THE CONVERGENCE OF MEASURES
ON PARAMETRIC SURFACES

BY
J. H. MICHAEL

1. Introduction. In [2], H. Federer has proved several theorems, one of which
is the following. Let X be a compact differentiable k-manifold of class co and f
be a continuous map of X into R" To each smooth map f; of X into R" corres-
ponds a measure y; over the middle space M of f, whose values are k-dimensional
currents in R". This measure associates with any continuous, real-valued func-
tion y on M, the current f, {X A(xem,)} given by the formula

Sl X AGrom )} () = f Gem) A S¥ (),

whenever ¢ is a differential k-form of class o on R". m, denotes the monotone
component in the monotone light factorization of f.

If f has finite Lebesgue area and either k =2 or the range of f has k + 1 di-
mensional Hausdorfl measure zero, then there exists a unique current valued
measure p over M, such that for every sequence of smooth maps f;, which con-
verge uniformly to f and whose areas are bounded, the measures y; converge
weakly to pu.

Federer also treats the case where X is not compact but f is proper; i.e.,
f~Y(Y) is compact for every compact Y < R"

It is the purpose of this paper to generalise this theorem (except for the special
case k = 2) to cover the case of a manifold with boundary. (Actually, an oriented
pseudo-manifold is used.) The following result is obtained.

Let M be a k-dimensional pseudo-manifold (k = 1) and C an integral k-chain
on M such that the support of d(c) is the boundary of M. Let f be a continuous
mapping of | M | into R" with middle space .# and monotone light factorization
f=1,om,. As with Federer’s smooth maps, there corresponds to each quasi-linear
mapping f; of | M | into R", a measure y, over M whose values are k-dimensional
currents in R". For each continuous function y on M,

00} (@) = £ f o«T) (Im{ T AL T)* ($)]

where ¢ is a differential k-form of class o« on R", the summation is taken over
all k-simplexes o of M, each T, is a linear nonsingular mapping of a subset 4, of
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R* onto ¢ and ¢(T}) is the coefficient of the chain ¢ on the orientation of ¢ cor-
responding to T,.

If f has finite Lebesgue area and the range of f has k + 1 dimensional Haus-
dorff measure zero, then there exists a unique current valued measure y over
such that for every sequence of quasi-linear mappings f; which converge uni-
formly to f and whose elementary areas converge to the Lebesgue area of f,
the measures y; converge weakly to pu.

No attempt is made to generalise the other theorems of Federer’s paper.

2. Preliminaries. Throughout the paper we are concerned with (finite) geometric
complexes and their integral chains. The definition adopted for a geometric
complex will be that of Pontrjagin [8], in which the simplexes are closed sets.

We follow Lefschetz [5] in defining subdivisions; i.e., we define K, to be a
subdivision of K if |K,|=|K| and for every simplex { of K;, there exists a
simplex ¢ of K containing (.

As in Whitney [9], a pseudo-manifold of dimension k (where k = 1) is a geo-
metric complex K with the following two properties:

(i) every simplex of K is a face of at least one k-simplex;

(ii) every (k—1)-simplex is a face of at most two k-simplexes.

No connectivity properties are assumed. The boundary £(K) of K is the sub-
complex of K formed by the closure of the set of all those (k—1)-simplexes, each
of which is a face of only one k-simplex.

2.1. QUASI-LINEAR MAPPINGS. For the purposes of this paper a quasi-linear
mapping of a geometric complex L into a euclidean space R" is a continuous
mapping g of | L| into R” for which there exists a subdivision L, of Lwith g linear
on each simplex of L,. Clearly

2.1.1. If L, is a geometric complex with | L, | < | L|, then the restriction of g
to | L, | is quasi-linear with respect to L,.

2.2. INDUCED MEASURES. Let K be a geometric complex and ¢ a nonzero integral
k-chain on K (k = 1). Denote by M and N the sub-complexes of K that support ¢
and d(c) respectively. Let g be a quasi-linear mapping of M into R". We
associate with g, in the following way, a measure v(g) on the space C of real-
valued continuous functions on [M | whose values are k-dimensional currents in
R". For each yeC and each differential k-form ¢ of R" of class o,

[ 1@ = = | dm)-vT@IALg T)* @]4s,
a A‘,
where the summation is taken over all k-simplexes ¢ of M, each T, is a linear non-
singular mapping of a subset 4, of R* onto ¢ and ¢(T}) is the coefficient of the
chain ¢ on the orientation of ¢ given by the mapping T,. {The notation in the
above formula is that of [3].}
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If B is a Borel subset of | M |, then the elementary area of g on B is

a(g,B)= X [ Y. {k-dimensional measure of (P g)(Bna)}z] 1z
oke My LPe P}

where M, is a subdivision of M such that g is linear on each simplex of M, and
P} denotes the collection of all those projections from R"to R* formed by
deleting n—k of the coordinates.

2.3. LEBESGUE AREA. Let K, ¢, M and N be as in 2.2. Let f be a continuous
mapping of |M | into R". For the purposes of this paper, the Lebesgue area of f
will be

L(f) = inf lim infa(f®,|M|),

where the infimum is taken over all sequences {f} of quasi-linear mappings of M
into R" such that f®— f uniformly as r — co.

3. Retraction of the boundary. In this section we prove a theorem to the
effect that the boundary of a surface with finite Lebesgue area makes only a
small contribution t o the area.

We will be dealing with geometric complexes and the following notation is
adopted. II(K) denotes the barycentric subdivision of a geometric complex K.
We denote the closure of a collection L of simplexes of K by CI(L). Of the several
definitions in use for the star St(o) of a simplex o of K we select the one that de-
fines St(c) to be the collection of all these simplexes with o for a face (¢ being
regarded as a face of itself). K" will denote the r-dimensional skeleton of K.

3.1. PSEUDO-MANIFOLDS. We obsesve that a pseudo-manifold K has the follow-
ing properties:

3.1.1. If dim k =1, then either #(K) =@ or dim #(K)=dimK — 1.

3.1.2. TI(K) is a pseudo-manifold and Z{I1(K)} = I1{#(K)}.

3.2. DerINITION. We define an F-complex to be a nonempty pseudo-manifold
K of dimension k = 1 and such that: for every pair o%, a% of distinct k-simplexes
of K, there exists a sequence

O"i = ’(‘), '{”d‘ = 6’2‘
of distinct k-simplexes of K such that for each i=1,---,r, {;_; and &; have a
common (k—1)-face.

Evidently

3.2.1. If K is an F-complex, then IT(K) is also an F-complex.

3.3. DerINITION. Let K be a pseudo-manifold with dimension k = 1. There
exists a unique set K,,K,, -, K, of subcomplexes of K with the following pro-
perties:

(i) each K; is an F-complex,
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(i) notwo of K;,K,,-+,K, have a k-simplex or a (k—1)-simplex in common;
(i) K=K, UK, UK,
K{,K,,-+,K, will be called the F-components of K.
Evidently
331, ZB(K)=RBK)VBK)U - UB(K,).

3.4. LeMMA. If K is an F-complex of dimension k =1 and ¢*~"is a(k—1)-
simplex of B(K), then there exists a continuous mapping ¢ of | K | into| K*™*|such
that

P(x) = x
for all xe|B(K)~ o * | U|K* 2.

Proof. Since K is an F-complex we can arrange its k-simplexes into a sequence

k _k k
0,07, ...’o'p

in such a way that ¢*~! is a face of ¢* and for i = 2,3, -+, p, o¥ has a (k—1)-face
6! in common with one of of,0%,--,0,. Put of '=0""1 For each
i=1,2,-,p, let K; be the subcomplex obtained by removing o%,0%,:--, 0},
o1 ...,6*"! from K. Put K, = K.

For each i=1,---,p there exists a continuous mapping ¥; of o} into
| #(c%) ~ 0% ™" | such that y(x) = x for all x€|%(c}) ~ o} *|. Define

$(x) = Yy(x) for xea}

= x for xe|K;-, |~ o}.

Then ¢, is a continuous mapping of | K;_, | into | K;| such that ¢,(x) = x for all
x €| K;|. Define

¢ = ¢p¢p-l o ¢l‘
Then ¢ is a continuous mapping of |K,| = | K| into |K,| =|K*™*| such that
P(x) = x

forallxe|K,| 2 |4(K) ~d* "' |U|K*2|.

3.5. LeMMA. Let K be a pseudo-manifold of dimension k 21 and let L be
a sub-pseudo-manifold of K such that each F-component of L has a (k—1)-
simplex in common with #(K).

There exists a continuous mapping ¥ of |K| into |K| and a subdivision
IT(K) of K such that

@ w(Lh<s|*;

(i) Y(x) = x for all xe|CI(K ~ L)| and

(iii) for each k-simplex &E* of TI'(L), there exists a (k—1)-simplex ¢*~* of I*™!
with Y(¥) < 6*~* and with  linear on &.
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Proof. Let L,,L,,-,L, be the F-components of L. Let of™! be a (k—1)-
simplex that L; has in common with #(K). Then o¢~! e %(L,), hence by 4.4,
there is a continuous mapping ¢; of | L;| into | L¥™*| such that

Pi(x) =x
for all xe|#(L) ~ of*|. Define

o(x) = x if xe|Cl(K ~ L)|
= ¢(x) if xeL,.

(M

Then ¢ is a continuous mapping of | K | into | K| and

@) o(L) s |LY.

Choose a positive integer r such that for every vertex x of IT(L), there exists
a vertex y of L*~ ' with

3 ¢{|St(x) in (L) [} = S()

where S(y) denotes the union of the interiors of the simplexes of St(y) in L¥%
Define a function y from {II'(L)}° to | L| such that

4 U(x)=x
if x e {II'(L)}* N |CI(K ~ L)| and such that when x € {II'(L)}° ~|CI(K ~ L)| ¥(x)
is a vertex of L¥~* with
(5) ¢ {|St(x) in II'(L) |} = S{Y(x)}.

We will now prove that if vy, vy, -, v are the vertices of a k-simplex of IT'(L), then
there exists a simplex ¢ of L*~* such that
(6) Y(vo), -+ Y(vy) € 0.

Since r 2 1, there is at least one v; not in | CI(K ~ L)|. If no v; is in | CI(K ~ L)),
then (6) follows immediately from (5). If vy, -+, v, are in |CI(K ~ L)| but
Ug41, -,V are not, then by (4), there exists a simplex o, of L*~! containing

Y(vo), -+, Y(vy). But
vo €| St(v;) in II'(L)]|
so that by (5)
d(vp)eS {'/’(”,)}

for j =s + 1,---,k; hence since ¢(v,y) = v, it follows from (4) that
‘//(UO) € S{lp(vj)}’ J =s+ 13 Tty k.

o, €St{Y(v)} in !

forj=s+1,-,k;i.e., each Y(v;) is a vertex of g. Thus (6) is true.

Then
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We can now extend ¥ to a continuous mapping of |K| into | K| by putting

@) Y(x) = x

for all xe|Cl (K ~ L)I and extending ¢ linearly over each k-simplex of IT"(L).
It follows immediately from (6) and (7), that  has the required properties.

3.6. THEOREM. Let K be a pseudo-manifold of dimension k21 and ¢ be
a nonzero integral k-chain on K such that o(c) is supported by %(K). Let f be
a continuous mapping of |K| into R" (n 2 k) with finite Lebesgue area and
{f®} be a sequence of quasi-linear mappings of K into R" such that

If”~£]-0
and

a(f?,| K )~ L(f)

as r— . Let ¢ >0 and B be a dense subset of R*.
There exists a finite number J,,---,J, of closed intervals of R" such that:
(1) Jy,--,J, have mutually disjoint interiors and the coordinates of their
vertices are all in B;

(ii) f(|#K)|) < Int { L:JIJ, };

(iii) for every 8 > 0, there exists a subdivision IT'(K) of K and a sub-pseudo-
manifold L of TI'(K) such that every point of f(|B(L)|) has a distance less than
8 from | Ji=1 Fr(J)) and

lim sup a(f®,| K|~ |L]) <e.

Proof. We can construct an infinite sequence #,,.#,, -+ with the following
property:

(A) each #, is a finite collection of closed intervals of R” with mutually disjoint
interiors, with the coordinates of all their vertices in B, with diameters less than
1/t, with

f{|2K)|} < Int { U J}
Jefe
and all intersecting f {| B(K) |}.

For each Je #, let V, be the set consisting of all those points x of
f~1(IntJ) with the property:

(B) there exists a subdivision IT'(K) of K and a subcomplex M of IT*(K)
such that M is an F-complex with a (k — 1)-simplex in common with
B{II'(K)} = IT{#(K)} and xe |M | = f ~'(IntJ).

For each r, let K, be a subdivision of K such that f® is linear on
each simplex of K,. A point x belongs to V; if and only if
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(C) for each r, there exists a subdivision IT""(K,) and a subcomplex M of
IT""(K,) such that M is an F-complex with a (k — 1)-simplex in common with
B{I1"(K,)} = I"{#(K,)} and xe | M| = f ~'(IntJ).

Put
1) V, = ,EJ,, V.
We will prove that
()] lim [lim sup a{f ©) V;} ] =0.
t—® r=o

To prove (2), we suppose it is not true. Then there exists an ¢’ > 0 and two sub-
sequences {r,}, {t,} of the positive integers such that

©) a{f,V,} > ¢

for all s = 1,2, ---. For all positive integers g, s and all Je £, , let L,(J) denote the
sub-pseudo-manifold of IT(K, ) that is the closure of the set of all those k-simplexes
that are contained in V. Let M (J) denote the subcomplex of L,(J) consisting
of the union of all those F-components of L, (J) that have a (k—1)-simplex in
common with Z{(T1K, )} = II*{#(K, )}. Then

lim U Iqu(J)I =V,

g0 Je fts

hence by (3) we can choose, for each s, a positive integer g, such that
1
(rs) iy
O] a{f , Jel }I"|qus(J)|} > 7€

By 3.5, there exists for each Je ¢, a continuous mapping ¥, of |K| into | K|
and a subdivision II"*(X, ) of IT**(K,) such that:

@ Vil Mo D]} < [ (Mo DF];

(i) ¥,(x)= x forall xe|CI{II*(K,) ~ M, (D} |;

(iii) for each k simplex &* of IT"*~%*{M,_(J)} there exists a (k—1)-simplex ¢*~*
of {M,_(J)}*"* such that y,(&") = ¢*~" and y is linear on &".

By forming a composition of the mappings y/; (J € #,,) and f =) we arrive at
a quasi-linear mapping g+’ of K into R” with the following properties:

(a) " g(r.) - f(r.) 1

< =
t,’

) a@™|K|)=a| FIK|~ U M, D]}
Sty

Je

By () and hypothesis
l¢=1] 0
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as s —» oo and by () and (4)
lim sup a(g"",|K|) < L(f) — ¢’

contrary to hypothesis. Thus (2) is true.
By (2) we can choose a positive integer ¢’ such that

) limsup a{f®,V,} <e
and we let J,,---,J, be the members of #,..

To prove (iii), take an arbitrary 6 > 0 and let C be the subset of | K | consisting
of all those points x for which xeV, and f(x) has a distance = 16 from
U}’=1 Fr(J;). Then C is compact. For each j =1, -, p, let L,; be the subcomplex
of IT%(K) that is the closure of the set of all those k-simplexes that are contained
in V;,. Let M,; denote the subcomplex of L ; consisting of the union of all those
F-components of L,; that have a (k—1)-simplex in common with Z{I1%K)}
=T1{%(K)}. Let

14
M, = ,le M,;.
Then
lim [Int of |M,| in V] = V,,

q- o
hence there exists an I such that C < | M, |. Put
L =Cl{[TIK) ~ M}},
and L has the required properties.

4. The main convergence theorem. Throughout §4, K will be a geometric
complex, ¢ a nonzero integral k-chain (k = 1) on K and M,N the subcomplexes
of K that support ¢ and d(c) respectively. f is a continuous mapping of | M | into
R".

f has a unique monotone light factorization (see [2] or [10]),
f=1lom m:lMl—»Jl I.#4—-R",

whose middle space .# consists of the maximal continua of constancy of f.
M can be metrized by defining

d(¢,m) = inf {diamf(C); C is a continuum of |M | containing ¢ U n},
when ¢,n both belong to the same component of | M| and
d(¢m) =1 + diamf(| M )

otherwise. . is evidently compact.
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Let € be the Banach space of all real-valued continuous functions on . with

the norm of uniform convergence.
For each quasi-linear mapping of g of M into R" there was defined in 2.2 a
current-valued measure v(g) over IM l This induces a measure u(g) over

as follows:

M@} = (M@} (xom), re€.

4.1. THEOREM. If f has finite Lebesgue area, f(| M |) has k + 1 dimensional
Hausdorff measure zero and 0(c) = 0, then there exists a unique current-valued
measure u(f) over # such that for every sequence {f } of quasi-linear mappings
of M into R" which converge uniformly to f and have bounded areas, the measures

p(f ) converge weakly to u(f).

This theorem is just 3.9 of [2] without the special case k = 2. Although Fe-
derer’s theorem is stated for differentiable k-manifolds of class oo, the proof is
valid for k-dimensional geometric complexes.

4.2. LeMMA. Let M be a pseudo-manifold, N = B(M), f have finite Lebesgue
area and f(|M|) have k + 1 dimensional Haudsorff measure zero. Let €, be
the subspace of € consisting of all ye ¥ for which y o m vanishes on |N| Then
there exists a unique current-valued measure uy(f) on €, such that for every
sequence {f®} of quasi-linear mappings of M into R" which converge uni-
formly to f and have bounded areas, the restrictions of the measures p(f®) to
€, converge weakly to py(f) on %,.

Proof. Let M, be a k-dimensional pseudo-manifold containing M as a sub-

complex and such that:
(A) BM,)=9;
(B) if L=CI(M, ~ M), then M L= N = B(M) = &(L);
(C) there exists an isomorphism 6 of |M| onto |L| such that 6(c) = ¢ for

all o e Z(M).
Let n denote the corresponding homeomorphism. The chain ¢ extends to an

integral k-cycle ¢, on M,.
For each continuous mapping h of |M | into R", let h, be the continuous

mapping of |M,| into R" given by
hy(x) = h(x), xe|M|,
= h{n~'(x)}, xe|L|
For a quasi-linear mapping g : |M | — R" we evidently have

a(gs | My|) = 2a(g,|M)),
hence
L(fe, | My ]) = 2L(f,| M)
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Denote the middle space of f, by .#,. By 4.1, there exists a unique measure g,
over ., such that for every sequence {g’} of quasi-linear mappings of IM*I
into R", which converge uniformly to f, and have bounded areas, the measures
w(g?) converge weakly to p,. For each ye%,, let y, be the continuous function

on M, given by

wW(M|NY) if [ M|NL#8,
=0if [M|n{=0.

xx()

Define
(N} = malt)s  x€%0.

If {f®} is a sequence of quasi-linear mappings of M into R", which converge
uniformly to f and have bounded areas, then f converges uniformly to f, and
a(f{’,| M, ) is bounded, hence, for each y €%,

lim {l‘(f*(r))} ) = 1)

r—+o

llfolo HEN W = {#N} -

4.3. THEOREM. If M is a pseudo-manifold, N = Z(M), f has finite Lebesgue
area and f(|M|) has k + 1 dimensional Hausdorff measure zero, then there
exists a unique current-valued measure p(f) over M such that, for every sequence
{f®} of quasi-linear mappings of M into R", which converge uniformly to f
and whose areas converge to the Lebesgue area of f, the measures u(f) converge
weakly to u(f).

Proof. Since every uniformly bounded sequence of measures over .# has a
convergent subsequence, it will be sufficient to prove that if {g®}, {h*’}
are two sequences of quasi-linear mappings of M into R", which converge uni-
formly to f, whose areas converge to the Lebesgue area of f and which are such
that the corresponding sequences of measures {u(g")}, {u(h")} converge weakly
to measures u and p’, then u=pu’.

Suppose this statement is not true, i.e., there exists a x € € such that u(y) # p'(x).
Then

) lim {W(g®)}(rom) — lim {W(A™)}(zom) |=58>0.

r—+ o r— oo

so that

Put
K =1+ sup x ().

leM

We can assume that there exists a countable dense subset Y of R! such that
if we put for i;=1,---, nand teY

A; = {x;xeR" and x; < t},
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then each of the limits

lim a{g®,f " (4)} = 1)

r—>o

lim a{h®,f~'(4)} = pf(®)

exists; because, if not, we could choose subsequences for which these limits existed.
Since p; and p¥are monotone increasing there exists a subset Z of R* such that
R! ~ Z has zero measure and pi(t),p}'(t) exist for all teZ amd all i. Then, for
every interval J of R" with the coordinates of its vertices all in Z, we have

) lim lim sup [a{g".f ~'(BD} + a{h®,f ~'(B)}]=0,

A=0+ r—wo

where
B, = {x; xeR" and d[x,Fr(J)] < A}.

By 3.6, there exists a finite number J,, ---,J, of closed intervals of R" such that
(A) Jy,++,J, have mutually disjoint interiors and the coordinates of their
vertices are all in Z;

(B) f(N) < Int‘ ':ile}; and

(C) for every 8 > 0, there exists a subdivision I1'(M) of M and a sub-pseudo-
manifold L of TT!(M) such that every point of f (|@(L) ) has a distance less than
é from U};l Fr(J;) and

lim sup a(g®”,| M|~ |L]) <& K77,

lim sup a(h”,| M| ~ |L]) <e-K™*.
By (2) one can choose a §, > 0 and a positive integer r; such that the sets
U;={x; xeR" and d(x,Fr(J)) <4}

are sufficiently small that

3) a[g"’,f“(u U,)] <e¢K!

and o

for all r = r,. Let ITI'(M) be a subdivision of M and L a sub-pseudo-manifold of
IT' (M) such that
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p
) |B(L)| < f“( UIU ,)
=
and
(6) lim sup a(g®,| M|~ |L]) <e-K™%,
@) lim sup a(h®,|M |~ |L]) <e- K™%

Let #, be the middle space of the restriction of f to |L|, # be the inclusion
mapping of #; into # and f = 1;.m, be the monotone light factorization of
f with respect to |L|. Since

14
& = lf‘{R" ~U U,}
ji=1

is a closed subset of .#, which does not intersect m,{|#(L)|}, there exists a
continuous function y,; on .#, such that

1@ = x{n©}, {eé&,

=0 Lem{| 2L},
and
FAGIEYS
for all (e .#,. By 4.2
® Em (Mg} (Xromy) = lim {v(h™)} (x10my).

But

J

[{v(g)} (xom — x1omy)| < 2Ka{g"’,f'1 l :1 UJ}U(IMl ~[Lh),

hence by (3) and (6),
lim sup | {w(g")} (xom — x10my)| <2,

r->o

and similarly

lim sup |{W(h®)} (xom — x,0m)| < 2¢

r—+o

so that by (8)

lim {W(g”}(xom) — lim {w(h™)}(xom) I <4e

r-=+o r=o

contradicting (1).
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