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1. Introduction. The concept of coerciveness was introduced  by Aronszajn

[5] who considered necessary and sufficient conditions for the inequality

(1.1) |lU||m>2^const.(I||^u||0j2 + ¡M||0>2)

to hold for all functions(2) « in a bounded domain G, where the Ak are linear

partial differential operators of order m and || u ||s p is the sum of the If norms

of m and its derivatives up to order s. This result was later generalized by Agmon

[1] and Schechter [17] to inequalities of the form

(1.2) ||u||m>2^COnst.(I||^«||o,2+  Z<BjU>m-v,-i/2.2+H|o.2)>

where each Bj is a boundary differential operator of order Vj < m and the < • >i2

are appropriate boundary norms. Agmon [1] also considered inequalities of the

form

(1.3) I u\laú const. (Re[«,«]+ E<B,u>*_T,- 1/2,2 + H|o,2)>

where \u,v\ is an integro-differential bilinear form of order m (cf. §5). In general, if

(1.4) || u fma Ú const. (Re[ti,u] + || u ¡20>2)

for all functions u in a set U, it is said that the form [u,v] is coercive over 17.

In 1959 Agmon proved the inequality

(1.5) ||u||m,p^const.(I||^«||o>p+ I<Bjuym-Vj-1/PtP+\\u\\0,p)

for 1 < p < 00 under the same hypotheses employed for (1.2). Agmon-Douglis-

Nirenberg [4] and Browder [8] had previously proved special cases. Independ-

ently and by a different method, Smith [22] established the Lpanalogue of

(1.1) requiring stronger hypotheses on the Ak and weaker assumptions on the

boundary than did Aronszajn. For smooth domains the result of Smith is con-

tained in that of Agmon.

In this paper we are concerned with generalizing (1.2) and (1.3) in several

directions. First we remove the restriction that the Ak be of the same order and
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COERCIVENESS IN £P 11

define the norm || • ||sp for negative integers s as well. We prove, under virtually

the same hypotheses as employed for (1.2), that

(1.6)    || u ||s>p ̂  const. ( Z1| Aku ||s_mtiP + Z (BjU >S_VJ_ 1/p>JF + || u ||s_m>p),

for any integer  s and real p, 1 < p < oo, where mk is the order of Ak and

m = max mk. In particular, if s = m0, the minimum order of the Ak, we have

i1-7)       II M IL..P ̂  const.( Z|| 4»« ||o,p + Z <ByU>mo_VJ_1/p,p + || u ||0)P).

These inequalities are new even for p = 2. We also prove a slightly stronger

result when there is only one operator Ax (cf. §6). Special cases are considered

in Lions-Magenes [14].

In order to obtain a counterpart of (1.3), we set

II v \\m-t,P-

where the lub is taken over all functions v and p' = p/(p —1). Then under the

same hypotheses that were used in proving (1.3) we have(3)

(1.8) || u |,iP ^ const.([«],_.,„ + I{Bju\_VJ_UpyP + || u ||s_m>p)

for any integer s^m.

We go one step further and define the norm || • ||sp for all real values of s.

This is done by means of complex interpolation methods introduced by Cal-

derón [9] and Lions [13] (cf. §2). We prove that for each real s ^m

(1-9) i « I,., á const. ( Z|| Aku ||s_mk,p + || u ||s_m>p)

and

(1-10) I u ||S(P Û const. ([«]s_m,p + || u ||s_m,p)

for all u satisfying

BjU = 0 for each j

on the boundary. The hypotheses are the same as those for (1.6) and (1.8),

respectively.

Our interest in the problem began when A. Zygmund brought our attention

to the inequality due to Friedrichs [24]

II   II     ^        *     V1     du
I u ||1)2 ̂  const.    L

it = i dxk 0,2

holding for harmonic functions satisfying

«dx = 0.Í
(3) Actually we prove a slightly stronger inequality (cf. §8).
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This is equivalent to

/ "~1    du \
H|i,2^ const.    |A«|_lf2+   Z    ¡J- 0,2+ || «¡0.2

\ * = 1    \\cxk I

holding for all functions u. Our present theorems give the corresponding result

for p # 2 (cf. §3).

We are indebted to Professors A. Zygmund and A. P. Calderón for several

interesting discussions.

2. Complex interpolation spaces. Let X0 and Xy be Banach spaces and

denote by ^C{X^,X^) the set of functions fix + iy) having values in X0 + Xj

which are analytic in 0<x<l, continuous and bounded in O^x^l, and

such that/(i»eX0,/(l + iy)eXv Set

Uixo.xr) = max lub||/(ijO|jr0, lub ||/(1 + iy) || Xl].

For O^ö^l, the set [X0,X1;ô(6)'] consists of those elements of X0 + X,

which are equal to/(0) for some / e Jif(X0, X,). Under the norm

I" |[Xo,Xi;¿(fl)] =      gib      ||/||jr(Xo,Xi)>
/(8)=u

the set [Xq.-X'iííí.o)] becomes a Banach space. This method of interpolation

was introduced by Calderón [9] and Lions[13].

3. Inequalities for formally positive forms. Let G be a bounded domain in

Euclidean n-space E" with boundary <3G of class Cœ. Let C2(G) denote the set

of complex valued functions infinitely differentiable in the closure G of G. For

i a non-negative integer and p > 1 we employ the norm

(3.1) Uh,P=(   S    f \Vu\'dx)
\ i*iá» -U /

Up

where summation is taken over all derivatives D^u of order | p. | S »'• We let

H',P{G) denote the completion of C°°(G) with respect to the norm (3.1). For

any real number s such that i < s < i + 1 we define HS,P(G) to be the space

[/7i,p(G),Hi+1'p(G);<5(0)], where 6 = s - i. For s real and negative H'"(G)

is defined as the completion of C^iG) with respect to the norm

H.,- i*. Ä
vC«>(G)    ||»||_fl,.

where (u,v) = (Guvdx and p' = p/(p—T). We consider the following boundary

norms. For <f> e Cœ(<3G) and s real and positive we define

<0>s,P = glbH|s+1/PjP,
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where the gib is taken over all u e C'iG) which equal (¡> on 8G. For s negative,

we write

(3.2) <<£>,,, = lubl Í    M do W7-\,P;

where the lub is taken over all ijf e C°(ôG).

Let {Ak} and {B,} be two finite systems of linear partial differential operators

with coefficients in ^(G). The set {Bj} may be void. Let mk denote the order

of Ak and Vj the order of B¡. Set m = max mk and v = max Vj. We make the fol-

lowing assumptions.

(a) The orders of the B¡ are distinct, and v < m.

(b) The boundary dG is noncharacteristic to each B} at every point.

(c) At each point xe G the characteristic polynomials Pk{x,Ç) of the Ak do

not vanish simultaneously for any real vector £ # 0.

(d) The Bj cover the Ak. This means the following. At each point x° of dG

let N =¡¿ 0 be a vector orthogonal to dG at x° and T # 0 a tangential vector. Let

zlt---,zh denote the complex roots with positive imaginary parts common to

the polynomials Pk(z) = Pk(x°,T+zN). If Q.j(x,Ç) denotes the characteristic

polynomial of Bp then it is assumed that there are h polynomials among the

Qj(z) = Qj(x°, T + zN) which are linearly independent modulo the polynomial

(z - z¡){z — z2) ••■ (z — zh). If the set {Bs} is empty, it is assumed that there are

no such roots z¡.

(e) At each boundary point x°, dG is noncharacteristic for some operator Ak

of order m.

Theorem 3.1. Assume that the systems {Ak}, {Bj} satisfy hypotheses (a)-(e).

Thenfor each integer s and each set of real numbers sk^s — mk, t¡ ^ s—v¡ — l/p

there is a constant C such that

(3.3) || u \\J S C11| Aku ¡tktP + I (Bju \uf + | u ||,_m,p)

for all ueC°°(G).

Corollary 3.1. If s^m, then hypothesis (e) is unnecessary in Theorem 3.1.

Theorem 3.2. Under hypotheses (a)-(e), for every set of real s í£ m and

sk^.s — mk there is a constant C such that

(3-4) HL^c £K«lk,+ HU.P)
for all ueCx{G) satisfying

(3.5) BjU = 0 on dG for each j.

Let m0 be the minimum order of the Ak. Then an important special case of

Theorem 3.2 is
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Corollary 3.2.    Under hypotheses (a)-(e),

|«||mo^c(lM4U||o,P+||u||0>p)

for all ueC"(G) satisfying (3.5).

Remark 3.1. For s an integer and ^ m, inequality (3.4) was first proved

by Agmon (to appear). Subsequently and independently, Smith [22] proved a

slightly weaker result for more general domains.

Remark 3.2. When there is only one operator Au stronger theorems can be

proved. Some are stated and proved in §6.

A simple example of Theorem 3.2 which is of interest is the inequality

\\ul.,*c(¡AuUP +  IjJ^+M.,)

holding for all u e Cœ(G), where A is any second order elliptic operator. This

generalizes an Ü inequality of Friedrichs [24] (cf. §1).

4. Some known results. An immediate consequence of the definition of a

complex interpolation space is

Lemma 4.1 [9; 13]. IfXt and Y¡ are Banach spaces, i = 0,1, and Tis a bounded

linear map of X0 into Y0 and Xx into Yx, then it can be extended to be a bounded

linear map of [X0,X1;ô(6)'] into [Y0, Y1;ö(9)'].

The following result is due to Lions-Magenes [14].

Lemma 4.2.   If dG is of class C" and st and s2 are non-negative real numbers,

\HSUP(G), HS2-"(G); ¿(0)] = H°3(G),

where s3 = (1 — 6)s1 + 9s2.

Lemma 4.3. Let E be a linear differential operator of order t with coeffi-

cients in C°(G). Then for s real and non-negative

|| Eu \\s¡> £ const. || u ||s+/p

for all ueCx(G).

Proof. When s is an integer, this follows from the definition of the norm.

Otherwise, let i be the integer such that i < s < i + 1. Then £ is a bounded linear

mapping of ff'+,,p(G) into Hl'"(G) and of Hi+1+t'p(G) into Hi+1'P(G). Hence it

is a bounded linear map of [Hi+,'P(G), Hi+1+,-p(G);o(0)~\ into

[tf''"(G), Hi+1-"(G); 0(6)1

with 0 = s — i. We apply Lemma 4.2 to complete the proof.

Lemma 4.4. Under the same hypotheses if E contains only derivatives in

tangential directions on dG, then
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<£0>s>p ^ const. <</>>s+tjP

for all 0eC°°(aG).

Proof.   We have by Lemma 4.3

<£0>s.p g glb||£u||s+1/p.p

g const, gib || u ||s+I+i/p,p = const. <<£>s+(>p,

where the gib is taken over all u e C°°(G) which equal (j) on the boundary.

We denote the normal derivative of u on BG of order t by y,u (y0u = u).

Lemma 4.5 [11; 12; 21]. For every integer i > 0 and every set of functions

4>q,<J>i, •••,$;_! in C^idG) there is a function ueC'iG) such that

ytu = 4>t,       0 ̂  í < i,
and

i-l

I « |¡,p Ú const. Z  <<¿>t>¡-,-i/p,p
t=o

where the constant does not depend on u or the <pt.

Let WS'P(3G) denote the completion of CX{BG) with respect to the norm

<-x,p.
Lemma   4.6.   If st and s2 are positive real numbers, then

lWu'(dG), WSl'\dG); 0(6)'] 2 WSi'\BG)

where s3 = (1 — 9)sl + 6s2. Moreover, equality holds when s¡ + í/p ^ 1, i = 1,2.

Proof. By the definition of the norms, we know that y0 is a bounded linear

mapping of HSi + 1/p-"(G) into WSl'p(BG) and of HSl+llp-p(G) into WS2-"(dG).

Hence by Lemmas 4.1 and 4.2 it is a bounded linear map of HSl+1/p,p(G) into

[WSUP(8G), W'2-p(dG);ö(8)~]. Denote the latter space by X. Thus if 0 e C»(dG),

u e C°°(G) and u = <¡> on dG, then

1<¡> \x £ const. || u ||i3+1/M.

Hence

|| #|x^ const. <^>i3>p

and the first part of the lemma is proved. In order to prove the second part, we

first assume that the s¡ + \/p are integers i = 1,2. Then by Lemma 4.5 there is

a bounded linear mapping Tof Ws,-p(dG) into Hs, + Up'"(G), ¿ = l,2(4).Thus Tisa

bounded linear map of X into HS3+1/p'p(G). This means that if (¡> e CX(8G), then

(4) One must observe that  T does not depend on si or s2.  This follows  from the

proofs of Lemma 4.5.
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\T4>U*u**& const. |*gz
and hence

<*>„,„£ const. \4\x,

showing that X = W'}-p(dG). Thus T is a bounded linear map of Ws'p(dG)

into H'+i,p'p(G) for all real s ^ 1 — 1/p. Repeating the reasoning above we now

obtain X = WS1,P(G) whenever st and s2 are real and ^ 1 — 1/p.

We shall call a set {#;}; = i of boundary operators a normal set of order < m

if it satisfies hypotheses (a) and (b) of §3. Clearly r ^ m.

Lemma 4.7. Let {#,}/= i be a normal set of order < m. Then for every

real s ^ m and every set {$,•},= i of functions in C^idG) there is aue C°°(G) such

that

B]u = <i)j on dG,       l^júr,

and

|| « |,,p Ú const. Z  <<f>j>s-,j-i/p,P,
J-i

where the constant does not depend on u or the </>,-.

Proof. We first assume that s is an integer ^ m. By adding m — r appropriate

operators and considering the corresponding (j)j to be zero, we see that we need

only consider the case r = m. By rearrangement if necessary, we may assume

that \j = j-l. Now we have (cf., e.g., [6; 18])

(4.1) Bj   -   Zr„y(_t,      lúiúm,
fi

(4.2) yf_t=   lArtB,, lút úm,
¡ = i

where Tjj and A„ are nonvanishing functions and rit and Ai( are operators of

order i% i — t involving only derivatives in tangential directions. Thus

EljAtf-ój* l£i£j£m,
r = l

where <57¡ is the Kronecker delta. Now by Lemma 4.5, there is a «6C™(ö)

such that
t

y,-iu   =   Z Af¡0¡,     l^t^s,
¡ = i

and

But

| « II,,, ̂  const. Z   <yt-iM >,-,+!-!/,,„.
r = l

it j j

Bju = Z r;t Z a,,^, = Z ^ Z r;tA,¡ = <t>¡
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and by Lemma 4.4

<Aí¡0;>s-t + i-i/p,p á const. <^i>s-i+i-i/p>p,

proving the lemma when s is an integer. When s is not an integer, let i be the

integer such that m£i<s<i + l. Now the mapping just constructed is a

bounded one from

[] Wi-Vj-llp-"(BG)   into   Hl-P(G)

s

and from

fl Wi+x-v>-llp'p(dG)   into   Hi+i-p(G).
j

Hence, by Lemmas 4.2 and 4.6, it is a bounded linear mapping of

¡1 Ws~vl~llp-p(BG)   into   H°'P(G)

j

(cf. [13, Theorem 3]). This completes the proof.

Let Cq(G) denote the set of those ueCœ(G) having compact support in G.

Denote its closure in HS-"(G) by HS0'"(G).

Lemma  4.8.   If veC°°(G) and y¡v = 0for0^j<s, then veHS0-"(G).

Proof. When s is an integer, the lemma is well known (cf., e.g., [7, p. 48]).

When s is not an integer, let i be the integer such that i < s < i + 1. Then y-v = 0

for 0 ^ j'• ̂  i and hence

veH^l-\G)cHY(G).

Lemma 4.9. Let {Bj}J=1 be a normal set, and let V be the set of those

veC'iG) which satisfy

(4.3) Bjv = 0   on   ÔG,       í^j^r.

If w is a function inGœ(G) which satisfies (4.3) only for those B¡ of order less

than s, then w is in the closure VS,P(G) of V in HS'P(G).

Proof. By rearranging if necessary, we may assume that Vj < s for 1 ^ j < r¡

and Vj jg s for rx^j Ú r, where rt may equal one. Now it is easily checked that

yo>7i> ••">%> Bri,-,Br form a normal set, where i is the integer such that

i < s ^ i + 1. Hence by Lemma 4.7 there is a u e C°°(G) such that

ytu   = 0, 0 ^ t S i,

BjU = BjW,       rt ^j <r.

Clearly B¡u = 0 for 1 £j ^ rv Hence w - u is in F while u is HsôP(G) s VS,P{G).

Thus w = w — u + u is in VS'P(G) and the proof is complete.
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Corollary 4.1.    Under the same hypotheses,  let  V±  be the set of those

ueCœ(G) which satisfy

BjU = 0 on dG for those j such that vy < s,

C-u = 0 on dG,       1 g i g t,

where {C¡}'i = 1 is a normal set and the order of each Ci is ^ s. Then Ft is dense in

V'-P(G).

Proof.   LetveCœ(G) be  any function  satisfying  (4.3).  Then  there  is  a

ueCx(G) such that
yju = yp       Oz%j<s,

C¡u = 0,        iúiút.

Clearly, Bju = BJv = Q when v,- < s. Thus ueV1.   Moreover, by Lemma 4.8,

u - v is in Hqp(G) and hence there is a sequence {w,} of functions in Cq(G) such

that lh-(«-»)|L-o

as /-* oo. But u-w,e Ft and approaches i> in H*'P(G). Since such t> are dense in

FS,P(G), the assertion follows.

Lemma  4.10.   For all u,veC°(G)

(4.4) uvda   ^ C || u ||1>p|| v\U.P-

Proof.   Let y be a first order  operator which equals the outward normal

derivative on dG. Then

(yu,v)= — (u,yv) +      uvda

from which (4.4) immediately follows.

5. Bilinear forms. We consider bilinear integro-differentialforms of order m:

(5.1) \u,v\ = f       Z     a^D^uWvdx,
JG  |/i|.|t|s<"

where the coefficients are in C°°(G). For any normal set {B,-}™=1 of order < m,

integration by parts yields

(5.2) \u,v\ = G4m,d) +  Z        f> BjVda,
' = 1   JdG

m       /•

(5.3) [«,»] = (u,i4'»)+ Z BjU F'jvdo,
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where A and the F¡ and F'j are differential operators, and A' is the formal adjoint

of A (cf. [6]). A is of order ^ 2m and Fj and Fj are each of order ^ 2m — v; - 1.

If /I is of order 2m and elliptic in G, then the orders of F¡ and F'¡ are exactly

2m—Vj—1.

Lemma   5.1.       /n order that

(5.4) |«|¿,2áconst.(Re[tt,u] + ||M¡2,a)

hold for all ueC'iG) satisfying

(5.5) B;u = 0 on ÔG,       lújúr

(0 ^ r ¿j m), ii is necessary thai A fee elliptic in G and that the operators

B1,--,Br,Fr+1,---,Fm cover it.

Lemma 5.1 follows from the work of Agmon [1, p. 216; 3, p. 5](5).

Next, let us consider the special case when

[«,«]=   Z   ||^M¡^_mk>2,
k

where Ak is an operator of order mk ̂  m.

Lemma   5.2.   Hypotheses (c) and (d) of §3 are sufficient for

||«|¿,2áconst.(z |Ku||^mk>2 + H|S,2)

to hold for all u e C°°(G) satisfying (5.5).

Lemma 5.2 was proved in [1; 17].

We shall find it convenient to employ a complete system of first order tan-

gential operators. By this we mean a set of operators of the form

A  =   Z *n{x)w-r + a¡(x),       1 g ¿ g n,
/ = i oxi

A> = i,
having the following properties:

(1) The coefficients a,„ a¡ are in C°°( G).

(2) At interior points x e G there is no real vector £ = {£u ••-, in) j= 0 such that

(5.6) Z a„(x)^ = 0,       lgi^n,
/ = i

(3) At a boundary point x° of G a real vector Ç # 0 satisfies (5.6) if and only

if it is orthogonal to BG at x°.

(5) Agmon states the theorem for formally self-adjoint value problems. This is done in order

to make the conditions sufficient as well.
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The construction and discussion of such systems have been carried out by

Friedrichs [10] and Visik [23]. Employing them we have

Lemma  5.3. Hypotheses (c), (d), and (e) are sufficient for the inequality

|| u \\2m>2 ^ const. | Z || BrmkAku \\l2 + || u \\l2\

to hold for all u e Cœ(G) satisfying (5.5).

Proof. We consider the operator Aik = D™~mkAk as an operator of order m

and apply Lemma 5.2 to the Aik. At interior points of G the characteristic poly-

nomials of the Aik have no nonzero real vector roots in common if and only if

the same is true of the Ak. At boundary points this can happen if the Ak of order

m have a normal vector root in common. However, this situation is precluded

by hypothesis (e). Moreover, the complex roots of the Ak as described in hypo-

thesis (d) are the same for the Aik and hence the result follows from Lemma 5.2.

6. A stronger result for one operator. Assume that A is an elliptic operator of

even order 2q with coefficients in C^iG). Let {Bj])'Li be a normal set of order

< 2q having coefficients also in C°°(G). If A' denotes the formal adjoint of A

we have by integration by parts

2«     r _

(6.1) (Au,v) = (u,A'v) +   Z BjuB'jvda,
J = 1    J8G

where {B'j}jq=1 is a normal set and the order of Bj is 2q — Vj — 1. Let V be the

set of those u e C^^G) such that

B;U = 0 on dG,       1 újúq,

and V the set of those t>e C°°(G) satisfying

B'jv = 0 on dG,       q<j^2q.

We define the norm

|w|s>p =    lub —-.

"*'   \\V\\s,p-

When s ^ 0 this is equivalent to the norm || w |sp, but not otherwise.

We shall make use of the following result proved in [20].

Lemma 6.1. If the set {Bj}qj = 1 covers(6) A, then for every real s there is a

constant Ms such that

||u||SjP^ms(|^m|5'_29jP+||u||s_2?jP)

for all ueV.

(6) Cf. hypothesis (d) of §3. In the present case there is only one operator in the set {Ak-}
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Employing the techniques of §4, we can generalize this to

Theorem 6.1.    Under the same hypotheses, for each integer s there is a

constant M's such that

(6.2) ¡u\\SiPÍM's(\Au\'s-2qtP + t  <Bj«>,_VJ_1/1>(„ + ||«||s.-24,p)

for all ueC°°(G).

Proof.   Let u0 be any function in C°°(G) such that

(6.3) Bj(u - u0) = 0 on BG,       lújúq,

(6.4) BjU0 = 0 on BG,       q<j <; 2q.

Thus u—u0eV, and by Lemma 6.1

|| w - "o IUp ̂  Ms(\ A(u - u0) \'s_2qtP + || u - u0 |s-2„,p).

Hence

(6.5) |u||,iP è M¿\Au\'M-2ttP+¡u¡g-2qtP) + gJbC,(|i4«o|;-2,.p+ |h0|U),

where the gib  is taken over all such u0.

First consider the case s^.2q. Then

(6.6) | Au0 |s'_2?iP S C || Au0 |s_29>p S C || u0 ||s,p.

Moreover, by Lemma 4.7,

(6-7) gib I «o I,,, g const. Z  <B,.M>s-v,-i/p,p-
j = i

Combining (6.5), (6.6) and (6.7) we obtain (6.2).

If 0 < s < 2q we note that

| (Au0, v) |
(6.8) M«o|i-2,.p =   lub

We shall show in the appendix that there is a bilinear form

as(u,v) = Z        Z      aSßt D"u DTv dx
JG    |M|Ss    |t|S24-a

such that

2«    r        _

(6.9) (Au,v) = as(u,v)+ Z    I BjU B)v da
j=1 J8a
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for all UjVeC^iG), where the order of B] is less than 2q — vy and its normal(7)

order is less than 2q — s. Thus by (6.4)

(6.10) (Au0,v) = as(u0,v) + Z B}u0 B]vda.
i = l   Jec

Now if Vj ̂  s, then by definition

(6.11) |  f   BjU0Bfid<T  ^<B,.u0>s_v,_1/p>p<B»v,+1/p_JiP..

Moreover, by Lemma 4.3,

(6.12) <B»vy+1/p_SiP. g I B> ||„+1-s,p. û C | v I,,.,,,.

since the order of B}' is ^ 2q — vy — 1 and 1/p + 1/p' = 1. If v} < s, then

(6.13) Í Bju0 Bjvda = (yBjUo, B» + (BjU0, yB'jv),
JdG

where y is a first order operator which equals the normal derivative on dG. Neither

B'j nor yB'j' has normal derivatives of order greater than 2q — s. Hence in both

expressions on the right hand side of (6.13) we can throw a sufficient number

of tangential derivatives over on yBjU0 and BjU0 so that only derivatives up

to order 2q — s remain on i;. Clearly, no boundary integrals are introduced by

this process. Hence we have

(6.14) Í BjU0B"jVda ^ClIiiolLHa,-..,
•'a/-."dG

Combining (6.8), (6.10)-(6.13) we have

(6.15) || u |„ z% c(\Au |s'_2?,p + £ <B,H>s_Vi_1/p>p + || « ||s_2i,p)

+ Cglb||ao|,,,.,

where the gib is taken over all u0eCx(G) satisfying (6.3,4). By Corollary 4.1,

this is the same as the gib taken over those u0 which satisfy (6.3,4) only for those

Bj of order less than s. But then

(6.16) gib | u0 ||,., ^ C Z  <B;U>S_VJ_1/P>p.
7 = 1

Combining (6.15) and (6.16) we obtain (6.2).

(7) I.e., in local coordinates the highest order derivative in the normal direction appearing

in Bj is less than 2q — s.
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Finally, for the case s ^ 0, we employ (6.1). We have

(Au0,v) = (u0,A'v) +  Z BjU0B'jVdcr

7 = 1 Jaa
and hence

\(Au0,v)\ ^ \\u0\\SiP\\A'v\\.sp,

«

+     Z    <BjWo>s-v,-l/p.p (^;C)v( + l/|>-! p'-
j-j

Now by Lemma 4.3,

and

<B'jv}Vi+l/p_SiP, Í C\\v\\2q_sy.

Hence

ll"IL  ^ CÍ|i4«|;_2t>1, +  Z  <B;U>s_v,_1/p>p+||u[|s_2î>pj

+ cgib n «o IU.P-

However, since C£(G) is dense in HS-P(G),

gib || "o IL = 0

and (6.2) follows. This completes the proof.

Theorem 6.2. Let v be the maximum order of the B}, 1 ^j ^q. Then under

the same hypotheses, for each real s §; v + 1 there is a constant M's such that

(6.2) holds for alinéelo).

Proof. Let TV be the set of those veVsuch that Au = 0. We know that TV is

finite dimensional (cf., e.g., [19]). For every ueCx(G) there is an Tie TV such

that u — h is orthogonal to TV. The mapping Tu = u — h is unique and satisfies

(6.17) || Tu I,,, g C (\Au |s'_2?. + Z  <B;u>s_Vj_1/p>p)

when s is an integer. (Here we have applied Rellich's lemma to Theorem 6.1.)

One easily extends T to be a bounded map of

(6.18) v,s~2q'p(G) x [] W''v~1,p'p(ôG)

j = i

into H',P(G)(8). We now interpolate between consecutive integers. For the first

space we employ Theorem 4.1 of [20]. For the remaining spaces we note that

(8) y".p is the completion of V with respect to the norm | • |i>p.
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when s ^ v + 1, all of the indices are positive and we can apply Lemma 4.6 of

the present paper to conclude that T is bounded from the space (6.18) into

HS'P(G) for nonintegral values of s as well. We now merely note that since JV

is finite dimensional

II * IUp ̂   C II * \l-2q.p ^ C(|| « \\s-2q.p +\\u~h \\s-2q,p)

^ c(||u||s_2?,p+||u-ft|L).

This together with (6.17) gives the required result.

Remark. For the Dirichlet problem, special cases of Theorems 6.1 and 6.2

were proved by Agmon [2] and Lions-Magenes [14]. For p = 2 and general B¡,

Theorem 6.2 is included in the work of Peetre [16].

7. Proofs of the theorems. We consider the set of operators {Ak}, {Bj}f= t

satisfying hypotheses (a)-(e) of §3. Consider the operator of order 2m

A =   lA'k(D¡)m-mkDT~mk Ak,
i,k

where the Dt are the tangential operators described in §5 and D[ is the formal

adjoint of D¡. By hypotheses (c) and (e) of §3 and properties (2) and (3) of the Dt,

A is elliptic in G.

Next, consider the bilinear form

[«,»]= KßrmkAku,ßrmkAkv).
i,k

We add, if necessary, m — r operators to the set {B,}'=1 in such a way that the

resulting set {Bf]"=l is normal and of order < m. By (5.2)

m       í*

(7.1) [u,v\ = (Au,v) +    Z       FjuBjVda,
i = iJBG

where the order of F¡ is 2m — Vj — 1. By symmetry we also have

(7.2) [u,v] = (u,Av) +  Z       BjUFjvda.
J = lJ8G

Thus if Fis the set of m e Cœ(G) satisfying

(7.3) Bju = 0     on   dG,       i^j^r,

(7.4) FjU = 0     on   dG,       r<j^m,

then V is the same set by (7.1) and (7.2) (note that A' = A).

Now by Lemma 5.3

\\u\\2mi2z%C([,u,u-] + \\u\\l2)



1963] COERCIVENESS IN LP 25

for all u satisfying (7.3). Hence by Lemma 5.1 the operators Bu ■■,Br, Fr+1, •••,Fm

cover A. This allows us to apply Lemma 6.1 to obtain the inequality

(7-5) I u ||s>p rg Ms(\ Au \'g_2m>p + || u ||s_2m,p)

holding for all ueV. Now for u e Fand s f¿ m we have, by (7.1),

| (¿m| I [Ml
M«U,f = lub,n— = lub n-

"^      ||0||2«-».p- •■*■    ||»||2m-..p'

(7.6)
I (A«, z (Ar~mfcAm~m^) |

^   2 lub '-L_-

è   Z ¡Aku\\s_mktP,
k

where we have made use of the fact that the D¡ are tangential and may be moved

back and forth without introducing boundary terms. If s is not an integer, Lem-

ma 4.3 is employed. Combining (7.5) and (7.6) we see that (1.9) holds for all

u e V. However, every term in (1.9) is majorized by constant • | u |mp. Since

the orders of the Fj are ^ m, we know by Corollary 4.1 that every function

satisfying only (7.3) can be approximated in Hm,p(G) by functions in V. Hence

(1.9) holds for all functions satisfying (7.3). Since sk^s-mk, Theorem 3.2 is

proved.

In order to prove Theorem 3.1 we employ inequality (6.2) and note that (7.6)

holds for all u satisfying only (7.4). Thus (1.6) holds for all such u when s is an

integer ^ m. Again, since all such u are dense in Hm,p(G), (1.6) holds for all

weC°°(G). This completes the proof of Theorem 3.1 for the case s^m. The

case s > m is reduced to the case s = m by considering the operators

D"Ak,       \n\£s-mk,

in place of the Ak. We merely note that the new operators satisfy hypotheses

(a)-(d) if and only if the Ak do likewise. Moreover, in this case hypothesis (e)

follows from hypothesis (c), and Corollary 3.1 is proved.

8. Coerciveness for bilinear forms. We now show how one can extend the

inequalities in §3 to include general bilinear forms (cf. §5). Consider such a form

[u,v] of order m and assume that

(8.1) || u ¡lt2 S const.(Re[«,u] + || u ||02>2)

for all ueCœ(G) satisfying

(8.2) Bju=0   on   BG,       i^j^r.
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Then by Lemma 5.1, A is elliptic and the boundary operators Bu--,Br,

Fr+i,---,Fm cover it, where A and the F¡ are given by (5.2). Thus we can apply

Lemma 6.1 to obtain the inequality

(8-3) ||u||s>p^Ms(|^u|;_2niiP-r||u||s_2m,p)

for all M6C°°(G) satisfying (8.2) and

(8.4) FjU = 0   on   dG,       r<j^m,

where

104".») I
(8-5) M'_a»., =   lub   TI-

••y pik-,,-
and V is the set of those u e CX{G) satisfying (8.2) and

(8.6) F'ju = 0   on   dG,       r<j^m

(cf. (5.3) and (6.1)). But by (5.2), (Au,v) = [u,v] whenever u satisfies (8.4) and

v satisfies (8.2). Setting

M.-»., =lub n-'

we have

Theorem 8.1. // inequality (8.1) holds for all u satisfying (8.2), then for

each real s ^ m

(8.7) ||u|s,páC([M]s_m,p+||«||s_m>p)

for all such u.

Proof. From (8.3) and (8.5) we see that inequality (8.7) holds for all u satis-

fying (8.2) and (8.4). However, since the order of each Fj is ^ m and [w]s-m>p

is majorized by || u ||m>p when s^m; functions satisfying only (8.2) can be ap-

proximated by those satisfying both (8.2) and (8.4). This completes the proof.

Employing Theorem 6.1 in place of Lemma 6.1 we have

Theorem 8.2.    Under the same hypotheses, when s is an integer ^ m

(8.8) || u ||s>p ̂  c([u]s_m;P + Z <B,.u>s_Vj_1/p>p + || u ||s_n>pj

for all ueC°°(G).

In order to complete our discussion, we note that Agmon [1] has given ne-

cessary and sufficient conditions for (8.1) to hold for u satisfying (8.2). Set

Z(x,0 = Re      Z     aMt(xK"+t,
M=|t|=m
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and at each boundary point x° let tr(x°) denote the interior unit normal vector.

Then the conditions are

(i) L(x,Ç) > 0 in G for real £^0.

(ii) For every fixed boundary point x° and every real vector T orthogonal

to  <7(X°)

Re ["      Z  _  ajx°)(r- ia(x°) ^j   f(t) x (t- ia(x°)jj f(t) dt > 0

for all functions/(i) # 0 in C"(- co,oo) which satisfy

z(x°,T-i<x(x°)^-W=0,       r>0,

Q^x°,T-icf(x0)-^jf=0,       1 = 0,    l^; = r,

where Qj(x,Ç) is the characteristic polynomial of Br

Combining this with Theorems 8.1 and 8.2 we have

Theorem 8.3. Under hypotheses (i) and (ii) inequality (8.7) TioWs for all u

satisfying (8.2) whenever s is real and ^ m. Inequality (8.8) holds for all u when

s is an integer.

Appendix

We now give a proof of (6.9). We write A in the form

m

A= Z T¡y¡,
i = 0

where m = 2q, y¡ is an operator of order i which equals the normal derivative

of order i on BG and r( is an operator of order ^m — i involving only derivatives

in tangential directions. Then

Ï HI

(Au,v) = Z ijiW.r» +   Z   (yiu,r[v)
i=0 ¡=s+l

(A.l) =   i(ylU,Tlv) + (ysu,    Z   ft-.r»
i=0 i=s+l

m i        /•

+    Z     Z       yj-íU^-j r¡v da,
¡=s+l    j = s   J~n"dG

where we have absorbed the alternating signs in the operators. By rearrangement,

if necessary, we may assume that the order of B¡ is j—i. Then by (4.2)

j
yj-i =  Z hjtBt,       i^j^m
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and hence the boundary terms in (A.l) become

m i j_ m     /*_

Z      Z    Z    I   AjtBtUy^jTiv da =  Z        B,uB"tv da
¡=s+i  j=s  t=i   JdG t = i J8G

where

B't'= î Z       A'jtVt-jn
7- = max(5+1.0     i=max(s+l.y)

One easily checks that the order of B" is ^ m — t and that the highest order

of the y¡ occurring in it is less than min(m — t + 1, m — s).

Added in Proof. If we define W°'p(dG) in a suitable way (e.g., W°\dG) =

[W'1 p(dG), WUp{dG); ¿(0)]) we can show that Theorems 3.1, 6.1 and 8.2 hold

for all real values of s. Details will be given in a forthcoming publication.
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