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Introduction. An important aspect of the representation theory of C*-algebras

is the decomposition of representations into direct integrals of representations.

The original goal of this procedure was to reduce the classification of arbitrary

representations to that of irreducible representations. A significant step in this

direction was taken by G. W. Mackey (see [19]). Stated in the terminology of

C*-algebras, he considered the collection sé of unitary equivalence classes of

irreducible representations of a separable C*-algebra sé, defining on sé a natural

Borel structure. Using direct integrals over sé he found a one-to-one correspon-

dence between certain unitary equivalence classes of multiplicity-free represen-

tations of sé and certain null-set equivalence classes of Borel measures on sé.

Due to a result of A. Guichardet [9], it is now known that all of the separable

multiplicity-free representations occur in the correspondence, and the major

obstacle remaining in the theory is to distinguish the measure classes of interest.

It is known (see [19, p. 164]) that many Borel measure classes in sé do not give

rise to multiplicity-free representations.

Recently John Ernest [4; 5] generalized Mackey's theory to the study of

representations that are not of type I, i.e., which are not discrete sums of mul-

tiplicity-free representations. There does not seem to be any canonical reduction

into irreducibles for such representations. Ernest considered instead decompo-

sitions over the Borel space sé of quasi-equivalence classes of separable factor

representations. In particular, he found a one-to-one correspondence between

the quasi-equivalence classes of separable representations and certain "canonical"

measure classes on sé. Again, no criterion was discovered for recognizing the latter.

In this paper we shall consider a third decomposition. Our "dual space" will

be the primitive ideal space nxsé, together with the hull-kernel topology and

Borel structure. Measures on this space correspond to the decomposition of

representations into "homogeneous" representations, i.e., representations all of

whose nontrivial subrepresentations have a given primitive ideal kernel. These

reductions are useful for relating the ideal structure of sé to the geometry of
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its representations. If si is of type I, prsi coincides with si (see [6, Theorem

3.1; 8, Theorem 1]) and we obtain an ideal-theoretic characterization of quasi-

equivalence. Although the decomposition is necessarily "coarse" when si is

not of type I, this is partially compensated by the absence of "bad" measures

on prsi. Arbitrary measures on prsi induce canonical measures on sfand si.

In §1 we prove that each representation of a C*-algebra si determines a "Galois

type" correspondence between certain ideals in si and certain invariant sub-

spaces of the representation. The "ideal center" generated by the latter splits

the representation into homogeneous representations with distinct kernels. In

general, an abelian von Neumann subalgebra of the commutant of a separable

representation of a separable C*-algebra determines a decomposition into homo-

geneous representations if and only if it contains the ideal center.

In §2, we prove that the primitive ideal space of a separable C*-algebra is a

standard Borel space. This is accomplished by showing that in Fell's identifi-

cation of ideals with pseudo-norms [7], the primitive ideals correspond to

"extremal" pseudo-norms.

§3 is devoted to the study of direct integrals over the primitive ideal space.

A one-to-one correspondence is set up between the measure classes on pisi

and certain equivalence classes of representations. The nature of the latter equiva-

lence is then investigated.

In §4 we review Ernest's theory for si, including a detail not mentioned in

[4] or [5]. We then indicate the manner in which measures on prsi induce cano-

nical measures on si.

Many of the ideas in this paper were implicit in my doctoral dissertation at

Harvard University. I wish to express my gratitude to Professor George W.

Mackey for introducing me to the theory of representations, and guiding my

research in the subject. I am also indebted to Professors John Ernest, James

Fell, and James Glimm for stimulating conversations on the material of this

paper.

1. The ideal center. Let si be a C*-algebra. By a representation Loi si we

mean a linear, adjoint-preserving homomorphism A -* LA of si into the algebra

of bounded operators on a Hüben space H(L). Such homomorphisms must be

norm-decreasing (see [15,p.92]). L(si) denotes the range of L, and L(si)', L(si)",

and L(si) denote the commutant, double commutant, and weak closure of L(si),

respectively. There exists a unique projection E in L(si)' C\L(si)" with L(si)

= L(si)"E. The range of E is the closure of the union of the ranges of the opera-

tors in L(si). L(si)" consists of operators of the form T+ XI, where T is in

L(si), I is the identity operator, and X is complex (for all of these facts, see [1,

pp. 43-44]). If E = /, we say that L is proper. If E = 0, i.e., LA = 0 for all A

in si, we call L a zero representation. Every nonproper representation may be

uniquely decomposed into the direct sum of a proper and a zero representation.
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If £ is a projection in L(sé)', the corresponding subrepresentation will be

written LE. A representation Lof sé is homogeneous if for all nonzero projections

E in Usé)',

kernel LE = kernel L,

i.e., the map LA -» L^E defined for Ain sé is an isomorphism of the C*-algebras

L(sé) and L(sé)E. As any isomorphism between two C*-algebras is an isometry

(see [22, Corollary 4.8.6]) a representation L is homogeneous if and only if

|| LAE || = I LA I for all nonzero projections E in L(sé)' and A in sé. A homo-

geneous representation is proper if and only if it is nonzero.

A representation M is a factor representation if the von Neumann algebra

M(sé)' is a factor, i.e., if M(sé)' C\M(sé)" consists of multiples of the identity.

A factor representation M must be homogeneous. For if £ is a non-zero pro-

jection in M(sé)', the central cover of E is the identity, hence the map MA -* MAE

is an isomorphism (see [1, p. 19]). Homogeneous representations need not be

factor representations. If sé is a separable C*-algebra that is not of type I, there

exist unitarily inequivalent irreducible representations L and M oí sé with

kernel L= kernel M (see [8, Theorem 1]). L®M is homogeneous, but is not

a factor representation.

A representation N is irreducible if N(sé)' consists of multiples of the identity,

i.e., there are no closed invariant subspaces for N.

Suppose that L is a representation of the C*-algebra sé. For each closed ideal

J in sé, there exists a unique projection QfJ) in L(sé)' C\L(sé)" such that

UJ) = L(sé)"lI-Q(S)-}.

This follows as L(J) is a weakly closed ideal in L(sé)". The range of I — Q(J)

is the closure of the union of the ranges of the operators in L(J). LG(J,) defines a

representation L*tf of the C*-algebra sé/J by

r ■a'/-* _ r ßW
^A + J   —   L'A

If J and / are ideals in sé with J s /, then Q(J) ^ Q(f). ß({0}) = ß(kernel L)

= I, and Q(sé) is the complement of the projection E described in the first para-

graph of this section. In particular, Lis proper if and only if Q(se) = 0. To avoid

confusion, we shall at times write QLLf) for QfJ).

If J is a norm-closed ideal in sé, it is self-adjoint (see [22, Theorem 4.9.2])

and thus is itself a C*-algebra. There exists an approximate identity ux in J,

i.e., a net of positive elements ux such that || ux || ^ 1 and uxA converges in norm

to A for each A in J (see [22, Theorem 4.8.14]).

Lemma 1.1. With: the above notations, the sequence of operators Lu con-

verges strongly to I — Q(J) on H(L).

Proof.    For Ain J and (¡> in if(L), the net LULA$ = Ltt¡tA(¡) converges in norm
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to LÄ<j). As the operators Lu   are all bounded by 1, LUJI - Q(J)~\ converges

strongly to / - Q,(J). For any <j> in H(L),

LJX-W = <2W«> = 0,

hence Lu^ = LUJI — Q(f)~\ converges strongly to / — QfJ)-

If £ is a projection in L(si)', let

R(E) = kernel LE.

If E ^ F, then R(E) S R(F). At times we shall write R¡(E) for R(£).

Theorem 1.2. Let Lbe a representation of the C*-algebra si. If J is any

closed ideal in si, then

RQ(J) 2 J.

If E is any projection in L(si)', then

QR(E) ̂  E.

Proof. Let ux be an approximate identity for J. Then from Lemma 1.1, if A

is in J,

LA = limL„^ = UrnLULA = [J - Q(S)~]LA,

hence LAQ(J) = 0 and A is in RQ(J) = kernel LQ(J).

Let vx be an approximate identity for R(E) = kernel LE. Then from Lemma 1.1,

[/ - ßR(£)]£ = HmL„ß = 0,

hence £ g QR(E).

Corollary 1.3.   For any closed ideal J in si,

QRQ(f) = Q(S)

and ß = RQfJ) is the largest ideal in si with

ÜJ) = LJJ).

For any projection E in L(si)',

RQR(E) = R(E),

and F =QR(E) is the largest projection in L(si)' such that

kernel LF = kernel LE .

Proof. As RQ(J) 2 J, Q(RQ(Jr)) S Q(J). But from Theorem 1.2, QR(Q(S))

^ Q(J). If JT is any ideal with L(Jf) = LJJ), then Q(Jf) = Q(J), and from
Theorem 1.2,

¿f £ ROfcHT) = RQfJ).

Similar arguments give the corresponding results for projections.
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We call the ideals R(E) with E a projection in L(sé)' projection ideals, and

the projections Q(^) for closed ideals J in sé, ideal projections. From Corollary

1.3, the map J^QfJ) defines an order-inverting, one-to-one correspondence

between the projection ideals and the ideal projections, and E -» R(E) is the

inverse map. The ideal projections generate an abelian von Neumann subalgebra

of the center of L(sé)' which we call the ideal center of L.

Theorem 1.4. A representation Lofa C*-algebra sé is homogeneous if and

only if the ideal center of L consists of multiples of the identity operator on

H(L).

Proof. Suppose that the ideal center contains other projections than 0 and I.

Then it contains an ideal projection P, P # 0,1. Noting that I is an ideal pro-

jection as I - g({0}),

kernel Lp = R(P) # R(I) = kernel L,

hence L is not homogeneous. Conversely if L is not homogeneous, let E be a

nonzero projection in L(sé)' with

R(E) = kernel LE ¿ kernel L = R(I).

Then 0 # QR(E) # QR(I) = I, and QR(E) is a nontrivial projection in the ideal

center of L.

An ideal J in a C*-algebra sé is prime if J ^ sé, and there do not exist ideals

ß, Jf in sé with ß $ J, Ctf $ J, and ßX ç/. A primitive ideal is the kernel

of a nonzero irreducible representation. Equivalently, it is the kernel of an al-

gebraically irreducible representation of sé on a vector space (see [13, p. 233;

11]). Any primitive ideal is prime. Conversely, Dixmier has shown [2, p. 100]

that if sé is separable, then any prime ideal in sé is primitive. The following

corollary is a straightforward generalization of [13, Theorem 7.3].

Corollary 1.5. The kernel of a nonzero homogeneous representation L of

a C*-algebra sé is prime.

Proof. Suppose that ß, Jf are ideals in sé with ßctf çz kernel L. Taking the

norm closures, Jcif £ kernel L. As L is homogeneous, either Q(Jf) = 0 or Q(3f) = f

As the vectors LAch with AinJf and <f> in if(L) are dense in the range of I — Q(%),

L(ß) annihilates that range. Thus if Q(Jf ) = 0, L(ß) annihilates if(L) and

ßcz kernel L. If Q(¿r) = I,

L(5Ï) çz L(sé)"[I - Q(X) ] = 0,

and Jf çz kernel L. As Lis nonzero, kernel L^ sé.

Corollary 1.6. The kernel of a nonzero homogeneous representation of a

separable C*-algebra is a primitive ideal.
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Let si be a separable C*-algebra. For each cardinal n = 1,2, •••, K0 let Hn be a

fixed Hubert space of dimension n. Let sicn and sicp be the sets of all represen-

tations and of all proper representations on H„, respectively. sicn and sicp are

given the Mackey Borel structures, i.e., the weakest Borel structures for which

the functions L-> LA<p ■ \¡/ are Borel for all A in si and $,\¡i in H„. Let sic = (J„^

and sicp = \Jnsi^p have the "discrete union" Borel structures. sic(sicp) is

called the Borel space of (proper) concrete representations of si. Let sihn(sihnp)

be the homogeneous representations in sicn (sicp) and sih =(J™= i^J ,

sihp =\J^=lsihnp, giving these the relative Borel structures.

Theorem 1.7.   sih and sihp are standard Borel spaces.

Proof. As Mackey has shown that sic is standard and that sicp is a Borel

subset of sic [19, Theorem 8.1 and p. 155], it suffices to prove that sihn is a Borel

subset of sic„. Let AUA2,--- be dense in si, 4>i,(¡)2, ■■■ vectors dense in Hn, and

Eu E2, ••• projections weakly dense in the set of all projections on H„ (see [1, p. 34]).

For any positive integers s,u,v,m and representation L in sicn, define

PL(s,u,v,m) to be the set of all integers p such that

\(LAkEp-EpLAk)4>i-4>j\<~

for all i,j,k ^ m,

for all i,j ;£ m, and

i^''i(,-5i¿r)1*1'-
We assert that sicn - sihn is the set of all L in sicn such that there exist integers

s, m, and v with PL(s,u,v,m) # 0 for all m.

Suppose that L is not homogeneous. Then there exists a nonzero projection

£ in L(j/)' such that LA-+LAE is not an isometry on L(si). As the operators

LAk are norm-dense in L(si), there exist integers u and v such that

|| LAE || :£ I L^u || — 2/v. As £ is a nonzero projection, there exists an integer s with

Let pw be a sequence such that £pw converges weakly to £. Then for all i,j,k,

lim |(LAkEp„ - Ep„LAk)4>¡'4>j\ = \(LAkE - ELA^,l■<t>j\ = 0,
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lim ILAßpJt. ̂ I - ILAE^ ■ <pj | Û ( || LA || - f) || ¿ || || «/,,. ||,

lim I EpJs ||2 = lim(EpJ, ■ <bs) - (£& • fc> fc (l -       *      ) | 0, ||2.

Thus for all m, {pw} n PL(s,u,v,m) # 0.

Conversely, suppose that L, s, u, and y are such that PL(s,u,v,m) # 0 for all

m. For each m, let p,„ be an integer in PL(s,v,u,m). As the unit ball of the col-

lection of all bounded linear operators in Hn is weakly compact, there exists a

subsequence qh of pm such that Eqh converges weakly to a positive operator B

(a weak limit of projections need not be a projection). Referring to the definition

of PL(s,u,v,m), it is clear that B is in L(sé)', \LAB\ z% \\LAli\\ - 1/v, and

B ^ 1 - 1/31> || LAu ||. A simple application of spectral theory provides us with a

nonzero projection F doubly commuting with B, and thus in L(sé)', such that

cF ^ B, where c = 1 - l/2u || LAu ||. We have:

||l,„f||2= Influí <; c-1|i*«Ä|s«-1U«.*MJ-.l

llL¿ Il --
^ ll^ll2——T-álIVI2-

II La, I - 2^

It follows that LA -> L^F is not an isometry on L(sé), hence L is not homogeneous

We have proved:

< - < = ü ñ íl : p¿(s> «•p>m) * °}-
s.u.u = 1   m = 1

For fixed s, m, t;, and m,

where

{L:PL(s,«,t;,m)*0}  =f|RînA2,
p e S

K? = {L : | (L^£p - EpLAk) ¿ • 0, | z% 1   i,j, k = 1, • • •, m},

Äj= {L:^ £^-^1^(114   11-^110,1111^11    i,j,-,m},

As i?? and i?£ are Borel subsets of ^ it follows that sé\ is also Borel.
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Theorem 1.8. Let si be a separable C*-algebra, (X,SB,p) a standard measure

space (see [19, p. 142]). Suppose that L= ¡Lxdp(x) where x -> Lxis a measurable

map of (X,SB,p) into sic. Then the representations Lx are almost all homoge-

neous if and only if the abelian von Neumann subalgebra of L(si)' corres-

ponding to the direct integral contains the ideal center of L.

Proof. Let N be a Borel subset of X with p(N) = 0, X — N standard in the

relative Borel structure, and x -> L xBorel on X — N. Let S be the x in X — N

for which L*is not homogeneous. From Theorem 1.7, S is Borel. Suppose that

p(S) =£ 0. Let y(H„) be the bounded operators on H„ with the Borel structure

defined by the weak topology. Let £C=[J'¡¡'=1SC(Hn) have the discrete union

Borel structure. The latter is standard (see [19, p. 150]). There exists a Borel

subset N1çS with p(Nt) = 0, and a Borel map x -> Ex of S — Nt into .S? such that

LA -» LA Ex is not an isometry and Ex^0,I. To prove this we must employ some

form of the "measurable axiom of choice." Using [19, Theorem 6.3], it suffices

to show that

X = {(M,E):Mesic„, EeM(si)', 0 # £ / /, and the map MA -> MAE

is not an isometry}

is a Borel subset of sicnx ¿¡f(H„). Let AUA2,--- be dense in si, and <¡>1,<¡>2>'"

be dense in H„. Then

X = {(M,£) : (MAiE - EMAl) <¡>} • ̂  = 0        for all i, j,k,

and there exist positive integers s,t,u,v with || M/4u£^>j • 0j < [||.M4J — l/i>] ||</>¡|| \\4>j\\

for all i,j, and

||£</>s||2*0, ||(/-£)^||2#0},

which is clearly Borel.

There exists a Borel subset Tof S — Nu an element A of si, and a positive s

such that p(T) ± 0 and

|| LIEX || ^ I LA || - e

for all x in T. Otherwise suppose that AUA2, ••• are dense in ¿/, and that for

each pair of integers i, j > 0 the Borel set

TtJ = {xeS-N^WLlE'i *iLJAl\\ -j}

has measure zero. Then (S — Nt) - (J^ ry is nonempty as it has positive measure.

Let x be a member of that set. For each i, || I^.£-x|| = \\LA.\\ hence Lí->L¿£*

is an isometry. This contradicts the definition of E*.
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Extend the map x -* Ex to all of X by letting Ex = 0 outside of S - Nu and set

£ =   I  Exdp(x).

Let B -» F(B) be the projection-valued measure defined on the Borel subsets B

of X associated with the direct integral L= $Lxdp(x). We have

\\L*\\ = ess.sup||L*£*||
xeT

^ ess. sup || LA || - e
xeT

=    ll^(T)||-e.

If the abelian von Neumann algebra of L(sé)' corresponding to the direct integral

included the ideal center, there would be a Borel set W with F( W) = QR(E). As

QR(E) ^ £, we would have W 3 T almost everywhere, i.e., QR(E) ^ F(T).

This would contradict the inequality

¡Lri = «Ll|| < \LTl
Conversely suppose that the commutative von Neumann algebra associated

with the direct integral does not contain the ideal center of L. Then there exists

an ideal projection £ in L(sé)' not in the range of the projection-valued measure

F. As £ is central, it is decomposable : there exists a measurable map x -* Ex

of X into J§? (see above) such that £ = jExdp(x). Let u„ be an approximate

identity in J = kernel LE. From Lemma 1.1, LUn converges strongly to I — Q(J)

= I — QR(E) = I — E. Taking a subsequence of the initial approximate identity,

we may assume that L*n converges strongly to Ix — Ex for almost all x (see [1,

p. 162]). As £ is not in the range of F, we may find a Borel set S in I with

p(S) # 0, and for all x in S, Ex # 0*,/* and LxUn converges strongly to Ix - Ex.

From Lemma 1.1, Ex = QL*(J), i.e., Ex is a nontrivial ideal projection. From

Theorem 1.4, the representations Lx  with x in S are not homogeneous.

We say that two homogeneous representations L and M are strongly disjoint

if kernel L # kernel M. A more general definition will be given in §3.

Lemma 1.9. Suppose that Lis a separable homogeneous representation of a

separable C*-algebra sé, and that L= \Lxdp(x), where x-*Lx is a measurable

map of the standard measure space (X,38,p) into séc. Then for almost all

x, kernel Lx = kernel L.

Proof. This is a trivial generalization of the corresponding result for factor

representations [2, Remarque on p. 100].

Theorem 1.10. Suppose that Lis a separable representation of the separable

C*-algebra sé, and that L= JLxdp(x), where x-*Lxis a measurable map of
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the standard measure space (X,SS,p) into sic. Then the representations Lx are

almost all homogeneous and strongly disjoint if and only if the corresponding

abelian von Neumann subalgebra of L(si)' coincides with the ideal center

of L(2).

Proof. Say that almost all the Lx are homogeneous and strongly disjoint.

From Theorem 1.8, the commutative abelian subalgebra of L(si)' determined

by the decomposition contains the ideal center of L, i.e., the range of the pro-

jection-valued measure contains the projections of the ideal center. As in the

proof of [19, Theorem 10.5], we obtainj a standard quotient measure space

(Y, SB~p) of (X,S$,p) and decompositions:

(1) ß =   J HydiKy),

(2) L=   JM"d~p(y),

where

My =   j Lxdpy(x)

for almost all y, and the range of the projection-valued measure on Y determining

(2) is the set of all projections in the ideal center. From Theorem 1.8, (2) is another

decomposition of L into homogeneous representations almost everywhere. Let

N be a Borel subset of X with p(N) = 0 and the Lx homogeneous and strongly

disjoint for all x in X — N. Using (1), we select a Borel set P in Y with p(P) = 0,

such that py(N) = 0 and My is homogeneous for all y in Y — P. If y is in Y — P,

we have from Lemma 1.9 that there exists an x0 in X - N with kernel Lx

= kernel L10 for /¿^-almost all x. It follows that

py(X - {x0}) = py((X -N)- {x0}) = 0

as for all x in (X — N) — {x0}, kernel Lx =£ kernel Lx°. Thus in the measure de-

composition (1), /i-almost all the measures py are concentrated in points. De-

fining an inverse map almost everywhere on Tinto X by sending y into that point

in which py is concentrated, it may be verified that the quotient map of X into Y

is a measure isomorphism. This implies that the ranges of the projection-valued

measures on X and Y coincide, hence the abelian subalgebra of L(si)' defined by

L = ¡Lxdp(x) is the ideal center of L.

The converse is proved with a technique analogous to that of Guichardet [9].

Suppose that L = $Lxdp(x) is an ideal center decomposition, and let S -» E(S)

be the corresponding projection-valued measure. As the Boolean algebra of pro-

jections SP in the ideal center is generated by the ideal projections, we may find

a countable set of ideal projections P1;P2, ••• such that & is the smallest Boolean

(2) We shall call a direct integral with the latter property an ideal center decomposition.
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(7-algebra containing the P¡. This follows as 3P has a countable generating family,

and each member of the latter is contained in the cr-algebra generated by a count-

able number of ideal projections (see [10, Theorem D, p. 24]). Let S¡ be Borel

sets in X with E(S¡) = P¡. These define a measurable equivalence relation on X,

i.e., the quotient measure space is countably separated, and thus standard (see

[16, p. 124; 19, p. 143]). If n is the quotient map, the quotient projection-valued

measure T-*-£(rc_1(T)) has the same range as £. The method for proving that

isomorphisms of the ranges of projection-valued measures are implemented by

measure isomorphisms of the underlying spaces now shows that n is a measure

isomorphism (see [18, pp. 90-91]). In particular, there is a Borel set N in X

with p(N) = 0 such that on X - N, n is a Borel isomorphism. In other words,

the sets T¡ = S¡r\(X — N) separate the points of X - N in the sense that for

any two distinct points in X — N, there exists a T¡ containing one but not the

other.

Let u„ibe an approximate identity for J¡ = R(P¡) =kernelLi''. By Lemma 1.1,

VUn converges strongly to I — QR(P¡) = I — P¡. Taking a subsequence of u\ and

enlarging N by a null Borel set for each i, we may assume that L^ converges

strongly to (I - P¡)x = IX - xTt(x)Ix for all x in X - N and all i (see [1, p. 162]).

From Lemma 1.1, L*'m also converges to Ix - QL*(S¡), hence x is in T¡ if and only

if QL*(^o = Ix. But the latter condition is equivalent to Lx(J¡) = 0, hence x

is in T; if and only if Jt s kernel Lx. If x and y are in X — N with kernel

Lx = kernel U, we conclude that for all i, x is in T¡ if and only if y is in T¡, hence

x = y.

2. The primitive ideal space. We denote the set of primitive ideals in a C*-

algebra sé by pxsé. We give prsé the hull-kernel topology (see [22, pp. 76-80]).

If P is in prsé and A is in sé we denote the image of A in sé/P by A(P).

Suppose that sé is separable. We define a map % : séhp -> prsé by n(L) = kernel L.

That n is into follows from Corollary 1.6. If P is a primitive ideal in sé, there

exists an irreducible, hence homogeneous representation L with P = kernel L (see

§1). if(L) is separable, as if p is a positive function on sé corresponding to a

vector in if(L), if(L) may be identified with the Hubert space H" constructed

from sé in the usual way. If Ar,A2, ■■• are dense in sé, the corresponding elements

will be dense in H". Thus Lis in séh, and n is onto.

When séh„p is given the weak topology induced by the functions L-> LA<p ■ \\i

for A in sé, 0 and \¡i in if„, the map n restricted to séhnp is continuous. For if

F çz prsé is the hull of the ideal J in sé and fis a net in n~1(F) Dséhnp con-

verging to a representation Lin séhp, then kernel L" 2 J for all a implies kernel

L2i. Thus % is Borel when séhpis given the Borel structure defined in §1 and

prsé is given the Borel structure induced by the hull-kernel topology.

We wish to prove that if sé is a separable C*-algebra, prsé is standard in the

hull-kernel Borel structure. We begin by using Fell's technique (see [7]) for
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imbedding pr si in a compact Hausdorff space, and we then characterize the

image.

Let si be an arbitrary C*-algebra. A C*-pseudo-norm on si is a real-valued

function N on si such that for all A,B in si and complex X,

0 = N(A) ̂ \\A\\,

N(A + B) £ N(A) + N(B),

N(XA) = \X\N(A),

N(AB) ^ N(A)N(B),

N(A*A) = N(A)2.

The collection Jf(si) of C*-pseudo-norms on si is compact Hausdorff in the

weak topology defined by si. For each closed ideal J in si the map A -> N¿(A)

= || A(J) ||, where A(J) is the image of A in the C*-algebra si/J, is a C*-

pseudo-norm. As isomorphisms of C*algebras are isometric (see [22, Corollary

4.8.6]), we have that for each C*-pseudo-norm N there is precisely one closed

ideal J in si with N = Ny.

If J and ß are closed ideals in si, then

where

(NjrUA/^Gá) = max {A/,04), N/04)}-

For the natural map

si/J C\ß -* si/J © si/ß

is an isomorphism into, hence an isometry. A C*-pseudo-norm N is extremal

if there do not exist C*-pseudo-norms Ny and N2 with N± % N, N2 ^ N, and

JV = JV!UN2.

Theorem 2.1. // J is a closed ideal in a C*-algebra si, then J is prime

if and if only the corresponding C*-pseudo-norm N¿ is extremal and nonzero.

Proof. The norm N¿ is not extremal if and only if there exist closed ideals

/ and Jf with ß $ J, JT $ J, and N^ = N^\j Nx, i.e., J = ß n¿f. Thus

we must show that J is not prime if and only if there exist closed ideals ß, Jf

in si with / $ ß, X $ J and J = ß O Jí.

First we note that if 0> and 1 are closed ideals, then SPl = 0>ria. Trivially,

0>SL s & n J. Conversely if .4 ^ 0 is in the C*-algebra & n j2, so is ^4, and

.4 = yjAyjA is in ^.2. As any element in 0> n 1 is a linear combination of positive

elements, a"nac 0>.2.
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If there exist ideals ß,X with ß^J, Jf%J, and ßC\X = J, then

ßX £ J and J is not prime. Conversely, suppose that there exist closed ideals

&, Jt with &$J, Jià^J and JifUTç J. Then (if + J) (Ji + J) £ J and

letting / = SC+ J,X = Jf+ J,

ßr\jr = ßjfcj£ßnX,

i.e., J = ß HJf where ß^J and X £J.

Corollary 2.2. If J is a closed ideal in a separable C*-algebra, then J is

primitive if and only if the corresponding C*-pseudo-norm N¿ is extremal

and nonzero.

Proof.   This is another application of [2, p. 100].

Lemma 2.3. If si is an arbitrary C*-algebra, the map N :pvsi-> Jf(si):

P-+NP is a Borel isomorphism.

Proof.   Let F £ prsi be the hull of a closed ideal J in si. Then

N(F) = {MeJf(si); M(J) = 0} n N(prsi),

which is closed in N(prsi). As N is one-to-one, N maps Borel sets into Borel sets.

Conversely, Kaplansky has shown (see [22, Theorem 4.9.17]) that for each A

in si the map P -* || A(P) | is upper semi-continuous, i.e., for any real e, the set

{P : || A(P) I > e} is open. It follows that P -> NP(A) = || A(P) \\ is Borel for each

A in si, hence P -» NP is Borel.

Theorem 2.4. If si is a separable C*-algebra, then prsi is standard in

the hull-kernel Borel structure.

Proof. From Lemma 2.3 and Corollary 2.2, it suffices to show that the set

$(si) of nonzero extremal C*-pseudo-normson si is standard. Let AUA2,---

be dense in si. Then the metric

d(N, M) =   I 2~" | N(A,) - M(A¡) \
n = l

defines the topology on Jf(si). As the latter is compact, the metric is complete.

As any compact metric space is separable, the Borel structure on jV (si) is stan-

dard.

As sihp is standard and N ° n : sihp -> S (si) is Borel and onto, S(si) is analytic.

Thus it suffices to show that S (si) is also the complement of an analytic set in

JT(si) (see [14, p. 395]).

jV(si) - S(si) = {N:Ne¿V(si), and there exist L,M \nrf(si) with

L % N, M £ N, and N = L U M} U {0}.
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Letting AUA2,--- be dense in se,

Jf(sé) - S(sé) = pro]¿R) U {0},

where pro)í:Jr(sé) x JT(sé) x Jf (sé)^> Jf (se) is the projection on the first

coordinate, and

R = {(N,L,M):L,M,NeJV(sé), N(A,) = max \L(A^,M(A^] for all i,

and there exist j,k with L(Af) < N(Aj), and M(Ak) < N(Ak)}.

{0} is closed and R is Borel, hence Jí(sé) — S(sé) is analytic.

3. Direct integrals on the primitive ideal space and the equivalence problem. Each

proper separable representation L of a separable C*-algebra sé determines a

certain measure class Jt(L) on prsé. Let (X,J8,p) be a standard measure space

and x->Lxa measurable map of X into sécs\ich that L= ¡Lxdp(x) is an ideal

center decomposition. Almost all the Lx are proper as in general:

Lemma 3.1. // x-*Mx is a measurable map of the standard measure

(X,SS,p) into séc, then ¡Mxdp(x) is proper if and only if almost all the Mx are

proper.

Proof. If J1" is a closed ideal in sé, the map x -* Q,MX(J) is a measurable map

of X into .Sf (£C is defined in the proof of Theorem 1.8), and

Q,u(-ñ = JQM*(S)dp(x).

To prove this, note that as QM(S) is in M(sé)' C\M(sé)", it is decomposable:

there exists a measurable map x -> Qx with

Qm(S) = JQxdp(x).

Letting un be an approximate identity in J, Lemma 1.1 implies that MUn con-

verges to I — QM(J). Taking a subsequence of the approximate identity, we may

assume that Mxn converges strongly to Ix — Qx for almost all x. From Lemma

1.1, MxUn converges strongly to Ix - QMx(J), hence Qx = QM*(J) for almost all x.

In particular, we have

6m«) = JQM^)dp(x),

hence QM(sé) = 0 if and only if QMX(sé) = 0* for almost all x, i.e., M is proper if

and only if Mx is proper for almost all x.

Using Theorem 1.10, we may thus find a Borel set N in X with p(N) = 0,

X — N standard, x -» Lx a Borel map on X — N, Lx nonzero and homogeneous for

all x in X — N, and kernel Lx # kernel U for distinct x,y in X — N. x-> kernel Lx
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is a Borel isomorphism of X — N with a Borel subset of pr si (see [19, Theorem

3.2]). Let pi be the Borel measure on pvsi induced by p and this map. Any ideal

decomposition of L will in this manner determine a measure on pxsi equivalent

to p (see the analogous discussion in [18, pp. 105-106]). Jt(L) is defined to be

the equivalence class of Borel measures containing p. The inverse of the map

x -* kernel Lx essentially determines a measurable cross-section P -*LP to the

map n: sihp-+prsi : L-+ kernel L, i.e., P->LP is such that kernel Lp = P for al-

most all P. If v is any measure in Jt(L), L is unitarily equivalent to j É' dv(P)

(see [18. p. 77]).

Every Borel measure class on prsi is of the form Ji(L) for some proper separ-

able representation Loi si. For suppose that v is a finite Borel measure on prsi.

From Theorem 2.4, ($xsif6,v) is a standard measure space, ^ denoting the hull-

kernel Borel sets. Consequently, there exists a measurable cross-section P -> il

to the map n : sihp -*pxsi (see [19, Theorem 6.3]). The direct integral L= ¡L"dv(P)

is ideal central (Theorem 1.10), L is proper (Lemma 3.1), and J((L) is the measure

class of v.

The equivalence problem is to characterize those proper representations L

and M with Ji(L) = Jt(M). The equivalence defined below provides a satisfac-

tory criterion when ptsi is sufficiently regular, as is the case if it is Hausdorff,

or si is of type I.

Two representations L and M of an arbitrary C*-algebra si are ideal equiv-

alent, L~iM, if they determine the same projection ideals in si. Given a closed

ideal J in si, the smallest projection ideal determined by L that contains J is

RLQL(J) (Corollary 1.3), hence L~¡M if and only if

RlQlW = RmQm(S),
i.e.,

kernel V"* = kernel M*"

for all closed ideals J in si.

Two representations Land M of a C*-algebra si are strongly disjoint if there

do not exist projections £ in L(si)' and F in M(si)' with LE~iMF.

Theorem 3.2. Suppose that si is a separable C*-algebra, and that

x-*Lx, x -* Mx are measurable maps of the standard measure space (X,SS,p)

into sic. If Lx ~¡MX for almost all x, then

[lxdp(x)~i \Mxdp(x).

Proof. Let L= J" Lxdp(x), M = J" Mxdp(x). We must show that for all closed

ideals J in si,

kernel l9LW = kernel MQmW.
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Let N be a Borel subset of X with p(N) =0 and Lx ~¡MX for all xin X- N.

Let u„ be an approximate identity for J. From Lemma 1.1,

K -* i - ôrPO strongly,

M«. -► / - QM(./) strongly.

Suppose that /I is in kernel LQl(,). Then

LAu„ -* LA(I - QL(J)) = LA strongly.

Enlarging JV by a Borel set of measure zero and taking a subsequence of the ori-

ginal approximate identity, we may assume that for all x in X — N

LAu„ -* K strongly

(see [1, p. 162]). From Lemma 1.1,

LALxUn -+ LA[IX - QLX(jy\ strongly,

hence for x in X — N,

Ae kernel La"{J) = kernel MQM'(jr)

and again from Lemma 1.1,

MAUn -* MA strongly.

We conclude (see [1, p. 162]) that

MAUn -» MA strongly,

and A is in kernel MQm(S). The converse follows by symmetry.

Corollary 3.3. If L and M are proper separable representations of a separ-

able C*-algebra sé with Jt(L) = Jt(M), then L~tM.

Proof. Suppose that p is in Ji(L) and Jt(M). From the discussion at the

beginning of this section, we may assume that

L = JLpdp(P),

M=   ¡Mpdp(P),

where P-*LF and P-» Mp are measurable cross-sections to the map n:séhp

-* prsé. As Lp and Mp are homogeneous and have the same kernel, Lp ~ ¡ Mp,

and Theorem 3.2 is applicable.

As we shall see below, the converse of Corollary 3.3 is often false. Our next

object is to determine when distinct measure classes on prsé correspond to ideal

equivalent representations.
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If sé is a separable C*-algebra, then prsé has a countable open basis. It is easily

verified that if Ai are dense in sé, the sets {P: || /4¿(P)|| > 1/n} form such a basis.

Given a finite Borel measure /lona topological space X with a countable open

basis, let {Vx} be those open sets in X such that p(Vx) = 0. Then p([JaVa) =0;

for let Wi, W2, ---be those members of a fixed countable basis such that for each i,

Wt is contained in some Vx. Then \JXVX = \JfL x W¡, p(Wt) = 0, hence p(\JaVx) = 0.

We define the support of /i, supp/i, to be X — ̂ J^I^,. It is characterized by the

fact that if Fis open in X, then p(V) = 0 if and only if Fnsupp/z = 0.

The partial supports of /i are those closed sets K in X for which if Fis open

in X, then p(V n X) = 0 if and only if F n iC = 0. If B is a Borel set in X and

the measure pB is defined by pB(S) m /¿(B O S) for Borel S in X, then supp pB

is a partial support of p. If K is closed in AT, then as pK(X — K) = 0, supp/ix s X.

It follows that a closed set is of measure zero if and only if it contains no partial

supports. If K is a partial support of p, then supp/zK = K. As equivalent measures

have the same supports and partial supports we shall also speak of the support

and partial supports of a measure class.

If J is an ideal in the C*-algebra sé, we denote the hull of J in prsé, i.e.,

the set of primitive ideals containing J, by h(J). If S is a subset of prsé, we de-

note the kernel of S, i.e., the intersection of the ideals in S, by k(S).

Lemma 3.4. Suppose that sé is a separable C*-algebra, p a finite Borel

measure on prsé, and P-*LP a measurable cross-section for the map

n:séhp^>prsé. Then

kernel    Lpdp(P) = k(suppp).

Proof. Let L= ¡ Lpdp(P). If A is in k(s\xppp), then A(P) = 0 for all P in

supp/i, hence

|| LA || = ess. sup || LA || = ess. sup || A(P) || = 0.

Conversely, if A is not in k (supp p), there exists a P0 in supp p with || A(P0) || # 0.

As the set {P : || A(P) || j= 0} is open and intersects snppp, it is of positive measure

and

11*11 = ess. sup || ¿(P) || #0.

Theorem 3.5. Let L be a proper separable representation of the separable

C*-algebra sé. The projection ideals determined by L are just the kernels of

the partial supports of J((L) in prsé.

Proof. From the discussion at the beginning of this section, we may assume

that L = \Lpdp(P), where P -> Lp is a measurable cross-section for the map

7i : séhp -* pr sé, and p is in Jf(L). Let S -* E(S) for Borel S be the corresponding

projection-valued measure.
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If S is a partial support for p, S — supp/js, hence from Lemma 3.4,

k(S)   = k(suppps) = kernel J" LFdps(P)

= kernel LE(S) = RE(S),

i.e., k(S) is a projection ideal.

Conversely suppose that J is a projection ideal. Then J = RQ(J), (Corollary

1.3). As Q(J) is an ideal projection and the range of £ is the ideal center, there

exists a Borel set Tin prsi with E(T) = Q(J). Thus

J = RQ(J) = RE(T) = kernel LE(T)

= kernel $LpdpT = k(supppT).

As we remarked above, supp pT is a partial support for p.

Corollary 3.6. // L and M are proper separable representations of a separ-

able C*-algebra si, then L~¡ M if and only if the measure classes Ji(L) and

J¿(M) have the same partial supports.

For many topological spaces with countable open basis, measure classes that

have the same partial supports must coincide. We say that such a space is metri-

cally regular.

A subset of a topological space X is locally closed if it is the intersection of

an open and a closed set in X.

Theorem 3.7. Suppose that the topological space X has a countable basis,

and that it is a countable union of locally closed sets, each of which is Haus-

dorff and locally compact in the relative topology. Then X is metrically regular.

Proof. Let p and v be finite Borel measures on X with the same partial sup-

ports. First we notice that if 7 is a locally closed subset of X, then the restrictions

of p and v to Y have the same partial supports in Y. To prove this, it suffices to

show that if X is any Borel measure on X, then the partial supports of XY (con-

sidered as a measure on Y) are just those sets F closed in Y such that F is a partial

support for X in X.

Say that Y= V C\ K where V is open and K is closed in X. Suppose that £

is closed in Y and Fis not a partial support for X in X. Then there exists an open

set W in X with X(W) = 0 and W C\F ? 0. It follows that W n £ =¿ 0, i.e.,

(W n Y) n F ¥= 0, and XY(W n Y n £) = 0. As W n Y is relatively open in Y,

£ is not a partial support for XY in Y. Conversely, if £ is closed in Y but is

not a partial support for XY, let W be an open set in X with XY(W n £) = 0

and W r\F¿0. As FçK and Fr\Y=F,

X(W c\V r\F)  = X(wr\VnKnF)

= X(W r\Y r\F) = XY(W n£) = 0.
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But W nV r\F ^ W n £ n £ = W r\F ¿0, hence Fis not a partial support

for X in X

Returning to the measures p and v, let X = U¡"iY¡ where Y¡ is locally closed,

Hausdorff, and locally compact. It suffices to show that the restrictions p¡ and

v¡ of p and v to Y¡ have the same null-sets. From above, p¡ and v¡ have the same

partial supports on Y¡. As X has a countable open basis, the same is true for Y¡.

But any Borel measure on a locally compact Hausdorff space with countable

open basis is "inner regular" (see [10, pp. 217-230]). For p¡ this means that

if S is Borel in Y;,

Pi(S) = sup {Pi(K): K compact in Y¡, K £ S}.

The same being true for v¡, there exists a sequence of compact sets Kn £ S with

Pi(K„) converging to p¡(S) and v,(K„) converging to v,(S). We have that p¡(S) = 0

if and only if p¡(Kn) = 0 for all n, and v¡(S) = 0 if and only if v¡(K„) = 0 for all n.

As the closed null-sets for a measure are simply the closed sets not containing

a nonempty partial support, we have for each n that Pi(K„) = 0 if and only if

v;(K„) = 0, hence p(S) = 0 if and only if v(S) = 0.

Corollary 3.8. Let si be a separable C*-algebra. If pxsi is Hausdorff or

si is of type I, then pxsi is metrically regular.

Proof. For any C*-algebra si, pxsi is locally compact (see [6]). As si is

separable, pxsi has a countable open basis, hence if pr si is in addition separable,

Theorem 3.7 is applicable.

If si is of type I, it is GCR (see [8, Theorem 1]), and there exists a collection

{Vx} of distinct open sets in pxsi indexed by ordinals 1 ^ a ^ a0, with Vx+1 — Vx

Hausdorff for a < a0, Vß — [Jx<ßVx for limit ordinals ß, and VXo — pxsi. a0is

countable as pxsi has a countable basis of open sets, hence the collection of

locally closed Hausdorff spaces {Vx+1 — Vx:oi<a0} is countable, pxsi is the

union of these sets, and each is locally compact, as a locally closed subset of a

locally compact space is locally compact in the relative topology. Thus we may

again use Theorem 3.7.

Theorem 3.9. Ler Land M be proper separable representations of a separ-

able C*-algebra si. Suppose that pxsi is metrically regular (see Corollary

3.8). Then L and M determine the same measure class on pxsi if and only if

they are ideal equivalent. L and M determine orthogonal measure classes if

and only if they are strongly disjoint.

Proof. L and M axe ideal equivalent if and only if Jt(V) and Jt(M) have

the same partial supports (Corollary 3.6). Thus as pxsi is metrically regular, L

and M axe ideal equivalent if and only if J((L) = Jl(M).
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Suppose that L and M are not strongly disjoint. Let X and p be elements of

J((L) and J((M), respectively. From the discussion at the beginning of this

section, we may assume that

L   =   ÍLpdX(P),

M =   \Mpdp(P),

where P -» Lp, P -» Mp are measurable cross-sections for n : séhp -* prsé. For

Borel S in prsé, let S -» £(S), S -» F(S) be the corresponding projection-valued

measures. Let G and if be nonzero projections in L(sé)' and M(sé)' such that

L°~iMa. As the ideal center of Lis contained in L(sé)' C\L(sé)", G is de-

composible. There exists a Borel map P -> Gp of pr sé into =S? (for this nota-

tion, see the proof of Theorem 1.8) with G= \GpdX(P). Similarly, we have

if = \Hpdp(P). Let S and Tbe the Borel sets of those P in prsé for which

Gp ± 0 and Hp ¿ 0, respectively. Then X(S) # 0, ¿¿(T) ̂  0, and in the decom-

positions

Ü    = j(Lp)GPdXs(P),

MH = }(Mp)HPdpT(P),

the representations (LP)G , respectively (MP)H , are homogeneous, proper (see

Lemma 3.1), and strongly disjoint. From Theorem 1.10, we conclude that they

are ideal center decompositions, hence Xs is in J((LG ) and pT is in J((MH). As

LG ~iMH,J((LG) and Jt(MH) have the same partial supports (Corollary 3.6), or

since prsé is metrically regular, Jl(LG) = M(Mn), XSnT = Xs and pT = pSn,r are

equivalent, and X and p are not orthogonal measures.

Conversely say that X and p are nonorthogonal finite Borel measures on prsé.

Then there exists a Borel set S in prsé with X(S) # 0 and As equivalent to ps.

Defining E(S) and F(S) as above, we have from Theorem 3.2 and [18, p. 77] that

LE(S)~j MF(S), hence Land M are not ideal disjoint.

Corollary 3.10. If sé is a separable C*-algebra of type I, and L, M are

separable proper representations of sé, then Land M are quasi-equivalent or

disjoint (see [18, Volume I]) if and only if they are ideal equivalent or strongly

disjoint, respectively.

Proof. Let séSp be the proper factor representations in séc, and sép the

quasi-equivalence classes of representations in séSp. As sé is separable of type I,

any factor representation is of the form nL, where Lis irreducible, and irreducible

representations are disjoint if and only if they have distinct kernels, i.e., they
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are strongly disjoint (see [8, Theorem 1]). If M is a separable representation of

si and M = jMxdp(x) is its central decomposition, i.e., the decomposition with

respect to M(si)' r\M(si)", then the representations Mx axe almost all disjoint

factor representations (for arbitrary separable C*-algebras see [4; 5]). As they

are thus strongly disjoint homogeneous representations, M(si)' C\M(si)" coin-

cides with the ideal center of M (Theorem 1.10). In particular, M is a factor

representation if and only if it is homogeneous, and sifp = sihp. It is also known

that sip and pxsi may be identified as Borel spaces (see [6; 8; 5]).

Ernest has proved [4; 5] that the central decompositions of two representa-

tions L and M will induce equivalent or orthogonal measures on si if and only

if Land M are quasi-equivalent or disjoint, respectively. Since pxsi is metrically

regular (Corollary 3.8), proper representations L and M induce equivalent or

orthogonal measures on pxsi if and only if they are ideal equivalent or ideal

disjoint, respectively. The corollary easily follows.

In order to prove that the converse of Corollary 3.3 is false, it suffices to find

a separable C*-algebra si for which pr si is not metrically regular. There will

then exist inequivalent Borel measures p and v on pxsi having the same partial

supports. Letting P -* Lp be a cross-section for the map n : si1"' -» pxsi, measur-

able relative to p and v, the representations ¡Lpdp(P) and ¡Lpdv(P) will be ideal

equivalent (Corollary 3.6).

Dixmier [2, pp. 101-104] has constructed a separable, primitive C*-algebra

si containing a sequence of distinct primitive ideals Py 2 P2 2 • • • with P¿ i= {0}

and Q¡P¡ = {0} (this was pointed out to us by J. Glimm). Let p and v be the

atomic measures concentrated in the P¡ and such that

K{Pt}) = 4"   '-1.2,-.   M{fo}) = 0,

v({P,})   = \i,    i =1,2,-,    v({P0})= 1,

where P0 = {0}. Trivially any partial support for p is a partial support for v.

Suppose that £is a partial support for v, but not for p. Then there exists an open

set V with p(F O V) = 0, v(F n V) ¿ 0. We must have that

P0eF r\V,   P¡e (pxsi - £) U (pxsi - V) for i > 0.

As P0 e £, {P0} £ £, and as P¡ 2 P0, P¡ e F for i > 0. Thus P¡ e pxsi - V for

i > 0, and letting pr si - V be the hull of an ideal J in si, P¡ 2 J. But then

P0 2 ./ and P0epx si - V, a contradiction. We conclude that the inequivalent

measures p and v have the same partial supports, hence pxsi is not metrically

regular.

4. Canonical measure classes on the quasi-dual. Let si be a separable C*-al-

gebra, and si',sif the irreducible and factor representations, respectively, in sic.

si' and si1 are Borel subsets of sic (see [19; 5]) and are given the relative Borel
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structures. The dual sé is the set of all unitary equivalence classes of represen-

tations in sé1, and the quasi-dual sé is the set of all quasi-equivalence classes

in sés (for the notion of quasi-equivalence, see [18, Volume I]), sé and sé are

given the quotient Borel structures.

In this section, we shall briefly consider certain measures on sé and sé that

are defined by measures on prsé. As the arguments for sé and sé are similar,

we restrict our attention to the latter. We shall first review Ernest's results, and

show how the analogy between his theory for sé and Mackey's for sé may be

completed.

Let x-> Lxbe a measurable map of a standard Borel space (X,3S,p) into séc.

The direct integral L= $Lxdp(x) is said to be central if the corresponding de-

composition algebra generated by the projection-valued measure coincides with

L(sé)' C\L(sé)". In that case the L*are almost all factor representations and as

Ernest and Naimark have proved [4; 5; 20], they are almost all disjoint. Thus

the measure p induces a Borel measure p on sé via the essentially one-to-one

composition of x -> Lx and the quotient map. Ernest showed [4; 5] that the

measure class of p depends only on the quasi-equivalence class [L] of L. We

denote the former by if([L]). Following Ernest, we say that a Borel measure class

on sé is canonical if it is of the form ^([L]) for some separable representation

Lof sé.

A Borel measure v on sé is standard if the corresponding measure space is

standard. Canonical measures are always standard [5, Theorem 2]. As any mea-

sure equivalent to a standard measure is also standard, we shall say that a Borel

measure class is standard if any one of its measures is standard. If v is standard,

there exists a measurable cross-section x -► L* for the quotient map of séf onto

sé. In order to show that the quasi-equivalence class of ¡Lxdv(x) does not depend

on the particular cross-section used, we must generalize a result of Ernest [5,

Proposition 5].

Theorem 4.1. Let sé be a separable C*-algebra and suppose that x-+M*

x -» Nx are measurable maps of a standard measure space (X,38,p) into séc.

Let M = \Mxdp(x), N = \"Nxdp(x), and Jt,JT be the corresponding decompo-

sition algebras. If Mx and Nx are quasi-equivalent for almost all x, there

exists an ultraweakly continuous isomorphism of M(sé)" V ^ (the von Neu-

mann algebra generated by M(sé)" and Jt) onto N(sé)" V ^V carrying M(sé)"

onto N(sé)" and Jl onto  Jf. In particular, M and N are quasi-equivalent.

Proof. Let if be a Hubert space of dimension K0 and I be the identity operator

on if. For any representation L of sé, the map sending A onto the tensor pro-

duct LA® I defines a quasi-equivalent representation on if (L) ® if. The map

x-*Lx® I is integrable and we have a natural unitary equivalence of M® I

= ( \Mxdp(x)) ® I with J(M* ® T)dp(x). The correspondence S -► S ® I for S in

M(sé)" is an isomorphism. As MA + XI -» MA ® I + X(I ® I) for A in sé, and
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the map is ultraweakly continuous, the image of M(sf)" is (M ® I(si)". Using

the natural equivalence, it is seen that the image of Jt is the decomposition al-

gebra for \MX ® Idp(x). If Mx and Nx are quasi-equivalent, Mx01 and Nx<g>I

axe unitarily equivalent. As this is true for almost all x, there exists a unitary

equivalence of \MX ® Idp(x) and \NX ® Idp(x) which preserves the decompo-

sition algebras. (This is a trivial extension of [19, Theorem 10.1]). Composing

these maps with the map T® I -* T for T in N(si)" \j Jf, we have the desired

isomorphism. As the representations M and N of si are quasi-equivalent if and

only if the map MA -* NA is well-defined, one-to-one, and ultraweakly conti-

nuous (see [5, Lemma 2]), we have the last assertion.

Given a standard measure p on si, [p~\ its equivalence class, we define SC([/r])

to be the quasi-equivalence class of \LX dp(x), where x-* Lx is a measurable

cross-section for the quotient map sif -* si. The following is the analogue of

[19, Theorem 10.6]:

Corollary 4.2. // p is a canonical measure on si, the direct integral of each

cross-section for the quotient map sif-*si is central, and ^(=£?([ii])) = [/*]• If

Lis a separable representation of si, then 3?(%([L~\)) = [L].

Proof. Suppose that M is a separable representation of si with p in *?([M]).

Then there exists a measurable cross-section x -> Mx of si into sif such that

the decomposition algebra of M = ¡Mxdp(x) is J( = M(si)' r\M(si)", the cen-

ter of M(si)". By the result mentioned above, p is standard. If x -* Nx

is any other measurable cross-section, with ¿V the decomposition algebra for

N = ¡N*dp(x), then Mx is quasi-equivalent to Nx for all x, and we may apply

Lemma 4.1. The resulting isomorphism carries the center M(si)' O M(si)" of

M(0" onto the center N(si)' r\N(si)" of N(si)", and M onto JT. Thus

jV = N(si)' n N(si)", the decomposition N = ¡Nxdp(x) is central, and p is in

if([AT|) = ^(if(M)).

Suppose that L = \Lxdp(x) is a central decomposition where x -» L* is a mea-

surable cross-section of si into .a/^. /i is standard, J5fC^([L])) is defined, and L

is in j2P(if([L])).

Given a Borel measure /¿ on pxsi, let P -» Lp be a measurable cross-section

for the natural map of sifp onto pxsi. Composing with the quotient map of

sif onto si, we obtain a Borel measure pL on the latter.

Theorem 4.3.    With the above notation, the measure pL on si is canonical.

Proof. We must show that if L= JLpdp(P) is a direct integral of strongly

disjoint factor representations, then it is a central decomposition. From Theorem

1.10 the decomposition algebra coincides with the ideal center, and hence is a

subalgebra of the center. On the other hand, it has been proved (see [12]) that

the decomposition algebra of an integral of factor representations must contain

the center.



106 e. g. effros

Bibliography

1. J. Dixmier, Les algebres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.

2. -, Sur les C*-algèbres, Bull. Soc. Math. France 88 (1960), 95-112.

3. -, Sur les structures Boréliennes du spectra d'une C-algèbre, Inst. Hautes Études

Sei. Publ. Math. 6 (1960), 5-11.

4. J. Ernest, A decomposition theory for unitary representations of locally compact groups,

Bull. Amer. Math. Soc. 67 (1961), 385-388.

5. -, A decomposition theory for unitary representations of locally compact groups,

Trans. Amer. Math. Soc. 104 (1962), 252-277.

6. J. M. G. Fell, C*-algebras with smooth dual,  Illinois J. Math. 4 (1960), 221-230.

7. -, The structure of operator algebras, Acta Math. 103 (1962), 233-280.

8. J. Glimm, Type I C-algebras, Ann. of Math. (2) 73 (1961), 572-612.

9. A. Guichardet, Sur un problème posé par G. W. Mackey, C. R. Acad. Sei. Paris 250. (1960),

962-963.

10. P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.

11. R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sei. U.S.A. 43 (1957),

304-379.

12. -, Normalcy in operator algebras Duke, Math. J. 29 (1962), 459-464.

13. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70

(1951), 219-255.
14. C. Kuratowski, Topologie. I, 3rd ed., Monagrafie Mat. 20, Warsaw, 1952.

15. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York,

1953.

16. G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2)

55 (1952), 101-139.

17. -, Induced representations of locally compact groups. II, Ann.   of Math. (2) 58

(1953), 193-221.
18. -, The theory of group representations (notes by Fell and Lowdenslager), Univ. of

Chicago Lecture Notes, 1955.

19. -, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957),

134-165.

20. M. A. Naimark, Factor representations of a locally compact group, Soviet Math. Dokl.

1 (1960), 1064-1066.

21. J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949),

401-485.

22. C. E. Rickart, Banach algebras, Van Nostrand, New York, 1960.

Columbia University,

New York, New York


