
TWO THEOREMS ABOUT RELATIONS
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H. KENYON

1. Introduction. The main result of this paper is Theorem 1 below, which is

entirely relation-theoretic in character. It is applied to topological uniformities

in the two corollaries^) which follow it, and it is in this connection that the

theorem first came to my attention. Three counter-examples are given which

show that certain reasonable-sounding improvements of Theorem 1 are impos-

sible. Theorem 2 is included with this note because its subject matter is similar

to that of Theorem 1.

Here is a particular case of Corollary 1. Suppose for the time being that X is

the set of real numbers and / is a real-valued function defined on X. Let us agree

that N(A,Ö) is the set of real numbers within the distance Ô of A, whenever Ac X

and ö > 0. Then (i) and (ii) below are trivial consequences of the usual definitions

of continuity and uniform continuity of/, and so is one direction of (iii). The

other direction of (iii) follows from Corollary 1 and Remark 1.

(i) / is continuous on X if and only if for every e > 0 and for every finite sub-

set A of X there exists such a ö > 0 that

flN(A,ôy] c N(flAls);

(ii) / is uniformly continuous on X if and only if for every £ > 0 there exists

such a ô > 0 that for every finite subset A of X

flN(A,SÏ] <= JV(/W,8);

(iii) / is uniformly continuous on X if and only if for every £ > 0 and for every

countable subset A of X there exists such a <5 > 0 that

flN(A,ô)] c N(flA],e).

Corollary 2 is closely related to Corollary 1. It expresses the result that, just

as a topology may be recovered when one is given for each point in the space

the family of (not necessarily open) neighborhoods containing that point, so

may a uniformity with nested base be recovered when one is given for each sub-

set of the space the family of uniform neighborhoods of that subset.

I am indebted to Henry F. J. Lowig for calling my attention to an error in

an earlier version of this paper.

Received by the editors July 10, 1961 and, in revised form, March 29, 1962.

(!) The referee assures me that the burden of announcing these corollaries falls on Ju.

Smirnov, who has published their metric case in Mat. Sb. (N. S.) 31 (73) (1952), 543-574.
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2. Preliminaries. With a few changes and additions we adopt the set and

relation theoretical notation appearing on pp.2-10of Kelley's General topology{2).

If R and S are relations, we denote by 'R :S' the composition of R with S:

R:S = Ex,y   [(x,z) e S and (z,y)eR for some z]

= the set of pairs of the form (x,y),

such that (x,z) e S and (z,y) e R for some z.

If R is a relation and .4 is a set, then +/L4 is the direct map, and *RA the in-

verse map, of A by R:

+RA   = Ey [(x,y)eR for some xe/1];

*RA  = Ex [(x,y)eR for some ye A] = *R~iA.

R is a rectangular relation, or a rectangle, if i? is such a relation that

R — domain R x range R.

F is a filter-base if and only if F is such a nonempty family of nonempty

sets that whenever A e F and Bei7 there exists such a set C e F that Ccinß.

Clearly, if N is a nest (see p. 32 of Kelleys' book(2)) and O^JV^O, then JV is also

a filter-base.

Refer to p. 177 of Kelley's book(2), if necessary, to check that M is a base

for a uniformity for X if and only if M is such a filter-base of subsets oí X x X

that whenever UeM:

A(X) c U;

V cr l/-1 for some VeM;

V:Vc U for some VeM.

Resulting from this is the fact needed later that for every UeM there exists

such a member V oí M that

(1) V:V~l:V cz  U.

3. The theorems and related counter-examples.

Theorem 1. // V is a relation and N is a nest of relations with the property

that for every set A there exists such a member U of N that

^c tVA,

then there exists a member W of N for which

W c  V:V~l:V.

(2) J. L. Kelley, General topology, Van Nostrand, New York, 1955.
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Proof. Suppose F is a relation, X = domain V, Y= range V, and Z = X x Y.

Suppose iV is a nest of relations.

Part 1. If for every set A there is a member U of N for which +UA<zz*VA,

then there exists such a member W of N that W a Z.

Proof.   Let

A1 = \JUeN   (domain U ~ X)

and choose l/xeJV for which ^l/i^ c +VAV Then ^Ui (domain U1 ~ X)

c lt:U1Ai <= „VAy = 0, and domain Uy cz X.

Now let

A2 = IJl/eiV domain U

and choose U2eN so that +U2A2 c *VA2. Then range U2 = *U2 domain U2

cz itV2A2 c ¿VA2 c Y, and range U2 <= Y.

Letting W= Ut n t/2, we see that We N and If cXxF, and the proof of

Part 1 is complete.

Part 2.   V ̂ V-.V'1 :V <=Z.

We omit the straightforward proof of Part 2 and distinguish some families

of subsets of Z. Let

M=El/[L/ = ZrW~ V-.V'1: F for some WeN];

G = E R [R is a rectangular subset of Z, R n V= 0,

andR O W#0 whenever WeN];

Q(x,y) = (*V{y) x Y) u (X x ,K{x}) whenever (x,v) eZ.

Part 3.   G = 0 if and only if for every set A there exists such a member U

of N that +UA <= nVA.
Proof.   If G#0 we may choose A x BeG and check that

B n „7i4 = 0,

but that

5n„lM ^ 0,

whenever U eN. Hence for no member U of JV is it true that +UA <= +VA.

If, on the other hand, A is such a set that

¿JA ~ ¡VA Ï 0

whenever t/eJV, then it is easy, in view of Part 1, to check that

(Ar\X)x(Y~tVA)eG,

and G # 0.

The proof of Part 4 is immediate; Part 5 follows from Part 1.

Part 4.   M is a nest of subsets of Z ~ V : V~l : V.
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Pakt 5.   There exists a member U of N for which U c V: V~l : V if and

only ifOeM.

We now assume

(2) 0 £ AÍ.

Parts 3 and 5 assure us that the proof of the theorem will be complete when we

verify in Part 8 that G # 0. We shall actually discover such a member R of G

that R n U # 0 whenever UeM.

Part 6.   // there exists such a member z of Z that

ß(z) n U # 0,

whenever UeM, then G # 0.

Proof.   Let z = (x,y) e Z and suppose G = 0. Let

Ri   - *^W x »V*F{j}¡

R2   - "%K{x} x ,F{x};

*s   - *^}x(y~*F*7{y});

i?4   . (X~*V.V{x})XtV{x};

and check that

ß(z) = Ri <UR2 UÄ3 UÄ4;

ÄtUÄ2 c V:V-X:V;

R*r\V - 0;

K4 n K -> 0.

The assumption that G = 0 then allows us to select W3 e N and W4 6 N for which

K3 n W3 = 0 and tf 4 n FF4 = 0.

Let U = ZC\W3 n W4~ F:F-1 :Fand notice that C/eM. But then

ß(z) n u = (J?!UR2 u£3 un*) nz n W3 n w4 ~ v : V _1: V

c ((R1ui?2)~K:K"1:K) u (i?3 nPF3) u(¿?4 n W¿

= 0U0U0 = 0.

This completes the proof of Part 6. In view of this result we assume hence-

forth that

(3) for every zeZ there exists such a UeM that Q(z) O U = 0.

Part 7. There are an ordinal ô and transfinite sequences U and z defined

on the set of ordinals less than Ô, with the properties that:
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z(a)e (7(a)e M    whenever a < ô;

U(a)<=U(ß)       whenever ß< a <ô;

whenever We M there exists such an a < <5 that [7(a) <= W;

(7(a) O Q{z{ß)) = 0       whenever ß<oc<o.

Proof. Define 17 and z inductively as follows. Suppose that a is an ordinal

and U(ß) and z(ß) have been chosen for all ß < a so that

(4) z(j8) e U(ß) e M whenever ß < a ;

(5) U(ß) c Í7(f/) whenever n<ß<a;

(6) l7(jS) nß(z(//)) = 0        whenever n<ß<a.

Case 1.   If for every We M there exists such a /? < a that C7(/i) c If, choose

ô = a and the construction is complete.

Case 2.   If a = /j + 1 and there exists a We M for which

U(ß) * W;

then make use of such a Wand assumption (3) to choose [7(a) e M so that

17(a) c WcUQi)

and

[7(a)nß(z0z)) = 0.

Finally choose z(a)e L7(a). Check that inductive assumptions  (4), (5) and (6)

now hold with 'a' replaced by 'a + 1'.

Case 3. If a has no immediate predecessor and there exists such a. We M

that for no ß < a is U(ß) c W, then let 17(a) be some such W and choose

z(a)e 17(a). Check that inductive assumptions (4) and (5) now hold with 'a'

replaced by 'a + V. But this is true for (6) also, for if ij<a<a + l, then

n + 1 < a and

17(a) n QizO,)) c l/(fi + 1) O ß(z(r;)) = 0.

Continue the construction until Case 1 holds.

Part 8.   G=¿0.

Proof. We make use of the ordinal S and sequences z and U constructed

in Part 7. Let

z(a) = (x(ct),y(oL))

whenever a < 5, and let R be the set of pairs of the form

(x(ri),y(ß))

for n < ô and ß < ô. Then R is clearly a rectangular subset of Z.
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R n W 5e 0 whenever We M ; for if We M we may choose a < <5 for which

[/(a) c W and notice that z(a) eRn U(a) c R n W..

Finally, the fact that R n F= 0 can be seen from an inspection of the follow-

ing three cases:

Case 1.   If a < Ô, then (x(a), y(ct)) e [/(a) c Z ~ F : F-1 : F <= Z ~ K

Case 2. If /3<a<<5, then (x(a),y(a)) e [/(a)cZ~ß(z(j?))cZ~(ix *F{x(j8)}),

so that y(a)imV{x{ß)} and (xO?),y(a)) ¿ F.

Case 3. If ß < a < <5, then (x(a),y(a)) e Z ~ 6(z(/0) cZ~ (*F{y(/?)} x 10»

so that x(a) ¿ *V{y(ß)} and (x(a),y(/T)) i V.

The proof of the theorem is complete.

Remark 1. It is clear from the constructions in Parts 7 and 8 above that

the sets A considered in the hypothesis of Theorem 1 can be restricted to the

family of sets with cardinality less than or equal to that of JV. In case AT is finite,

of course, the sets A need be no more than singletons.

Counter-example 1. There exist a symmetric relation V and a nest N of

symmetric relations with the following properties:

For every set A there is a member U of N for which ¿JA <zz ¿?A.

For no Win N is it true that W <= For W <= F : F.

Thus it is too much to hope that 'V :V~1 :V in Theorem 1 can be replaced

by 'F' or 'F : F', even with the additional hypothesis of symmetry.

Construction.   Let

F = E x,y [x > 0; and either y < -2x or -x/2 < y < 0]

U E x,y [x < 0; and either y > —2x or —x/2 > y > 0].

Let N be the family of relations U of the form

U = E x,y [x + y = 0 and 0 < | x | < <5]

for some ô > 0.

It is easy to verify that F and JV have the required properties. (Consider se-

parately the cases that 0 is or is not, an accumulation point of A n E x [x > 0]

or A n E x [x < 0].)

Remark 2. The nest N in Counter-example 1 is certainly not a base for any

uniformity. Thus the following example is of interest.

Counter-example 2. There exist a symmetric relation V and a nest N of

symmetric relations with the following properties:

For every set A there is a member U of N for which ¿JA <=. *VA.

For no Win N is it true that (fc F. JV is a base for a uniformity.

Construction.   Let

V = E x,_y [x and y are real ; and either x + y j= 0 or x = y = 0],

and let N be the nest of relations U of the form
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U = E x,y [x and y are real ; and | x - y | < <5] for some S > 0.

It is easy to verify that V and TV have the required properties. TV is a base for the

usual uniformity on the set of real numbers.

Counter-example 3. There exist such a relation V and filter-base M of re-

lations that for every set A there is a member U of M for which

JÜA e= *VA,

but

for no Win M.

Construction.   Let X be any infinite set and let

V = A(X) = E x,x   [x e X].

Let 5 be the collection of finite families F of subsets of X for which X = oF;

thus 5 is the collection of finite coverings of X by subsets of X. Let

[7(F)  =  Ex,)'   \xeA and y6^4 for some AeFj

whenever Feg, and let M = the family of relations of the form [7(F) for F

in g.

Clearly W $V = V-.V'^-.V whenever W e M. If we agree that F O n G is

the family of sets of the form AC\B, where A e F and BeG, then F nnGeg

and

[7(FnnG) = i/(f) n l/(G)

whenever Feg and Geg. Hence M is a filter-base.

Finally, if /I is any set, let

F = {AnX}\J{X~A},

and check that Feg, [7(F)eM, and

,17(FM = inl= „VA.

Remark 3. In the example above, V is the smallest member of the discrete

uniformity for X, which is complete but not compact, and M is a base for an

associated precompact(3) uniformity also generating the discrete topology. I owe

this remark and the present form of the example to the referee, who points out

that more generally an example with the above properties can be constructed

from an arbitrary nonprecompact uniformity M' on X. Let M be the associated

(3) Every net has a Cauchy subnet. For results in this connection, see John W. Tukey,

Convergence and uniformity in topology, Princeton Univ. Press, Princeton, N. J., 1940; Chapters

V and VI. Though Chapter V contains some nontrivial errors, they occur mostly in proofs, and

the main theorems seem to be correct. There is no easily available corrected version. However,

see S. Ginsburg and J. R. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc. 93

(1959), 171-195; Theorem 1.1.
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precompact uniformity (the family consisting of those members of M' which,

in the notation of the preceding example, include U(F) for some finite open

covering F of X); and let F be any symmetric member of M' such that V :V :V

includes no member of M.

The following theorem, of some interest in itself, is a by-product of my work

on Theorem 1.

Theorem 2. If F is a relation, and F is such a family of relations that

for every set A there is a member U of F for which

¿JA c SA,

then for every set B there is a member W of F for which

*WB c *VB.

Proof. Suppose the existence of a set B failing to satisfy the conclusion, and let

A = {JWeF   {*WB~*VB).

Then

BC\¿rA = U WeF   [BntV(*WB~*VB)1[ = 0;

but whenever UeF,

B n ¿JA zdBH ¿J{*UB ~ *VB) * 0.

Hence for no U in F is ¿JA cz ¿/'A, contrary to the hypothesis.

4. Corollaries^) of Theorem 1.

Corollary 1. // (X,U) is a uniform space with nested base, (7,93) is an

arbitrary uniform space, and f is a function with domain X and range included

in Y, then: f is uniformly continuous(*) relative to XL and 93 if and only if

(7)  for every Vin 93 and A c: X, there exists such a U in U that ^¿JA <=. ¿Z+f A.

Notice that this is reminiscent of a usual definition of uniform continuity,

the difference being that in the definition the sets A are singletons and there is

a reversal of quantifiers. If we leave undisturbed the order of quantification in

the corollary but restrict the sets A to singletons, we have a definition of ordinary

continuity.

Proof. Under the hypotheses of the corollary it is easy to see that (7) holds

if/is uniformly continuous with respect to U and 93. (Given Fin 93, choose U

in U so that f:Ucz V:f.) We suppose then that (7) holds and prove that / is

uniformly continuous. Let JV be a nested base for U.

(4) See Kelley, be. cit., p. 180.
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Suppose We 93 and use (1) to choose such a member F of 93 that V: V  1:V<=W.

According to (7), there exists such a U in TV that

JtUA c „VJA,

or equivalently,

tUA c J-\VJA - JJ^iV-.f)^

whenever A <= X.

Hence '/-1:F:/' can be substituted for 'F' in the theorem, to conclude

that for some U in TV:

[7 c CT1 : F :/) ¡C/"1 : F t/)"1 ri/"1 : V :/) <=/ _1:K : V~l :V :f<=f-1 :W:f.

But this demonstrates  the  uniform continuity of/, for if  U c/_1 :W:f,

then

(xjOe/-1:^:/,

or equivalently,

(f(x),f(y))eW,
whenever (x,y) e U.

The last result is an immediate consequence of Theorem 1 and (1).

Corollary 2. // (X,U) is a uniform space with nested base, then a base

for II is the family of subsets of X x X of the form V : V'1 : V, where Vis a sub-

set of X x X with the property that for every Ac X there is a member U of

XI for which „UA c „VA.
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