Lemma T4. If H(T,Ry) is a Hahn group and either T has no smallest ele-

ment or y0 is the smallest element of V and Ryo is the reals or the integers, then

H(T,Ry) is t-closed.

Proof. Let {fx} be a cauchy sequence in H. It follows from the definition of

cauchy sequence that for each y e T except the smallest element of T, if any,

for all sufficiently large a and ß, fx(y) =fß(y) =f(y), say. Moreover, if T has a

smallest element y0 then the sequence {fx(y0)} is a cauchy sequence in the ordinary

sense in R, and hence converges to/(y0), say. It is easy to verify that the function

/ is an element of H and the limit of {/„}.

Theorem T6. G is t-closed if and only if every cauchy sequence in G con-

verges.
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Lemma 3. Every t-extension of G is a c-extension of G if and only if G

is t-closed or G has no convex subgroup covering 0.

Proof. If G has no convex subgroup covering 0 and if if is a f-extension of

G, let 0 < h e K' \K where (K,K') is a convex pair of H and h > 0. Then K ^ 0

and hence the interval h + K of if contains an element g e G (since G is dense

in H). Therefore h - geK; that is, n(h — g) < h for all n.

Conversely, if every i-extension is a c-extension and if G has a convex sub-

group C covering 0, then from the remark at the beginning of the proof of Lemma

2 and the fact (which will be proved presently) that every i-extension is an a-

extension, it follows that t(G) has a convex subgroup C covering 0. As t(G) is

by assumption a c-extension of G, for every 0<AeC there is a geG with

n(g-h) < h for all n; that is, g—h = 0. Hence C = C. Since G is dense in t(G),

for every h e t(G) the interval h + C of t(G) contains an element of G. Hence

G = t(G). Therefore G is i-closed.

No general necessary and sufficient conditions that every c-extension be a

i-extension are known. For the abelian case, however, such conditions can be

derived from the theorems in §3.

Lemma   4.   Every t-extension is a b-extension.

Proof. Let if be a nontrivial i-extension of G and let 0 < he H \G. Then

there exists h'eH with h'<h<2h' (otherwise if is discrete, which implies

if = G). Likewise there exists h" with h' < h" < h. Hence there exists geG such

that h' < g <h. Thus h< 2h' < 2g.

Lemma   5.    Every c-extension is a b-extension.

Proof. Let if be a c-extension of G and let 0 < h e H. Then h — g = a for

some geG where for all n, na < h. Also a —f = b for some/e G where nb < \ a j

for all n. Let x = — |/| +/+ geG. It is easily verified that x <h <2x.

Lemma   6.    Every b-extension is an a-extension.

Proof. Let if be a o-extension of G. Let 0 < h e H. There exists geG such

that g-íLhfLng. Therefore h ^ng :£ nh.

3. Pseudo sequences and c-extensions. For every O^geG there exists a

unique convex pair (Gx, G*) such that geGx\Gx. The mapping V: G\{0} -> T(G),

where T(G) is the set of all convex pairs of G, defined by V(g) = (Gx, G") is the

natural valuation of G. Theorems Cl, C2, C5, and C6 which follow are general-

izations of the classical valuation theory (Schilling [11]), already generalized

by Gravett [9] to vector spaces (and hence to divisible abelian o-groups).

A sequence {sx} is called a pseudo sequence if for all a < ß < y,

V(sß — sy) < V(sx — sß).  It follows that for each a there exists   Xx e T(G)
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such that for all ß > a, V(sx — sß) = Xa. Moreover, for each limit s of

{sa}, V(sx — s) = Xx. The breadth of {sj is the same as that defined in the clas-

sical theory.

Theorem Cl. If H is a c-extension of G and heH\G then there is a pseudo

sequence of elements of G with limit h and with no limits in G.

Proof. The empty set is a pseudo sequence with limit n. By Zorn's lemma

there is a pseudo sequence of elements of G with limit h of maximal length (since

no element can occur twice in the same pseudo sequence). Let {gx} be a pseudo

sequence of elements of G with limit n of maximal length. If {gx} has a limit

geG then by Lemma 1, g—h is in the breadth of {gx}. Hence V(g—h) < Xx

for all a. Let g(1) = g. Define g(l) by induction for i = 2,3, ••• as follows: since

H is a c-extension of G there exists /(,)e G with h — g(1_1) — /(l) = n(,) where

V(h(i)) < V(h - g(i_1)). Let g(i) =/(0 + g0"^. It is easy to verify that the se-

quence {•••,gx, •••,g(1),g(2), •••} is a pseudo sequence with limit n. This contra-

dicts the maximality of {gx} and shows that {gx} has no limits in G.

Corollary C2.   // every pseudo sequence in G converges, then G is c-closed.

The converse of Corollary C2 is not true, as is shown by Example 2 of §6.

For the abelian case, however, Lemma C5, states the converse. The following

theorem was proved for abelian G by Ribenboim [10].

Theorem C3. If for every noncovered convex subgroup C of G, C is normal

and G/C is t-closed, then G is c-closed.

Proof. Suppose that H is a proper c-extension of G and that heH\G. By

Theorem Cl there is a pseudo sequence {gx} with limit h and no limits in G.

Let B be the breadth of {gx} in G. Then B is noncovered and hence normal in G.

The first aim is to show that {gx + B} is a cauchy sequence in G/B.

As before, for ß > a let V(gx - gß) = Xx = (C'x,C"), where C'x =CxnG,

C" = C*r\G, and (Cx, C) is a convex pair in H. Then B = (f]xC)nG. Denote

by 4>x the inner automorphism of H induced by gx, and by \p the inner automor-

phism of H induced by h. Since gx — heC, and for ß > a, gx — gßeC,

Cx<px = Cx(pß = Cij/. It follows thatP)aCa$a is a noncovered convex subgroup of H

because for ß > oc, Cß c C and hence Cß(pß c C"4>„ = Cx4>x. Hence (f)xC<t>x) n G

is a noncovered convex subgroup of G, and by assumption is normal in G.

In   particular,   ((C\xC4>x)r\G)<pß = (C\xCc¡)x)r\G.    It   follows    that   also

(n«cW/>=n«c"4vFor each ß> c^ß=rv^a=cn.c'w»-Hence
c =5 n«c^-From this fo,iows ri/»c' ̂  n«c^ ■ n«c^-

Since -h + gx = - n + (ga - n) + n, then - h + gxeC>. Hence

— ia + 8ß— —gx + h — h + gße(Cil/)u(Cßtl/). From this and the last statement

of the preceding paragraph it follows that {gx + B} is a cauchy sequence in G/B.
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By assumption {gx + B} converges to some g + B. Then g is a limit of {gx},

a contradiction.

Lemma C4. In any Hahn group, all pseudo sequences converge. Thus all

Hahn groups are c-closed.

Proof. If if is a Hahn group and {hx} is a pseudo sequence of breadth B,

then {hx + B} is a cauchy sequence in H/B, which is also a Hahn group. Thus

by Lemma T4 and Theorem T6 {hx + B} has a limit h + B. Hence ft is a limit

of {hx}. The last half of the lemma follows from Corollary C2.

Lemma C5. If G is abelian and c-closed, then every pseudo sequence in G

converges.

Proof. Suppose that {sx} is a pseudo sequence in G with no limits in G. For

each a and all ß > a, V(sx — sß) = Xx, say. Note that for each integer n ^ 0,

{nsx} is a pseudo sequence. If {nsx} has g as a limit and if {msx} has h as a limit

then it is easily verified that {(n + m)sx) has g + h as a. limit. Thus the set of all

integers p such that {psx} has a limit in G is a subgroup of the integers, generated

by some n0. It is also easily seen that all {psx} are pseudo sequences in any ex-

tension of G.

By Hahn's theorem G can be embedded in a divisible Hahn group H. By

Lemma C4 any pseudo sequence in if converges. Choose seif as follows: if

{nsx} has no limit in G for every integer «#0, let s be any limit of {sx} in if.

If {nsx} has a limit in G for some integer n, let the group of such integers be gen-

erated by n0, let s' be a limit of {n0sx} in G and let s = s'/n0. Then in either case s

is a limit of {sx}. Now G is properly contained in G', the subgroup of H generated

by  G and s.

It will now be shown that G' is a c-extension of G. Let B = {V(h) | h is in the

breadth of {sx}}. That is, B is those elements of T(if) which are less than every

Xx. Let g + nse G', where geG.

Case 1. V(g + ns) = y$B. Then there exists ß such that V(ns — nsß) <y.

Hence ns + g = (ns — nsß) + (nsß + g) where nsß + ge G.

Case 2. F(g + ns) e B. In this case g + ns e G because first,

V(nsx - (-g)) = V((nsx - ns) + (ns + g)) = Xx so that -g is a limit of {nsx}.

Hence for some integer m, n = n0m. Therefore ns = mn0s = ms' e G. Hence G'

is a c-extension of G.

From Corollary C2 and Lemma C5 follows immediately

Theorem C6. If G is abelian, G is c-closed if and only if every pseudo

sequence in G converges.

Lemma 7. Suppose that G has no convex subgroup covering 0. Then for

every element s of t(G) there is a pseudo sequence {rx} in G such that {rx} is

also a cauchy sequence and {rx} has limit s.
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Proof. Since G has no smallest convex subgroup, there exists a sequence

{6X} of elements of G such that for a>ß, V(6X) < V(9ß), 0 is the greatest lower

bound of {dx}, and for each or, 6x+s e G (since G is dense in t(G)). Let rx = 9x + s.

Then for ß > a, V(r„ — rß) = V(6X) = V(rx - s). Hence {rj is a pseudo sequence

with limit s. The sequence { — s + 6X + s} also has greatest lower bound 0. Since

V( — rß + rx) = V( — s + (s - rß) + s — s + (rx — s) + s) which is less than or

equal to the greater of V( — s + 6X + s) and V( — s + 9ß + s), {ra} is also a cauchy

sequence.

Lemma C7. If G is abelian and c-closed, then for every noncovered convex

subgroup C of G, G/C is t-closed.

Proof. For a noncovered convex subgroup C, G/C has no convex subgroup

covering 0. If G/C is not i-closed, then by Theorem T6 there is a nonconvergent

cauchy sequence {sx + C} in G/C. By Lemma 7 there is a nonconvergent pseudo

sequence {rx + C} in G/C. Then {ra} is a nonconvergent pseudo sequence in G.

Hence by Theorem C6, G is not c-closed.

Theorem C8. If G is abelian, then G is c-closed if and only if G/C is

t-closed for every noncovered convex subgroup C of G.

Proof.    Lemma C7 and Theorem C3.

4. Sequences and ¿-extensions.

Theorem Bl. If H is a b-extension of G and heH\G then there is a sequence

of elements of G with limit h and with no limits in G.

Proof. The proof proceeds as far as possible along the lines of and with the

notation of Theorem Cl. Let {gx} be a pseudo sequence of elements of G with

imit h and of maximal length. If {gx} has no limits in G, the proof is complete.

If {gx} has a limit g in G, let g(1) = g and define g(,)as before, as far as possible.

It cannot happen that for every /'= 2,3, •••,g(0exists,forthen{"-,ga, •••,g(I), g(2),---}

is a pseudo sequence with limit h and longer than the maximal such sequence {gx}.

Hence for some i0 with h — g(io) e C \C where (C,C) is a convex pair, there is no

/(io+1) e G such that/(io+1) + C = h - giio) + C. However, in this case it follows

from the definition of ¿-extension that C nG/CC\G is not discrete. Thus there

is a cauchy sequence (in the classical sense) {e(i) + C} in C'/C with h — g(,o) + C

asalimit, and with e(i)e G. Then the sequence {•■•,gx, —,ga\g(2), •••,g(io),e(1) +

g(io\e(2)+g(io),---} has h as a limit and no limits in G.

Corollary B2.   If every sequence in G has a limit then G is b-closed.

Theorem B3. If for every convex subgroup C of G, C is normal and G/C

is t-closed, then G is b-closed.
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Proof. If {sx} is a sequence of breadth C in G, and if C is not covered, then

in a manner similar to the proof of Theorem C3, it can be shown that {sx + C}

is a cauchy sequence in G/C.

If C is covered by C, then there is a p such that for all <x,ß> p., sx — sße C.

As C'/C is abelian, it is easily verified that for all xeC and for all

a, ß > p, — sx + x + sx + C = — sß + x + sß + C. Define an automorphism

4> of C'/C by (x + C)<t) = -s^ + x + s^-l-C where a > p. Then for all

a, ß > p, - sß + sx+ C = (sx- sß + C)<p. Now let 0 < g e C'\C. For all suf-

ficiently large a and ß, sx - sß + C < (g + C)(j>~1 ; that is, -sß + sx < g + C.

Hence {sx + C} is a cauchy sequence in G/C. The rest of the proof is like that

of Theorem C3.

Lemma B4. If H is a Hahn group in which every component is the real

numbers or the integers, then all sequences in H converge.

The proof follows quickly from Lemma T4.

Lemma B5. // G is abelian and b-closed then every sequence in G con-

verges.

Proof. G can be embedded in a Hahn group H in which every component

is the real numbers. In H every sequence converges by Lemma B4. The rest

of the proof follows the model of the proof of Lemma C5.

Theorem B6. If G is abelian, G is b-closed if and only if every sequence

in G converges.

Proof.   Corollary B2 and Lemma B5.

The following is also easily proved.

Theorem B8. If G is abelian, G is b-closed if and only if for every convex

subgroup C, G/C is t-closed.^)

Ribenboim [10] calls an abelian o-group G algebraically complete if G/C

is r-closed for all convex subgroups C. He shows that such a group is c-closed

(which follows here Theorem B8 and the fact that every c-extension is a

b-extension), and that every abelian o-group canjbe "algebraically completed."

This follows from some remarks in the next section.

5. Remarks on closure. Every o-group G has a r-closed i-extension, namely

the group t(G) discussed in §2. Every o-group has an a-closed a-extension and

a c-closed c-extension, and the cardinality of all a-extensions of a given group

is limited (Conrad [6]). Since every b-extension is an a-extension (Lemma 6),

it follows from Zorn's lemma that every o-group has a b-closed b-extension.

(3)By way of comparison, Cohen and Goffman [4] prove: An abelian o-group G is a-closed

if and only if for every convex subgroup C (# G), G/C is /-closed and nondiscrete.
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The proof of Lemma C5 shows that if G is abelian and has no proper abelian

c-extensions then every pseudo sequence in G converges. Hence by Corollary C2,

every such G is c-closed. Likewise from Lemma B5, if G is abelian and has no

proper abelian b-extensions then every sequence in G converges, so that every

such G is b-closed by Corollary B2. Thus by Zorn's lemma, for any abelian G

there is a maximal abelian b(c)-extension, and by the above argument this ex-

tension is b(c)-closed. Moreover, it is well known that t(G) is abelian whenever G

is, and that the Hahn group H(V,Ry) where T is the set of convex pairs of G

and Ry is the real numbers, is an a-closed a-extension of G. Thus :

Let xe{t,c,b,a}. G has an x-closed x-extension. If G is abelian, G has an

abelian x-closed x-extension.

It is well known that the r-closed i-extension is unique to within equivalence;

that is, if H and H' are r-closed f-extensions of G, then there is an o-isomorphism

of H onto H' which leaves the elements of G fixed. Also, Conrad [5] showed

that for an abelian G the abelian a-closed a-extension is unique to within equi-

valence. Example 3 of the next section shows, however, that it is possible for

an abelian G to have two nonequivalent a-closed a-extensions (one of which is

non-abelian). The situation is more chaotic for b- and c-closures as is shown in

Example 4 which gives an abelian group with two nonequivalent abelian b(c)-

closed b(c)-extensions.

6. Examples. Example 1. A left cauchy sequence which is not a cauchy

sequence. The group used here was first constructed by Clifford [2] for another

purpose (and in a slightly different presentation). G is generated by the symbols

g(r) where r is a rational number, and subject to the following condition:

if r > s, g(r)g(s) = g(2s — r)g(r). Each word can be put into normal form

g = (g(ri))m,(g(r2W2---(g(rn))m" where rt < r2 < ■■• < rn. g is to be positive if and

only if m„ > 0. Then the set of convex pairs of G is isomorphic as an ordered set

to the rational numbers. One can easily verify the computational laws, for r > s,

g(r)~1g(s) = g((r + s)/2)g(r)-\   and   g(r)~^(s)"1 = g((r + s)/2)~1 g(r)~».

Now consider the sequence {s¡} defined by

s, = g(-i)g(-i + l)-g(-l).

For n,m = 1,2, •••, and n^m,

-i Í (g(-m)g(-m + ].)■■■ g(-n- 1))_1    if   n < m,

S"Sm       '  1 g(-n)g(-n + l)-g(-m-l)        if   n > m.

In any event, V(s„s~l) = -(min{m,n}) - 1. Hence {s¡} is a left cauchy sequence,

and even a pseudo sequence. On the other hand, for m,n — 2,3, —,and m ^ n,
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,-is | (g(-m)-g(-n- l)s„)  1s„    if«<m,

Sm1(g(-n)---g(-m-l))sm     iïn>m,

(-g(-n - 1 + 1/2" + 2/2""1 + ••■ + («- l)/22 + n/2)'1) if n < m,

(-g(-m - 1 + l/2m + 2/2m_1 + - + (m- l)/22 + m/2)) if n > m,

(-g(l/2n-2)T1iîn<m,

(...g(l/2m-2))    iïn>m.

Hence V(s~1s„) > — 2. Thus {s¡} is not a cauchy sequence.

The group G provides an example also of an a-closed (and hence c-closed)

group with a nonconvergent pseudo sequence. If there were an a-extension of

G in which {sj converged, the sequence would necessarily have only one limit,

as its breadth is 0. But it can be shown that any sequence with exactly one limit

is a cauchy sequence. As the sequence {s¡} is not a cauchy sequence, this shows

that {s¡} cannot converge in, for example, an a-closed a-extension of G. The

following example gives a much simpler group with the same property.

Example 2. An a-closed group with a nonconvergent pseudo sequence. The

following is a standard device for constructing o-groups. Let A and B be o-

groups and let r be a homomorphism from B to A0(A), the group of order-pre-

serving automorphisms of A. Let S be the set A x B ordered lexicohrapgically

from the right and with addition defined by (a,b) + (a', b') = (a(b'r) + a',b + b').

Then S is an o-group, the splitting o-extension of A by B determined by r. Denote

S by A xrB(*~) where the arrow indicates the lex order from the right.

Let A be the Hahn group Jí(i, R¡) where I is the set of integers and for each

i e I, R¡ is the real numbers. Let B' be the Hahn group if (N, R„) where N is the

set of negative integers and for each ne N,Rn is the real numbers. Let B be that

subgroup of B' consisting of those functions which are "initially an integer":

that is, feB if and only iffe B' and there exist integers nf < 0 and kf such that

if i < nf then f(i) = kf. Define an o-automorphism y of A as follows:

(/y)(0 =f(i — !)• Define r:B-> A0(A) by fr = ykf. Then r is a homomorphism.

Let G = A xrB(<-).

For each n e N let/„ e B be defined by

(1/2     if n <L m,
f"im)   =(o       if„>m.

Now consider the pseudo sequence in G, {s¡: / = 1,2, •■•} where s¡ = (0,/_¡).

It will now be shown that {s¡} cannot have a limit in any a-extension of G.

Supposing, by way of contradiction, that if is an a-extension of G in which

{s¡} has a limit s, we have first that the breadth of {sj in G is A x 0 « A. As A

is a Hahn group with all components the real numbers, A is a-closed, Let

A' = A x 0. A' is a convex subgroup of G. Since H is an a-extension of G, and A'
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is a-closed, then A' is a convex subgroup of H. Again, as H is an a-extension

of G, the set of convex subgroups of H is isomorphic as an ordered set to the set

of convex subgroups of G. Hence the set of convex subgroups of H which con-

tain A' is isomorphic to the negative integers. Any inner automorphism induces

an order preserving automorphism of the set of convex subgroups, and therefore

A' is normal in H, for otherwise there would be an automorphism of H mapping

A' onto a convex subgroup which properly contains A', and hence an order-

preserving function mapping the negative integers onto a final segment of them-

selves, which is impossible.

It can be shown that if {gx} is a cauchy sequence (in any o-group) with limit g,

then {2gx} is a cauchy sequence with limit 2g. In H/A', {s¡ + A'} is a cauchy

sequence with limit s + A'. Therefore {2s¡ + A'} is a cauchy sequence with limit

2s + A'. Hence 2s is a limit of the sequence {2s,} in H. Another limit of {2s,}

is / = (0,(—,1,1, l))eG. Hence by Lemma 1, 2s— fe A'. Let <f) be the inner

automorphism x<¡> = — 2s + x + 2s. Since A' is normal (¡> induces an o-auto-

morphism of A', and since A' is abelian, for any y e A', y<p = —f + y +f = yy

(where y is the automorphism defined in the construction of G). If \¡/ is the inner

automorphism of H, x\¡/ = — s + x + s, then \¡/ induces an automorphism ß of

A' such that ß2 = y. But clearly no such ß exists. Hence no such s exists.

Finally, if G' is an a-closed a-extension of G, then the pseudo sequence |{s,}

can have no limit in G', and this completes the example.

For reasons similar to the above, the equation 2x =/ cannot have a solution

x in G'. This answers a question of Conrad [7] by showing that a group may

be a-closed with all components o-isomorphic to the real numbers, without

being divisible.

Example 3. An abelian group with two nonequivalent a-closed a-extensions.

Modify Example 2 by letting B be the small direct sum. Then G' is still an a-exten-

sion of G. But G" = A@B'(*-) is also an a-closed a-extension of G. G" is

abelian and G' is not.

Example 4. An o-group with two nonequivalent abelian b(c)-closed b(c)-exten-

sions. Let B and B' be as in Example 2. Let I be the o-group of integers and let

R be the real numbers. Let G = I ®ß(«-) and let H = R ©£'(<-). Consider the

elements x = (0,(•••,1/2,1/2)) and y = (1/2,(-,1/2,1/2)) of H. If F' is the sub-
group of H generated by G and x, and if E' is the subgroup of H generated by

G and y, it is easy to verify that both £' and F' are c-extensions of G. Then £'

and F' can be extended to E and F respectively which are maximal c-extensions

of G in H. The argument of Lemma C5 shows that E and F are c-closed (H is

a Hahn group).

Suppose, by way of contradiction, there were an o-isomorphism a of E onto

F leaving the elements of G fixed. Then since 2x e G, 2xo- = 2x and it follows

easily  that  xa = x.   Hence  xeF.  Therefore  y - x = (l/2,(—,0,0))eF.  But
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clearly there is no element of G whose difference with y — x has smaller valuation,

since the only thing of smaller valuation is 0 and y - x $ G. This contradiction

shows that no such a exists. Note that every component of E and F is either

the integers or the real numbers. Thus since E and F are c-closed, they are

b-closed.
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