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1. Introduction. In [2], H. Fédérer has proved several theorems, one of which

is the following. Let X be a compact differentiable fe-manifold of class co and /

be a continuous map of X into R". To each smooth map/¡ of X into R" corres-

ponds a measure p¡ over the middle space Mf of/, whose values are fe-dimensional

currents in R". This measure associates with any continuous, real-valued func-

tion % on My the current f,#{X A(x°mf)} given by the formula

fi*{XA(x°mf)}($)= f(x°m,) A /?(*),
Jx

whenever <p is a differential fe-form of class co on R". mf denotes the monotone

component in the monotone light factorization of/.

If/ has finite Lebesgue area and either fe = 2 or the range of/ has fe + 1 di-

mensional Hausdorff measure zero, then there exists a unique current valued

measure p over Mf such that for every sequence of smooth maps/¡, which con-

verge uniformly to / and whose areas are bounded, the measures p¡ converge

weakly to p.

Federer also treats the case where X is not compact but / is proper; i.e.,

/_1(F) is compact for every compact 7cR".

It is the purpose of this paper to generalise this theorem (except for the special

case k = 2) to cover the case of a manifold with boundary. (Actually, an oriented

pseudo-manifold is used.) The following result is obtained.

Let M be a fc-dimensional pseudo-manifold (fe ̂  1) and C an integral fe-chain

on M such that the support of d(c) is the boundary of M. Let / be a continuous

mapping of | M | into R" with middle space JÍ and monotone light factorization

f=lf° mf. As with Federer's smooth maps, there corresponds to each quasi-linear

mapping/; of | M | into R", a measure pi over M whose values are fc-dimensional

currents in R". For each continuous function x on M,

fritó} (*) = I (    c(Ta) ■ x[m{Ta(Xm A[(/; ° W (*)]
a   J A<r

where <p is a differential fc-form of class oo on R", the summation is taken over

all fc-simplexes a of M, each Ta is a linear nonsingular mapping of a subset A„ of
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Rk onto a and c(Ta) is the coefficient of the chain c on the orientation of a cor-

responding to Ta.

If/ has finite Lebesgue area and the range of/ has fe + 1 dimensional Haus-

dorff measure zero, then there exists a unique current valued measure p over Jt

such that for every sequence of quasi-linear mappings /¡ which converge uni-

formly to / and whose elementary areas converge to the Lebesgue area of /,

the measures p¡ converge weakly to p.

No attempt is made to generalise the other theorems of Federer's paper.

2. Preliminaries. Throughout the paper we are concerned with (finite) geometric

complexes and their integral chains. The definition adopted for a geometric

complex will be that of Pontrjagin [8], in which the simplexes are closed sets.

We follow Lefschetz [5] in defining subdivisions; i.e., we define K1 to be a

subdivision of K if \Kt | = \K\ and for every simplex £ of Kt, there exists a

simplex a of K containing Ç.

As in Whitney [9], a pseudo-manifold of dimension k (where fe = 1) is a geo-

metric complex K with the following two properties:

(i) every simplex of K is a face of at least one fe-simplex;

(ii)   every (fe— l)-simplex is a face of at most two fc-simplexes.

No connectivity properties are assumed. The boundary £$(K) of K is the sub-

complex of K formed by the closure of the set of all those (fe — l)-simplexes, each

of which is a face of only one fe-simplex.

2.1. Quasi-linear mappings. For the purposes of this paper a quasi-linear

mapping of a geometric complex L into a euclidean space R" is a continuous

mapping g of | L\ into R" for which there exists a subdivision Li of L with g linear

on each simplex of Lv Clearly

2.1.1. If L* is a geometric complex with | L„. | çz | L |, then the restriction of g

to | L* | is quasi-linear with respect to L*.

2.2. Induced measures. Let K be a geometric complex and c a nonzero integral

fe-chain on K (k = 1). Denote by M and N the sub-complexes of K that support c

and 8(c) respectively. Let g be a quasi-linear mapping of M into R". We

associate with g, in the following way, a measure v(g) on the space C of real-

valued continuous functions on ¡ M | whose values are fe-dimensional currents in

R".  For each  iJ/eC and  each differential  fe-form  4>  of il" of class to,

[W/MW) = 2  f  «T.yiftUxÜAUgoT.WWdx,

where the summation is taken over all k-simplexes a of M, each Ta is a linear non-

singular mapping of a subset A„ of Rk onto a and c(Ta) is the coefficient of the

chain c on the orientation of a given by the mapping T„. {The notation in the

above formula is that of [3].}
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If B is a Borel subset of | M |, then the elementary area of g on B is

j 1/2a(g,B)=    I Z    {fc-dimensional measure of (P o g) (B n a)}2

where Mt is a subdivision of M such that g is linear on each simplex of Mx and

Pk denotes the collection of all those projections from R" to Rk formed by

deleting n — fe of the coordinates.

2.3. Lebesgue area. Let K, c, M and N be as in 2.2. Let / be a continuous

mapping of | M | into R". For the purposes of this paper, the Lebesgue area of /

will be

L(/) = inf lim  infa(/(r),|M|),
r-»co

where the infimum is taken over all sequences {/(r)} of quasi-linear mappings of M

into R" such that/(r)->/ uniformly as r-> co.

3. Retraction of the boundary. In this section we prove a theorem to the

effect that the boundary of a surface with finite Lebesgue area makes only a

small contribution t o the area.

We will be dealing with geometric complexes and the following notation is

adopted. Yl(K) denotes the barycentric subdivision of a geometric complex K.

We denote the closure of a collection Lof simplexes of K by C1(L). Of the several

definitions in use for the star St(a) of a simplex a of K we select the one that de-

fines St(ff) to be the collection of all these simplexes with a for a face (a being

regarded as a face of itself). Kr will denote the r-dimensional skeleton of K.

3.1. Pseudo-manifolds. We obsesve that a pseudo-manifold K has the follow-

ing properties :

3.1.1. If dim fe k 1, then either S3(K) = 0 or dim SB(K) = dixnK - 1.

3.1.2. U(K) is a pseudo-manifold and SB{Yl(K)} = TL{SB(K)}.

3.2. Definition. We define an F-complex to be a nonempty pseudo-manifold

K of dimension fe ̂  1 and such that: for every pair a\,a\ of distinct fe-simplexes

of K, there exists a sequence

k        zk   tk tk Ji
°X — <=0>Çl>-">Çr = °2

of distinct fc-simplexes of K such that for each i — 1, •••,r, £;_! and £; have a

common (fe—l)-face.

Evidently

3.2.1.   If K is an F-complex, then H(K) is also an F-complex.

3.3. Definition. Let K be a pseudo-manifold with dimension fe ̂  1. There

exists a unique set KUK2, ■■-,Kp of subcomplexes of K with the following pro-

perties :

(i) each K¡ is an F-complex,
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(ii)  no two of &!, K2, ■ ■ ■, Kp have a fe-simplex or a (k - l)-simplex in common ;

(iii) K = KXUK2-UKP.

K1,K2,---,Kp will be called the F-components of K.

Evidently

3.3.1.   3S(K) = á?(Xj)U@(K2)u •••UJ(X„).

3.4. Lemma. If K is an F-complex of dimension k _ 1 and ak_1 is a(k—l)-

simplex of SS(K), then there exists a continuous mapping(h of \ K | into \Kk~1\such

that

(¡>(x) = x

for all xe\@(K)~ o-*_1| U \Kk~2\.

Proof.   Since K is an F-complex we can arrange its k-simplexes into a sequence

o-i_,a2,---,ap

in such a way that a*-1 is a face of a\ and for i = 2,3, ■■■,p, a\ has a(fc — l)-face

a)'1 in common with one of o\,02,"'t<tï-v Put ak~1=ak~1. For each

i = l,2,"-,p, let K¡ be the subcomplex obtained by removing a\,ak2,---,ak,

a\~\ -,o\~1 from K. Put K0 = K.

For each i = l,---,p there exists a continuous mapping i¡/¡ of ak into

133 (ak) ~ ok~1 | such that ^¡(x) = x for all x e \ @(ok) — erf-1 j. Define

4>¡(x) = i¡/¡(x) for xeof

= x for xe |i£¡-i | ~ ak.

Then ^>¡ is a continuous mapping of | K¡_ x | into | K¡ | such that ^¡(x) = x for all

xe|K¡|. Define

Then </> is a continuous mapping of \K0\ = \K\ into |Xp| çz \Kk~l | such that

4>(x) = x

for all x e \ Kp | 2 | ̂ (K) ~ ak~ ' | U | Kk~2 |.

3.5. Lemma. Let K be a pseudo-manifold of dimension fc = l and Zeí L be

a sub-pseudo-manifold of K such that each F-component of L has a (fe—1)-

simplex in common with (¡3(K).

There exists a continuous mapping \j/ of \K\ into \K\ and a subdivision

TT(K) of K such that

0)  <K|¿|) = |^_1|;
(ii)  \¡i(x) = xforallxe\C\(K~L)\ and

(iii) for each k-simplex ÇkoflV(L), there exists a (k — l)-simplex ak_1 of Lk_1

with \p(£,k) çz <j*_1 and with \¡/ linear on ¿;\
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Proof. Let LUL2,...,LP be the F-components of L. Let a1?'1 be a (fe—1)-

simplex that L¡ has in common with 3S(K). Then ok~1e SB(L¡), hence by 4.4,

there is a continuous mapping <¡)¡ of | L¡ | into | Lk~i\ such that

*¡(x) = x

for all x e | J*(L;) - erf"* |.   Define

*(x) = x if xe\Cl(K~L)\

= </>;(x)   if x e L¡.

Then 4> is a continuous mapping of | X | into | K | and

(2) «KlLDslL*-1!.

Choose a positive integer r such that for every vertex x of nr(L), there exists

a vertex y of Lk~1 with

(3) <H|St(x)innr(L)|}£:S(jO

where S(y) denotes the union of the interiors of the simplexes of St(y) in j}~\

Define a function \¡/ from {nr(L)}° to | L\ such that

(4) j,(x) = x

if x e {nr(L)}° n | Cl (X ~ L) | and such that when x e {U.r(L)}° ~ |C1 (K ~ L)| i//(x)

is a vertex of L*-1 with

(5) <H|St(x)in nr(L)|}£S{^(x)}.

We will now prove that if t>0, vx, ■ ■ ■, vk axe the vertices of a k-simplex of nr(L), then

there exists a simplex a of L*-1 such that

(6) 4t(v0),-~,\p(vk)ea.

Since r ^ 1, there is at least one v¡ not in | Cl(K ~ L) |. If no v¡ is in | Cl(K ~ L)\,

then (6) follows immediately from (5). If v0,•■•,vs are in |C1(JC~L)| but

vs+i>---,Vk are not> then by (4). there exists a simplex o^ of Lfc_1 containing

Hv0)>-,Hvs)- But

PoelSti^inn^L)!

so that by (5)

0(ro)eS{^)}

for ; = s 4-1, •••, k; hence since <Kv0) = % it follows from (4) that

i¡/(v0)eS{il/(Vj)},      j = s + l,-,k.

Then
o^eSt^,)} in L*"1

for j = s + 1, •••,/:; i.e., each iK^) is a vertex of a. Thus (6) is true.
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We can now extend \p to a continuous mapping of | /C | into | K | by putting

(7) iKx) = x

for all xe\C\(K ~ L)\ and extending \¡/ linearly over each fc-simplex of HYL).

It follows immediately from (6) and (7), that \p has the required properties.

3.6. Theorem. Let K be a pseudo-manifold of dimension k = 1 and c be

a nonzero integral k-chain on K such that ô(c) is supported by £¡3(K). Letf be

a continuous mapping of \K\ into R" (n _ fe) with finite Lebesgue area and

{/W} be a sequence of quasi-linear mappings of K into R" such that

ll/(r)-/H-o
and

a(fir\\K\)^L(f)

as r -* oo. Let s > 0 and B be a dense subset of R1.

There exists a finite number J1,--,JP of closed intervals of R" such that:

(i)    fj,---,Jp have mutually disjoint interiors and the coordinates of their

vertices are all in B;

(ii) /(|á?(fC)|)sInt {  (Jf,);

(iii) for every ô > 0, there exists a subdivision Tl'(K) of K and a sub-pseudo-

manifold Lof Tl'(K) such that every point off(\38(L)\) has a distance less than

Sfrom\Jpj=1 Fr(Jj) and

limsupa(f(r\\K\~\L\)<e.
r-*oo

Proof. We can construct an infinite sequence f\,/2,--- with the following

property:

(A) each ßt is a finite collection of closed intervals of R" with mutually disjoint

interiors, with the coordinates of all their vertices in B, with diameters less than

1/i, with

/{|^(K)|}£lnt{u f)
Je ft

and all intersecting /{|^(â:)|}.

For each Jeft let V} be the set consisting of all those points x of

/_1(Intf) with the property:

(B) there exists a subdivision TV(K) of K and a subcomplex M of TT(K)

such that M is an F-complex with a (fe - l)-simplex in common with

â3{ïl\K)} = \Y{@(K)} and x£|M| s/_1(Intf).

For each r, let Kr be a subdivision of K such that /(r) is linear on

each simplex of Kr. A point x belongs to V} if and only if
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(C) for each r, there exists a subdivision TlVr(Kr) and a subcomplex M of

UVr(Kr) such that M is an F-complex with a (fe — l)-simplex in common with

SB{IV(Kr)} = TVr{SB(KT)} and xe |M| S/^flntJ).

Put

(1)

We will prove that

(2)

To prove (2), we suppose it is not true. Then there exists an e' > 0 and two sub-

sequences {rs}, {ts} of the positive integers such that

(3) a{f-\Vts}>e'

for all s = 1,2, •••. For all positive integers q, s and all Je ßu, let Lqs(J) denote the

sub-pseudo-manifold of Uq(Kr) that is the closure of the set of all those fc-simplexes

that are contained in Vj. Let Mqs(J) denote the subcomplex of Lqs(J) consisting

of the union of all those F-components of Lqs(J) that have a (fe-l)-simplex in

common with S§{(nq(Kr)} = Tlq{SB(Kr)}. Then

lim   (J   \Mqs(J)\ = Vt_,
q — œ   Jefts

hence by (3) we can choose, for each s, a positive integer qs such that

(4) «(/<"!   (J   \MqsS(J)\)>\s'.
V Je ft, I z

By 3.5, there exists for each Jeßts a continuous mapping \¡/j of \K\ into |K|

and a subdivision W'(Kr ) of H.q°(Krs) such that:

(i)   íMIM^IjeKM,^./)}*-1];
(Ü)  ./o(x)= xforallxe|Cl{n^(Kr5)~M3iS(J)}|;

(iii) for each fe simplex £* of nVs ?s{M4iS(J)} there exists a (fe — l)-simplex ak i

of {Mij5(J)}*_1 such that i/o(f ) S ok~l and ^ is linear on £*.

By forming a composition of the mappings i¡/j (J eßt) and /(rs), we arrive at

a quasi-linear mapping g(rs) of K into R" with the following properties:

(a) |«W-/W|<7-;
's

(/?) a(g^,|K|) = a(/(r*>|í:|~    (J   |MîtS(J)|).

By (a) and hypothesis

11^-/11 ->o

Vt -   U ^
Je/.

lim  j lim sup a{/(r), Vj = o.
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as s -> oo and by (ß) and (4)

limsupaiy^lKl^Lt/l-e'
s -*oo

contrary to hypothesis. Thus (2) is true.

By (2) we can choose a positive integer t' such that

(5) lim sup a{/(r), Vt) < e
r-*oo

and we let Jlt ■■■, Jp be the members of ,/,..

To prove (iii), take an arbitrary ô > 0 and let C be the subset of | K | consisting

of all those points x for which x 6 Vt. and f(x) has a distance = {-6 from

\JPj = \Fr(Jf). Then C is compact. For each j = l,—tp, let Lqj be the subcomplex

of U9(K) that is the closure of the set of all those fe-simplexes that are contained

in Vjj. Let Mqj denote the subcomplex of Lqj consisting of the union of all those

F-components of Lqj that have a (fe —l)-simplex in common with â3{Tlq(K)}

= W{!%(K)}. Let

Mq = (j Mqj.
J=i

Then

lim [Int of I M, I in F,.] = Vr,
q-*oo

hence there exists an I such that C £ | M, |. Put

L = Cl {n'(iQ ~ M,},

and L has the required properties.

4. The main convergence theorem. Throughout §4, K will be a geometric

complex, c a nonzero integral fe-chain (fe = 1) on K and M,N the subcomplexes

of K that support c and 8(c) respectively. / is a continuous mapping of | M | into

R".

f has a unique monotone light factorization (see [2] or [10]),

f=l°m m:\M\-* Jt V.Jl^R",

whose middle space JÍ consists of the maximal continua of constancy of /.

M can be metrized by defining

d(£,») = inf {diam/(C); C is a continuum of | M | containing ¿; U «},

when £,n both belong to the same component of | M | and

d(£,n) = l + diam/(|M|)

otherwise. J( is evidently compact.
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Let # be the Banach space of all real-valued continuous functions on J( with

the norm of uniform convergence.

For each quasi-linear mapping of g of M into R", there was defined in 2.2 a

current-valued measure v(g) over |M|. This induces a measure p(g) over Ji

as follows:

Ms)}(z) = {vte)}(xom),     Ze<f.

4.1. Theorem. /// has finite Lebesgue area,/(| M |) Zias fc + 1 dimensional

Hausdorff measure zero and d(c) = 0, then there exists a unique current-valued

measure p(f) over J( such that for every sequence {/(r)} of quasi-linear mappings

of M into R" which converge uniformly tof and have bounded areas, the measures

p(f(r)) converge weakly to p(f).

This theorem is just 3.9 of [2] without the special case fe = 2. Although Fe-

derer's theorem is stated for differentiable fc-manifolds of class co, the proof is

valid for fc-dimensional geometric complexes.

4.2. Lemma. Let M be a pseudo-manifold, N = SB(M),f have finite Lebesgue

area and /(|M|) have fc + 1 dimensional Haudsorff measure zero. Let ^0 be

the subspace of ^ consisting of all /e^for which x°m vanishes on \N\. Then

there exists a unique current-valued measure p0(f) on ^0 such that for every

sequence {/(r)} of quasi-linear mappings of M into R" which converge uni-

formly to f and have bounded areas, the restrictions of the measures /i(/(r)) to

"^o converge weakly to p0(f) on ^0.

Proof. Let M* be a fc-dimensional pseudo-manifold containing M as a sub-

complex and such that:

(A) SB(Mit) = 0;
(B) if L= C1(M* ~ M), then Mn L= N = SB(M) = SB(L);

(C) there exists an isomorphism 6 of | M | onto | L\ such that 6(a) = a for

all aeSB(M).

Let r\ denote the corresponding homeomorphism. The chain c extends to an

integral fc-cycle c* on M*.

For each continuous mapping Zi of \M\ into R", let h* be the continuous

mapping of | M* | into R" given by

h*(x) = Zi(x), xe|M|,

= h{n~\x)},   xe\L\.

For a quasi-linear mapping g : | M | ->• R" we evidently have

afg*, | M, |)  = 2a(g,|M|),

hence

L(/*,|M*|)  ^ 2L(/,|M|).
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Denote the middle space of/* by ..#*. By 4.1, there exists a unique measure p*

over Ji^ such that for every sequence {q^} of quasi-linear mappings of | M* |

into R", which converge uniformly to /* and have bounded areas, the measures

p(q'i)) converge weakly to p*. For each xe^0, let x* be the continuous function

on M+ given by

z,(0 = x(\M\nC) if \M\nC^0,

= 0 if |M|nc = 0.
Define

W/)}(X) = /**(**),       X^o.

If {/(r)} is a sequence of quasi-linear mappings of M into B", which converge

uniformly to / and have bounded areas, then /(r> converges uniformly to /„, and

a(fjir),\ M* |) is bounded, hence, for each xe^o

Hm {«(/*(r))}(x*) = pM,
r-*QO

so that

lim W/(r))}(z)   = {/ioCOKx)-
r-»oo

4.3. Theorem, i/ M is a pseudo-manifold, N = ¿%(M),f has finite Lebesgue

area and f(\M\) has fe + 1 dimensional Hausdorff measure zero, then there

exists a unique current-valued measure p(f) over M such that, for every sequence

{/(r)} of quasi-linear mappings of M into R", which converge uniformly to f

and whose areas converge to the Lebesgue area of f, the measures p(fir)) converge

weakly to p(f).

Proof. Since every uniformly bounded sequence of measures over J( has a

convergent subsequence, it will be sufficient to prove that if {g(r)}, {n(r)}

are two sequences of quasi-linear mappings of M into R", which converge uni-

formly to /, whose areas converge to the Lebesgue area of/ and which are such

that the corresponding sequences of measures {p(gir))}, {«(h(r))} converge weakly

to measures p and p', then p = p'.

Suppose this statement is not true, i.e., there exists a % e ^ such that p(x) 4= p'(x).

Then

(1)

Put

lim {v(g")}(Xom)   - lim {v(n(r))}(Zofn) = 5e > 0.

K = 1 + sup x (Q.
t,eJl

We can assume that there exists a countable dense subset Y of R1 such that

if we put for i;= 1, •••, n and teY

A¡ = {x;xeB" and x¡ < í},
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then each of the limits

lim a{¿'\r\Aa} = pit)

lim a{h(r\r\A¡)} = pf(t)

exists; because, if not, we could choose subsequences for which these limits existed.

Since p¡ and p* axe monotone increasing there exists a subset Z ofi?1 such that

R1 ~ Z has zero measure and p'¡(t),pf'(t) exist for all teZ amd all i. Then, for

every interval J of R" with the coordinates of its vertices all in Z, we have

(2) lim lim sup [aU(p),/_1(BJ} + fl{A(r),/_1rA)}]=0,
A->0+       r-»oo

where

Bx = {x; xeR" and d[x,Fr(jy] < X}.

By 3.6, there exists a finite number Ju ■■■, Jp of closed intervals of R" such that

(A) JU---,JP have mutually disjoint interiors and the coordinates of their

vertices are all in Z;

(B) /(|AT|)sInt{ ÍJj\; and

(C) for every ô > 0, there exists a subdivision n1(M)of M and a sub-pseudo-

manifold Lofü^M) suchthat every point of/(|^(L)|) has a distance less than

ó from (J/.j Fr(Jj) and

lim sup a(g(r), | M \ ~ | L|) < e • X"1,
r-*oo

lim sup a(Zi(r), \M\~\L\)<e-K~1.
r-*oo

By (2) one can choose a ôt > 0 and a positive integer rt such that the sets

Uj = {x;xe R" and d(x,Fr(Jj)) < <5X}

are sufficiently small that

(3) fl[|W^1(£i^)]<rjrI

and

(4) a^Kf-^jJUj^Ks-K-'

for all r ^ rt. Let n'(M) be a subdivision of M and La sub-pseudo-manifold of

n' (M) such that
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p

(5)

and

(6)

(7)

lira sup a(gir),\M\ ~ \L\) < e-K~\

lira sup a(h(r\ | M | ~ | L\) < e • K ~ \

Let Jtx be the middle space of the restriction of / to \L\, n be the inclusion

mapping of Mx into J( and/= l^m^ be the monotone light factorization of

/ with respect to |L|. Since

/, = ir1}*" ~ Ú uj\

is a closed subset of J(x which does not intersect mx{\ &(L)\], there exists a

continuous function Xi on ^ such that

xx(0 = *{w(0},

= 0

Ce^i

Çem{|^(L)|},

and

|Xi(0|^*

for all CeJt^ By 4.2

(8) lim {v(g")} (Xl o m») = lim {v(n")} (Zl 0 m,).

But

|{v(g(r))}(Xom -^omOl =2Ka{gw,/-1 {(J l/,}u(JM| ~ Ii,))),

hence by (3) and (6),

and similarly

so that by (8)

lim sup | {v(g(r))}(xom-x1om1)\< 2s,

lim sup | {v(n(r))} (xo m — Xi o m) | < 2e

lim  {v(g{n} (xom)- Jim {v(n(r))} (^o m)   < 4e

contradicting (1).
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