COERCIVENESS IN L

BY
MARTIN SCHECHTER(Y)

1. Introduction. The concept of coerciveness was introduced by Aronszajn
[5] who considered necessary and sufficient conditions for the inequality

1.1 [ 4 || m,2 < const. (X Agu [lo,2 + 4 ]o,2)

to hold for all functions(?) u in a bounded domain G, where the A, are linear
partial differential operators of order m and |u |, is the sum of the L” norms
of u and its derivatives up to order s. This result was later generalized by Agmon
[1] and Schechter [17] to inequalities of the form

1.2) " u "m,z < COHSL(E" A ”0,2 + X (Bt Dy, ~1/2,2 F " u "0,2),

where each B; is a boundary differential operator of order v; < m and the <- ), ,
are appropriate boundary norms. Agmon [1] also considered inequalities of the
form

(1.3) ” u "m 2 < const. (Re[u,u] + 2<B Th v-1/2,2 t " u "g,z)’

where [u,v] is an integro-differential bilinear form of order m (cf. §5). In general, if
(1.4) [ u|2,2 < const.(Re[u,u] + | u|3..

for all functions u in a set U, it is said that the form [u,v] is coercive over U.
In 1959 Agmon proved the inequality

1.5) |t || m,p < const. (| Aitt 0., + X <Bt dmer,—17pp + |t ]0,0)

for 1 < p < oo under the same hypotheses employed for (1.2). Agmon-Douglis-
Nirenberg [4] and Browder [8] had previously proved special cases. Independ-
ently and by a different method, Smith [22] established the L”analogue of
(1.1) requiring stronger hypotheses on the A4, and weaker assumptions on the
boundary than did Aronszajn. For smooth domains the result of Smith is con-
tained in that of Agmon.

In this paper we are concerned with generalizing (1.2) and (1.3) in several
directions. First we remove the restriction that the A, be of the same order and
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COERCIVENESS IN L? 11

define the norm |- ||, , for negative integers s as well. We prove, under virtually
the same hypotheses as employed for (1.2), that

(1‘6) " u "s p= COHSt'( E“ Ak“ "s*tnk.p + 2 <Bf“ >s-w-l/p,p + " u "s-m,p)’

for any integer s and real p, 1 < p < oo, where m; is the order of A; and
m = maxm,. In particular, if s = m,, the minimum order of the A4,, we have

(D) 4 ]mo,p < const. (X Aett [lo,p + X <Bjtt Ymg—v,~1/p,p + || # ]l0.0)-

These inequalities are new even for p=2. We also prove a slightly stronger
result when there is only one operator 4, (cf. §6). Special cases are considered
in Lions-Magenes [14].

In order to obtain a counterpart of (1.3), we set

| [w0]]
I flm-c.r

where the lub is taken over all functions v and p’ = p/(p—1). Then under the
same hypotheses that were used in proving (1.3) we have(®)

(1.8) luls,p < const. ([uls—m,p + X <BjttDsmyy=1jpp + | 1 ls=m.»)

for any integer s < m.

We go one step further and define the norm |- |, , for all real values of s.
This is done by means of complex interpolation methods introduced by Cal-
deron [9] and Lions [13] (cf. §2). We prove that for each real s < m

[u],, = lub

b

(1.9 | u "s p < const. ( E" P —— " u "s-m 2
and
(1.10) [u]s,, < const.([uls-m,p + || [|ls=mp)

for all u satisfying
Bju =0 for each j

on the boundary. The hypotheses are the same as those for (1.6) and (1.8),
respectively.

Our interest in the problem began when A. Zygmund brought our attention
to the inequality due to Friedrichs [24]

l
[u],2 < const. "axk"o ,

holding for harmonic functions satisfying

j‘ udx = 0.

G

(3) Actually we prove a slightly stronger inequality (cf. §8).



12 MARTIN SCHECHTER [April

This is equivalent to

n—1 F
Julos s comst.(|aul-sa+ B [5fos+ | lo.)

holding for all functions u. Our present theorems give the corresponding result
for p#2 (cf. §3).

We are indebted to Professors A. Zygmund and A. P. Calderon for several
interesting discussions.

2. Complex interpolation spaces. Let X, and X; be Banach spaces and
denote by (X,,X,) the set of functions f(x + iy) having values in X, + X,
which are analytic in 0 < x < 1, continuous and bounded in 0 < x <1, and
such that f(iy)e Xo, f(1 + iy)e X;. Set

I lrctoes = max [ 190 09 5 1o 101+ 89, |

For 06 <1, the set [X,,X,;0(0)] consists of those elements of X, + X,
which are equal to f(0) for some f e H#(X,, X,). Under the norm

4 lixoxison =80 [f|ectoxns
1@ =u

the set [Xo,X;;0(6)] becomes a Banach space. This method of interpolation
was introduced by Calderon [9] and Lions[13].

3. Inequalities for formally positive forms. Let G be a bounded domain in
Euclidean n-space E" with boundary 4G of class C®. Let C*(G) denote the set
of complex valued functions infinitely differentiable in the closure G of G. For
i a non-negative integer and p > 1 we employ the norm

3.1) luls, = ( l")l;é | ‘; | Dnulpdx)llv,

where summation is taken over all derivatives D"u of order |p|<i. We let
H"?(G) denote the completion of C*(G) with respect to the norm (3.1). For
any real number s such that i <s<i+ 1 we define H*?(G) to be the space
[H"?(G), H'*''*(G); 5(h)], where 6 =s—i. For s real and negative H®?(G)
is defined as the completion of C*(G) with respect to the norm

(u,v)
luloy= 1w 22

veC®(G) " v "_,,‘,r ’
where (u,v) = [;uvdx and p’ = p/(p—1). We consider the following boundary
norms. For ¢ € C*°(0G) and s real and positive we define

<¢ >s,p = glb " u "s+ 1/p,p?
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where the glb is taken over all u € C*(G) which equal ¢ on 6G. For s negative,
we write

() @3y = lub| [ $Fdo|CyyL,
oG

where the lub is taken over all € C*(3G).

Let {4,} and {B,} be two finite systems of linear partial differential operators
with coefficients in C*(G). The set {B,} may be void. Let m, denote the order
of A, and v; the order of B;. Set m = maxm; and v = maxv;. We make the fol-
lowing assumptions.

(a) The orders of the B; are distinct, and v < m.

(b) The boundary 0G is noncharacteristic to each B; at every point.

(c) At each point xe€ G the characteristic polynomials P,(x,£) of the 4, do
not vanish simultaneously for any real vector & # 0.

(d) The B, cover the A,. This means the following. At each point x° of 0G
let N # 0 be a vector orthogonal to 4G at x° and T # 0 a tangential vector. Let
z4,+++, 2, denote the complex roots with positive imaginary parts common to
the polynomials Py(z) = P(x°, T+ zN). If Qj(x,f) denotes the characteristic
polynomial of Bj, then it is assumed that there are h polynomials among the
042)= Q;(x° T+ zN) which are linearly independent modulo the polynomial
(z — z)(z — z;) -+ (z — z;). If the set {B;} is empty, it is assumed that there are
no such roots z;.

(e) At each boundary point x°, 3G is noncharacteristic for some operator A,
of order m.

THEOREM 3.1. Assume that the systems {4,}, {B,;} satisfy hypotheses (a)-(¢).
Then for each integer s and each set of real numbers sy 2 s — my, t; 2 s—v; —1/p
there is a constant C such that

63 Nl SCE Ayt E<BYyy+ [4iomy)

for all ueC>(G).
COROLLARY 3.1. If s = m, then hypothesis (€) is unnecessary in Theorem 3.1.

THEOREM 3.2. Under hypotheses (a)-(e), for every set of real s <m and
Sy = s — my there is a constant C such that

64 4lup SC E] At o+ []-m )
for all ue C*(G) satisfying
3.5 Bju =0 on G for each j.

Let m, be the minimum order of the 4,. Then an important special case of
Theorem 3.2 is
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COROLLARY 3.2. Under hypotheses (a)-(e),

\
[l < O it o + 4o
for all ue C*(G) satisfying (3.5).

ReMARK 3.1. For s an integer and = m, inequality (3.4) was first proved
by Agmon (to appear). Subsequently and independently, Smith [22] proved a
slightly weaker result for more general domains.

REMARK 3.2. When there is only one operator A, stronger theorems can be

proved. Some are stated and proved in §6.
A simple example of Theorem 3.2 which is of interest is the inequality

n—1 ou
Jlips el 4ul-1 + Z [ 5510+ [ulo,)
i=1 0X;

holding for all u e C*(G), where A is any second order elliptic operator. This
generalizes an I? inequality of Friedrichs [24] (cf. §1).

4. Some known results. An immediate consequence of the definition of a
complex interpolation space is

LeMMA 4.1[9;13]. If X, and Y, are Banach spaces, i = 0,1, and T'is a bounded
linear map of X, into Y, and X, into Yy, then it can be extended to be a bounded
linear map of [Xo,X,;6(0)] into [Yy, Yy;0(0)].

The following result is due to Lions-Magenes [14].

LemMMA 4.2. If0Gisof class C* and s, and s, are non-negative real numbers,

[H*"%(G), H**(G); &(6)] = H*(G),
where s3 = (1 — 6)s; + 0Os,.

LeMMA 4.3. Let E be a linear differential operator of order t with coeffi-
cients in C®(G). Then for s real and non-negative

I Eul.p < const. [ u s,
for all ueC®(G).

Proof. When s is an integer, this follows from the definition of the norm.
Otherwise, let i be the integer such that i < s < i + 1. Then E is a bounded linear
mapping of H'*"?(G) into H"?(G) and of H'*'*"?(G) into H'*"*(G). Hence it
is a bounded linear map of [H**"?(G), H**'***(G);(6)] into

[H"%(G), H'*"*(G); &(6)],
with 6 = s—i. We apply Lemma 4.2 to complete the proof.

LeMMA 4.4. Under the same hypotheses if E contains only derivatives in
tangential directions on 0G, then
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CE¢)s,p < const. (¢ Dsssp
for all ¢ e C*(0G).
Proof. We have by Lemma 4.3
CE$Dsp < glb | Eu [ss1sp,

< const. gIb || u |s4r41/p.p = CODSt. <P Dty p

where the glb is taken over all u € C*(G) which equal ¢ on the boundary.
We denote the normal derivative of u on 0G of order ¢t by yu(you = u).

LemmA 4.5 [11;12;21]. For every integer i > 0 and every set of functions
o> D1 ++s P;— 1 in C*(0G) there is a function ue C*(G) such that
yu=¢, 03t<i,
and

i-1
" u "t.p < const. ‘§0 DeDi-t-1/p.p

where the constant does not depend on u or the ¢,.
Let W*?(0G) denote the completion of C®(dG) with respect to the norm
< s
LeMMA 4.6. If s, and s, are positive real numbers, then
[W*+2(0G), W**P(0G); &(0)] =2 W***P(8G)
where s; = (1—0)s, + 6s,. Moreover, equality holds when s;+ 1/p =1, i=1,2.

Proof. By the definition of the norms, we know that y, is a bounded linear
mapping of H*'*!/P?(G) into W*'P(0G) and of H**'/P’(G) into W**'P(3G).
Hence by Lemmas 4.1 and 4.2 it is a bounded linear map of H***'/??(G) into
[W*+2(6G), W**?(6G); 5(6)]. Denote the latter space by X. Thus if ¢ € C*(0G),
u e C*(G) and u = ¢ on 9G, then

| ]lx < const. || u|ss41/p,p-
Hence

| ¢ lx < const. <§),, ,

and the first part of the lemma is proved. In order to prove the second part, we
first assume that the s; + 1/p are integers i = 1,2. Then by Lemma 4.5 there is
a bounded linear mapping T of W**?(9G) into H***/P’(G), i=1,2(4). Thus Tisa
bounded linear map of X into H***'/P?(G). This means that if ¢ € C*(6G), then

(4) One must observe that T does not depend on s; or s2. This follows from the
proofs of Lemma 4.5.
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1 T¢ |lss+1/p.p < const. || ¢ | x
and hence

(@D, S const. [ ¢ || x,

showing that X = W**'?(6G). Thus T is a bounded linear map of W¥P(0G)
into H**/P"P(G) for all real s = 1 — 1/p. Repeating the reasoning above we now
obtain X = W***’(G) whenever s; and s, are real and =1 —1/p.

We shall call a set {B,}]., of boundary operators a normal set of order <m
if it satisfies hypotheses (a) and (b) of §3. Clearly r < m.

LEMMA 4.7. Let {B;}/-, be a normal set of order < m. Then for every
real s = m and every set {¢;};-, of functions in C*(3G) there is a u € C*(G) such
that

Bu = ¢; on 4G, 1<j=r,
and

r
| % [ls,» < const. .Zl $PVs=vi-1/p.p
j=
where the constant does not depend on u or the ¢;.

Proof. We first assume that s is an integer = m. By adding m —r appropriate
operators and considering the corresponding ¢; to be zero, we see that we need
only consider the case r = m. By rearrangement if necessary, we may assume
that v;=j—1. Now we have (cf,, e.g., [6;18])

J
4.1 B, = ertyt-l’ 1sjsm,
t=1
t
4.2) V-1 = XAuB, 1stsm,
i=1

where T';; and A,, are nonvanishing functions and T, and A, are operators of
order < i—t involving only derivatives in tangential directions. Thus

j
X TAi=06y 1sigjsm,
t=1
where & is the Kronecker delta. Now by Lemma 4.5, there is a ueC*(G)
such that
t
Vet = X Ayp, 15tSZs,
i=1
and
" u "s,p é const. El <yt—lu>s-t+l—1/p,p°
t=
But
j t J j
Bj“= pX rjx 21 Ay = ‘21 &, Z‘Fj:Au = ¢j
i= = t=

t=1
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and by Lemma 4.4

CAi®ids—t+1-1/p.p S CONSL. D D5 it 1-1/p,p>

proving the lemma when s is an integer. When s is not an integer, let i be the
integer such that m <i<s<i+ 1. Now the mapping just constructed is a
bounded one from

[T wi="~"?G) into H"(G)
j

and from
H Wi+1—v,—1/p,p(aG) into H*l? (G).
i

Hence, by Lemmas 4.2 and 4.6, it is a bounded linear mapping of
[T w*™™~Y?#@G) into H*?(G)
j

(cf. [13, Theorem 3]). This completes the proof.

Let CY(G) denote the set of those ve C*(G) having compact support in G.
Denote its closure in H*?(G) by Hy?(G).

LeMmAa 4.8. If ve C*(G) and yp =0 for 0 £ j <s, then ve H3?(G).

Proof. When s is an integer, the lemma is well known (cf., e.g., [7, p. 48]).
When s is not an integer, let i be the integer such that i <s < i+ 1. Then yp =0
for 0 <j =i and hence

ve Hy 1'2(G) = HEP(G).

LemMa 4.9. Let {B;}/-; be a normal set, and let V be the set of those
ve C®(G) which satisfy

4.3) Bp=0 on 4G, 15jsr.

If w is a function in C*(G) which satisfies (4.3) only for those B; of order less
than s, then w is in the closure V°'?(G) of V in H**(G).

Proof. By rearranging if necessary, we may assume that v;<sfor1<j<r,
and v; = s for r; < j < r, where r; may equal one. Now it is easily checked that
Yos V15> Y5> Bpy»er» B, form a normal set, where i is the integer such that
i<s<i+ 1. Hence by Lemma 4.7 there is a u € C*(G) such that

yu = 0, 0 st=si,
Bu = Bjw, risj<r

Clearly Bju =0 for 1 £ j £ r,. Hence w — u is in V while u is H3?(G) < V*"(G).
Thus w =w — u + u is in ¥*?(G) and the proof is complete.
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COROLLARY 4.1. Under the same hypotheses, let V, be the set of those
u e C*(G) which satisfy
Bju =0 on 0G for those j such that v;<s,
Cu=0 on 0G, 15ig,
where {C;}{- is a normal set and the order of each C;is 2 s. Then V, is dense in
V=P(G). '

Proof. Let ve C*(G) be any function satisfying (4.3). Then there is a
u e C*(G) such that
Yiv = Y 0=sj<s,
Ciu = 0, 1 é i é t.
Clearly, Bju = Bjy=0 when v;<s. Thus ueV;. Moreover, by Lemma 4.8,
u—v is in Hy"(G) and hence there is a sequence {w;} of functions in Cg’(G) such

that
a |]w,—(u—v)[|s,p—>0

as | - 0. But u—w, eV, and approaches v in H*?(G). Since such v are dense in
V*'?(G), the assertion follows.

LeMMA 4.10. For all u,ve C®(G)

@4 || wda| s clulisloles
oG

Proof. Let y be a first order operator which equals the outward normal
derivative on 0G. Then
(yu,v) = —(u,yv) +j uvdo
oG
from which (4.4) immediately follows.

5. Bilinear forms. We consider bilinear integro-differential forms of order m:

(5.1) [uv] = > a,,,(x)D“ulﬂdx,

G luflclsm

where the coefficients are in C*(G). For any normal set {B,}7-, of order < m,
integration by parts yields

(5.2) [u] = (Au,0) + X J Fju B_,vda,
J=1 Yag

(5.3) [up] = W, 40)+ X Bju Fjvdo,
I=1 Yo
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where A and the F; and F; are differential operators, and A’ is the formal adjoint
of A (cf. [6]). 4is of order <2m and F; and F;are each of order < 2m —v; — 1.
If A is of order 2m and elliptic in G, then the orders of F ; and F; are exactly
2m—v;—1.

LemMMA 5.1, In order that

.4 | 4|22 < const. (Re[u,u] + || u 3.,
hold for all ue C*(G) satisfying
(5.5) Bu=0ondG, 15jsr

(0 =<r=m), it is necessary that A be elliptic in G and that the operators
Byy-yB, Fpq,, Fp, cover it.

Lemma 5.1 follows from the work of Agmon [1, p. 216; 3, p. 5](%).
Next, let us consider the special case when

[u,u] = E: | At || 2= 20

where A4, is an operator of order m, < m.

LeMMA 5.2. Hypotheses (c) and (d) of §3 are sufficient for
Jol2a S const( Z [ A liomz + L)

to hold for all u e C*(G) satisfying (5.5).

Lemma 5.2 was proved in [1; 17].
We shall find it convenient to employ a complete system of first order tan-
gential operators. By this we mean a set of operators of the form

b, =X au(x)—a‘ + ay(x), 1sisn,
1=1 0x,

Dy =1,

having the following properties:
(1) The coefficients a;, o, are in C*(G).
(2) Atinterior points x € G there is no real vector ¢ = (¢,,---,&,) # 0 such that

(5.6) Y a(E=0, 1sisn,
=1

(3) At a boundary point x° of G a real vector ¢ # 0 satisfies (5.6) if and only
if it is orthogonal to 0G at x°.

(5) Agmon states the theorem for formally self-adjoint value problems. This is done in order
to make the conditions sufficient as well.
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The construction and discussion of such systems have been carried out by
Friedrichs [10] and Visik [23]. Employing them we have

LeMMA 5.3. Hypotheses (c), (d), and (e) are sufficient for the inequality

Jula s const.(Z [ BF a3+ u s
i,J

to hold for all ue C*(G) satisfying (5.5).

Proof. We consider the operator A, = D" ™A, as an operator of order m
and apply Lemma 5.2 to the A4;. At interior points of G the characteristic poly-
nomials of the A4; have no nonzero real vector roots in common if and only if
the same is true of the A4,. At boundary points this can happen if the A4, of order
m have a normal vector root in common. However, this situation is precluded
by hypothesis (¢). Moreover, the complex roots of the A4, as described in hypo-
thesis (d) are the same for the A;; and hence the result follows from Lemma 5.2.

6. A stronger result for one operator. Assume that A is an elliptic operator of
even order 2q with coefficients in C*(G). Let {B; 24, be a normal set of order
< 2q having coefficients also in C*(G). If A’ denotes the formal adjoint of A
we have by integration by parts

2q .
6.1) (Aup) = (u,A'v) + X f B;uBjvdo,
=1 Y6

where {Bj}7Z, is a normal set and the order of Bjis 2q —v; — 1. Let V be the
set of those u € C*(G) such that

Bju =0 on 0G, 15j=q,
and V"’ the set of those v e C*(G) satisfying
By=0o0ndG, q<j=<2q.
We define the norm
|w|;,lp = lub M
vev: o=,

When s 2 0 this is equivalent to the norm | w |, ,, but not otherwise.
We shall make use of the following result proved in [20].

LeMmA 6.1. If the set {B;}], covers(®) A, then for every real s there is a
constant M such that

p . " u "s.p s Ms(l Au ls'-Zq.p + " u "s-Zq,p)
or all ueV.

(6) Cf. hypothesis (d) of §3. In the present case there is only one operator in the set { 4x.}
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Employing the techniques of §4, we can generalize this to

THEOREM 6.1. Under the same hypotheses, for each integer s there is a
constant My such that

q
63 uloy S M| Aufisey + £ Bidsosoims + [0lose )
J=

for all ue C*(G).

Proof. Let u, be any function in C*(G) such that
(6.3) Bj(u —uy) =0 on dG, 15j=<gq,
(6.9 Bjuy = 0 on 0G, q<j=<2q.
Thus u—ugy €V, and by Lemma 6.1

| — o ls.p < M| A = 10) (- 20,5 + || 4 = ti0 |- 2,5)-

Hence
(6.5) ullsp S M| Au[im2qp+ |4 ]-20.0) + 81D Cl| Atio[s-2qp + [ 40 s )

where the glb is taken over all such u,.
First consider the case s = 2g. Then

(6.6) | Aug |i-2g,p = C | At |[s-24,, = C" | o |5, -

Moreover, by Lemma 4.7,
q
6.7 glb | u ., < const. .El (B sy -1/ -
i=

Combining (6.5), (6.6) and (6.7) we obtain (6.2).
If 0 < s < 2q we note that

Aug,
6.8) | Augli—z,, = lub |cduon]

vev’ " v ||241-S.p’

We shall show in the appendix that there is a bilinear form

as(uav) = 2 2 Asye D"u de
¢ IMlSs |t]=2g-s
such that
2q .
(6.9) (Au,v) = a(u,v) + X f Bju Bjv do
i=1

oG
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for all u,ve C*(G), where the order of Bj is less than 2 — v; and its normal(”)

order is less than 2g — s. Thus by (6.4)

q -
(6.10) (Aug,v) = a(uy,v) + X f Bju, Bjvdo.
oG

i=1

Now if v; 2 5, then by definition
(6.11) | f Byttg B0do | S CBjtodemv,-1/5.0 B9 Dryst/p-s.
G

Moreover, by Lemma 4.3,
(6.12) <Bfilv>n+ 1/p-s,p’ s " B:,fv "\'1+1—s,p' =C " v "h--w’
since the order of Bjis <29 —v;—1and 1/p+1/p’=1. If v; <s, then
(6.13) f Bjuo Bjvdo = (yBju,, Bjv) + (Bjuo, yBp),
G

where y is a first order operator which equals the normal derivative on 0G. Neither
Bj nor yB; has normal derivatives of order greater than 2q — s. Hence in both
expressions on the right hand side of (6.13) we can throw a sufficient number
of tangential derivatives over on yB;u, and Bju, so that only derivatives up
to order 2g — s remain on v. Clearly, no boundary integrals are introduced by
this process. Hence we have

(6.14) | [ Bio Bodo| 5 Clluo 0 lg-vs
oG

Combining (6.8), (6.10)-(6.13) we have
q
(6'15) ﬂ“ "s.p = C(IA“ Is'-2q.p + j;l <Bi“>s-w~l/p.p + " u "s-Zq,p)

+ Cglb " Up "s,p’)

where the glb is taken over all uy € C,(G) satisfying (6.3,4). By Corollary 4.1,
this is the same as the glb taken over those u, which satisfy (6.3, 4) only for those
B; of order less than s. But then

q
(616) glb || U "s,p § Cj-zl <Bju >s-vj—1/p,p'
Combining (6.15) and (6.16) we obtain (6.2).

(7) Le., in local coordinates the highest order derivative in the normal direction appearing
in Bj is less than 2g — s.
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Finally, for the case s < 0, we employ (6.1). We have

q P
(Aug,v) = (g, Av) + X f Bju, Bjvdo

J=1 %6
and hence

| (4o, 0)| = Juolss | 40 -

q
+ jgl <Bju0 >s—v;—l/p.p <B,;v>v,+ 1/p—=sp’
Now by Lemma 4.3,

"A’v "-s P’ = C"”"n-:.»’
and
(B;v>v,+ 1/p-s,p’ é C " v " 2gq-s.p’*
Hence

g
4l S O(l4ulimzay + £ <Bdemssip t [l )

+ Cglb [ uo|s,,
However, since Cg'(G) is dense in H*?(G),
glb | uo [ls,, =0
and (6.2) follows. This completes the proof.

THEOREM 6.2. Let v be the maximum order of the B;, 1 < j < q. Then under

the same hypotheses, for each real s Z v + 1 there is a constant M. such that
(6.2) holds for all ue C*(G).

Proof. Let N be the set of those v € V such that A4u = 0. We know that N is
finite dimensional (cf., e.g., [19]). For every u e C*(G) there is an he N such
that u — h is orthogonal to N. The mapping Tu =u—h is unique and satisfies

q
617 [Tl s €| Aulioze, + £ <Bdumsy-si)

when s is an integer. (Here we have applied Rellich’s lemma to Theorem 6.1.)
One easily extends T to be a bounded map of

(6.18) Vls—ZQ.P(G) X H Ws-\u—l/p,p(aG)

i=1

into H*?(G)(®). We now interpolate between consecutive integers. For the first
space we employ Theorem 4.1 of [20]. For the remaining spaces we note that

(® VP is the completion of ¥’ with respect to the norm |- |; p.
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when s = v + 1, all of the indices are positive and we can apply Lemma 4.6 of
the present paper to conclude that T is bounded from the space (6.18) into
H*?(G) for nonintegral values of s as well. We now merely note that since N
is finite dimensional

" h “sm =c " h "s—Zq,p = c(" u "s-2q,p + " u—h ”s—Zq,p)
= c(" u "s-2q,p + " u—h "s’p)'

This together with (6.17) gives the required result.

ReMARK. For the Dirichlet problem, special cases of Theorems 6.1 and 6.2
were proved by Agmon [2] and Lions-Magenes [14]. For p = 2 and general B;,
Theorem 6.2 is included in the work of Peetre [16].

7. Proofs of the theorems. We consider the set of operators {4}, {B;}/-,
satisfying hypotheses (a)-(¢) of §3. Consider the operator of order 2m

A = ZaUDY DI Ay,
i,k

where the D, are the tangential operators described in §5 and D] is the formal
adjoint of D;. By hypotheses (c) and (e) of §3 and properties (2) and (3) of the D,
A is elliptic in G.

Next, consider the bilinear form

[u,v] = E(D";"""" Agu, D'~ A, ).

We add, if necessary, m—r operators to the set {B;};-, in such a way that the
resulting set {B;}7-, is normal and of order < m. By (5.2)

(7.1) [u,v] = (Au,v) + X f Fju B_jvda,
i=1 %6

where the order of F;is 2m — v; — 1. By symmetry we also have

(7.2 [u,v] = (u,4v) + X | Bu F;;da.
J=1%6

Thus if Vis the set of u € C*(G) satisfying

(7.3) Bu =0 on 4G, 1<j=r,

(7.4) Fu =0 on 0G, r<js<m,

then V' is the same set by (7.1) and (7.2) (note that A’ = A).
Now by Lemma 5.3

lulnz < OQuul+ |32
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for all u satisfying (7.3). Hence by Lemma 5.1 the operators By, -+, B,, F,,,,-+, F,,
cover A. This allows us to apply Lemma 6.1 to obtain the inequality

- [l S M Ay + 2
holding for all u € V. Now for ue ¥V and s < m we have, by (7.1),
Au, ,
|Au l;—2m,p=th M = ll.lb ML
veV' U"zm-s,p' veV "1)”2"’_3,’,,
(1.6)
| (A, E (Bpym ™D~ ay0) |
< X lub i
kovev " v ||2m—s,p’
<

S A e

where we have made use of the fact that the D, are tangential and may be moved
back and forth without introducing boundary terms. If s is not an integer, Lem-
ma 4.3 is employed. Combining (7.5) and (7.6) we see that (1.9) holds for all
ue V. However, every term in (1.9) is majorized by constant - | u|,,,. Since
the orders of the F; are = m, we know by Corollary 4.1 that every function
satisfying only (7.3) can be approximated in H™?(G) by functions in V. Hence
(1.9) holds for all functions satisfying (7.3). Since s, = s—m,, Theorem 3.2 is
proved.

In order to prove Theorem 3.1 we employ inequality (6.2) and note that (7.6)
holds for all u satisfying only (7.4). Thus (1.6) holds for all such u when s is an
integer < m. Again, since all such u are dense in H™?(G), (1.6) holds for all
u € C*(G). This completes the proof of Theorem 3.1 for the case s < m. The
case s > m is reduced to the case s = m by considering the operators

D*4,,  |p|Ss—my,

in place of the 4;,. We merely note that the new operators satisfy hypotheses
(a)«(d) if and only if the 4, do likewise. Moreover, in this case hypothesis (e)
follows from hypothesis (c), and Corollary 3.1 is proved.

8. Coerciveness for bilinear forms. We now show how one can extend the
inequalities in §3 to include general bilinear forms (cf. §5). Consider such a form
[u,v] of order m and assume that

(8.1) | u |,z < const. (Re[u,u] + [|u [5.2)

for all ue C®(G) satisfying
8.2) Bu=0 on 0G, 1<j=sr.
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Then by Lemma 5.1, A is elliptic and the boundary operators By,:--,B,,
F.4y,++, F,, cover it, where A and the F; are given by (5.2). Thus we can apply
Lemma 6.1 to obtain the inequality

63 [ S M A+ [ o200
for all ue C*(G) satisfying (8.2) and

8.9 Fu=0 on 4G, r<js<m,
where

(85) Au)mmy = b 2]

veV” " v "2m-s I
and V' is the set of those u € C () satisfying (8.2) and
(8.6) Fu=0 on 0G, r<j<m

(cf. (5.3) and (6.1)). But by (5.2), (Au,v) = [u,v] whenever u satisfies (8.4) and
v satisfies (8.2). Setting

(], = tu> L

vev’ “ v “ 2m-s.p’ ,

we have

THEOREM 8.1. If inequality (8.1) holds for all u satisfying (8.2), then for
each real s<m

(8'7) " u ||S:P é C([u]s—m,p + " u ”s—m,p)
for all such u.

Proof. From (8.3) and (8.5) we see that inequality (8.7) holds for all u satis-
fying (8.2) and (8.4). However, since the order of each F;is = m and [u];_,. ,
is majorized by | u ||, When s < m; functions satisfying only (8.2) can be ap-
proximated by those satisfying both (8.2) and (8.4). This completes the proof.

Employing Theorem 6.1 in place of Lemma 6.1 we have

THEOREM 8.2. Under the same hypotheses, when s is an integer < m

(88) " u "s,p é C([u]s-m,p + '§l <Bju >s—v]—l/p,p + " u “s—m,p)

for all ue C*(G).

In order to complete our discussion, we note that Agmon [1] has given ne-
cessary and sufficient conditions for (8.1) to hold for u satisfying (8.2). Set

Lx&)=Re X a, (x)¢* o

lul=lcl=m
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and at each boundary point x° let ¢(x°) denote the interior unit normal vector.
Then the conditions are

G L(x,6)>0in G for real ¢ #0.

(i) For every fixed boundary point x° and every real vector T orthogonal
to a(x%

Refw X a,u(xo)(T— ia(x%) %)” f( x (T— ia(x°)%)1f(t) dt>0

o lul=ltj=m

for all functions f(f) 0 in Cg'(— c0,00) which satisfy

Z(x°, T — io(x°) ;t—)f= 0, t>0,

o,(xT-ioa) )7 =0, 1=0. 1sjsn,

where Q;(x,¢) is the characteristic polynomial of B;.
Combining this with Theorems 8.1 and 8.2 we have

THEOREM 8.3. Under hypotheses (i) and (ii) inequality (8.7) holds for all u
satisfying (8.2) whenever s is real and < m. Inequality (8.8) holds for all u when
s is an integer.

APPENDIX
We now give a proof of (6.9). We write A in the form

m
A= 2 T,
i=0
where m = 2q, 7; is an operator of order i which equals the normal derivative
of order i on 0G and T'; is an operator of order < m—i involving only derivatives
in tangential directions. Then

s

(Au,0) = X (yu,T0) + z (viu, Tiv)

i=0 i=s+1

(v, T) + (yu, X 9,-,T0)

i=s+1

(A.1)

Il
it

i=s+

+ Z E J'}’J 1UsYi- Jrgv dO',
i=s Ja6

where we have absorbed the alternating signs in the operators. By rearrangement,
if necessary, we may assume that the order of B; is j—1. Then by (4.2)

J
Vi-1= )X Atht’ I1<jsm
t=1
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and hence the boundary terms in (A.1) become

m i Jj m —_—
ry T X J AyBuy,_ ;Tjvde = > f BuB;v do
i=s+1 j=s t=1 oG t=1 oG
where
B/= X X Ajyi- L0

j=max(+1L,0)  j=max(s+1,))

One easily checks that the order of B, is < m —t and that the highest order
of the y; occurring in it is less than min(m—¢ + 1, m — ).

Added in Proof. If we define W°?(3G) in a suitable way (e.g., W °-?(8G) =
[W~1?(8G), W }**(8G); 6(0)]) we can show that Theorems 3.1, 6.1 and 8.2 hold
for all real values of s. Details will be given in a forthcoming publication.
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