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Introduction. In this paper we prove certain maximal theorems and certain

pointwise convergence theorems. Except for the Introduction and for the para-

graph on notations and terminology, the material presented here is divided

into two parts and an Appendix.

The main result of Part I is Theorem 1. This is a maximal theorem for certain

operators on abstract VE spaces, where 1 ^ p < oo and £ is a Banach space.

This theorem contains as immediate particular cases the classical maximal ergodic

theorem and a maximal theorem for martingales. Hence this provides (see also

the Appendix) a unified proof of the pointwise ergodic theorem and of the point-

wise convergence theorem concerning the (decreasing) martingale. Theorem 2

is again a maximal theorem which contains as particular cases a maximal ergodic

theorem and a maximal theorem for martingales. Another unified treatment of

the ergodic theorem and the martingale theorem, quite different (in methods as

well as results) from those presented here is given in [35](2).

The results of Part II are essentially generalizations of certain results con-

cerning Banach space valued martingales. In particular, Theorem 4 shows that

under certain conditions the strong pointwise convergence theorem for Banach

space valued increasing martingales holds. In a weaker form this theorem was

proved in [7; 12; 36].

The Appendix contains an almost everywhere convergence theorem which is

used in Parts I and II.

The main results of this paper were announced in the Proceedings of the Na-

tional Academy of Sciences, February 1962.

Notations and terminology. Let (Z, S, p) be a complete totally c-finite measure

space and £ a Banach space. For each 1 ^ p < oo denote by JS?| the vector space

of all (Bochner) measurable mappings / of Z into £ for which z -» ||/(z) ||p

is   /¿-integrable(3);   here   3?\   is   endowed   with   the   semi-norm  f-> \\f\\p

Received by the editors March 23, 1962.

(i) Research supported by the U. S. Army Research Office (Durham) under contract

DA-ARO(D)-31-124-G218.

(2) The analogy between the maximal ergodic theorem (for operators corresponding to

measure-preserving transformations) and the maximal theorem for martingales was noticed

long ago (see for instance [29]).

(3) See [21]. In the same way we define the spaces £Cg for not necessarily complete measure

spaces.
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= ( Jz ||/(z) \\Fdp(z))llp. Denote by LPE the associated separated (Banach) space

and by /-> /the canonical mapping of 3?E onto LPE. Let £fE be the vector space of

all functions which are bounded and belong to ¿¡fE; here £fE is endowed with the

semi-norm f-> \\f\\x = esssupzeZ |/(z) |. Denote by SE the associated separated

(normed) space and by/->/the canonical mapping of yE onto SE.

Let 9) be the set of all linear mappings f of SE into SE such that(4) || T\\t ^ 1

and || T\\x ^ 1. Then || T\\p ^ 1 for all 1 ^ p < oo; hence Tcan be extended by

continuity to LPE (we denote the extension by the same letter). For Te 9 and

feir= Uisp<00-^£ we denote by T/a (determined) representative of the class Tf.

For each function fe Y and each a > 0 we write

Gs(a) = {z | ||/(z) || > a}.

Let now Uu U2,---, Un (n ^ 1) be n operators belonging to 9 and let

fe 3?E cz -f (1 ^ p< co). The definition of the functions d0, ••-, d„,/0, •••,/„ which

we shall introduce below and the relations which we shall establish were sug-

gested by [5] and by a manuscript of J. Oxtoby. Define d0 and/0 by the equations

d0(z)= a/(z)/||/(z)|| if   a<||/(z)||,

do(z) = f(z) if   a^\\f(z)\\,

/o = f-d0-

Since p(Gj-(a)) is finite it follows that d0e^E; hence f0e^CE too. It is also

obvious that a — ||d0(z)|| =0 f°r a^ zeZ. Suppose now that fes {0,■•-,«-1}

and that d0,---,dk,f0,---,fk were defined, belong to J?| and

D*(z) = fl- lj = 0\\dj(z)\\^0

for all zeZ. We define then dt+1 and/k+1 by the equations

dk+1(z) = D¿z)Uk+íf¿z)/ || I7t+1/,(z) I if Dt(z) < || Uk+1fk(z) \\,

dk+1(z) =  Uk+1fk(z) if Dk(z) ^ || Uk+1fk(z) ||,

/*+i  = Uk+ifk—dk+1.

It is easy to see that dk+1 and /fc+i belong to S£PE and that we have

a — E)í¿ \dfz) || = 0 for all zeZ. By induction we define then the functions

d0, ■••,dn,f0,---,f„; without difficulty we see that

(1) d0,-,dn,f0,-,fn belong to ¿?|;

(2) I*=0 I dj(z) || Ú a for all ke{0,-,n};

(3) dk+1+fk+l = Uk+1fk (or all fce{0,-,n - 1};

(4) || d0(z) || + ||/o(z) || - ||/(z) i for all zeZ;

(5) \\dk+l(z)\\ + \\fk+1(z)\\ = \\Uk+Jk(z)\\ for all zeZ and fce{0,-,n-l};

(6) zeZ, ke{0,-,n} and fk(z) # 0 imply   Ij=0 || d/z) || = a.

(4) For Te 9 and 1 ̂  p ^ oo define || T ||p = sup { || r/||, | fe SE, || f\\p ^ 1}.
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Since p(Gf(a)) is finite and f0(z) = 0 for z £ Gf(a), we deduce that f0 e JSf¿;

it follows that d1,---,d„,f1,---,fn belong also to £CE. Let us also remark that:

(7)   If Ceê and £/=<, || d/z) || = a for each zeC then

f (a-||d0(z)|)dMz)^i ||/o(z)|dMz).
J c J z

In fact, using (5) we deduce

jc(a-\\d0(z)\\)dp(z)

Ú   l;-ijj|d/z)|dtfz)

=   Z;-i(Jz || Ujfj-Az) \\dp(z) - jjfj(z) I a>(z))

^   Ii"=i(Jz |/y-i(*) I dp(z) - Jz ||//z) || dp(z))j ¿j \\f0(z) I dKz).

For every je {l,---,n}, ie{l,---,n} such that j ^ i we shall define (by induction)

an operator Uu iy We write í/0j¡) = U} if ; = i. Suppose now that j > i

and that t/y-i.« has been defined; we write then UUi) = UUJ)UU-1 ().

Using (3) and the equation f=d0+f0 we obtain easily (by induction) for

all fce{l,■•-,«} the formula

(8) iW= EiW,-i + 4+/*-

Throughout this paper we consider only tribes ( = c-algebras) ^cé such

that the restriction of p to & is totally a-finite. Let now & c S be a tribe. It is

easily seen that there is an operator £fe® (define first E^f fox simple functions

feSfE) such that: (i) for eaenfef there exists a representative in the class E^f

which is measurable with respect to &; (ii) for each/eL¿ and Ae!F

| E?f dp = j fdp.

The operator Ef is called the conditional expectation with respect to !F.

Let now (^J„eÄ be a decreasing sequence of tribes contained in ê and

(f„)„eN a sequence of functions belonging to 'f. We say that (fn)neN is a de-

creasing martingale with respect to the sequence (^"„)neii if for each neN,

Ef+Jn — fn+i' In a similar manner we define an increasing martingale.

Part I

1. A maximal ergodic theorem.   Let T0, TXi---,TTe2 (r ^ 1) and consider

the conditions:



110 A. AND C. IONESCU TULCEA [April

(9) T0 = I;
(10) TJ+iTj = Tj+l for je{0,-,r-l}.

We define T}° = I for all je{0,---,r}. We shall now state and prove our first

maximal theorem:

Theorem 1.   Let T0, Tu---,Tre9 be r + l operators satisfying the con-

ditions (9) and (10). For eachfe~f~ and each a > 0 define

G*(a) = {z | sup,e {0.},„eiV || (T,°+ T) +- + Tj)f(z)/(n + 1) || > a}.

Then for each set F eS verifying (except for sets of measure zero) the relations

Gf(a) cz F cz G*(a) we have

ap(F)S¡ ||/(2) || dp(z)< co.
Jf

Let fe V; for each a > 0 and each s 6 JV define

G*(a,s) = {z|sup,.£{1 ... ,r},ne{o>... ,s}||(r° + T) + •••+ Tnj)f(z)/(n + 1)|| > a}.

Remark that (except for sets of measure zero) Gf(a) = G*(a,0) c G*(a,s) for each

seN, the sequence (G*(a,s))seN is increasing, and that [JSENG*(a,s) = G*(a).

For each s e N let Fs = G*(a,s) n F. To prove the theorem, it is enough to show

that (see the paragraph on notations and terminology)

(11) j   (a - || d0(z) ¡)dp(z) z% j \\f0(z) 1 dp(z)

for each seN.ln fact, (11) implies

j (a - 1 d0(z) \\)dp(z) g j ||/0(z) || dp(z)

and the desired conclusion follows from Proposition 1 below.

Let seN, s ^ 1 and define

I/o =  Ti,

i/i = rl5-, u, = tu

^0'-l)s+l   —   M»'">   ^(J-l)s+s— *j,

and the corresponding functions d0,--,d(r_1)s+s and/0,"-,/(r_1)s+s (see the para-

graph on notations and terminology). Let je{l,---,r}; we then have for í = 0

(12) T°/=/=d0+/0

and for 1 ̂  t ^ s

(13) ijf-r;( (l)sdq) + i rj-"(d(,_1)s+u) + /0._1)s+í.
\    «=0        / u = l
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Formula (12) is obvious. Formula (13) follows easily from the definition of the

operators U0, Uit—, l/(r_1)s+s,from formula (8) and conditions (10). In fact

(we write A = 0 if t = 1 and A = {v | 1 < v £ t} if t >1):

U-l)s + <

Tjf =      Z     ^(u-ijs+i.io^u-i + "o-i)s+t + /o'-i)s+«
u = l

O-Ds+1

=       2w     ^((j-i)s+(,u)"ii-i +   2- Lr((J-_1)s+,>(J-_1)s+„)a(j_1)s+u_1
u = l ue.4

+   "0-l)s+i +/(j'-l)s+r

The conditions (10) imply that  L/{0-_1)s+(iU) = T}  for all u such that l^u

áO-l)s + l;   if A*0 and   t>e¿   then   t/(a_1)s+i.0._1)s+tl) = T'^-».

We deduce then the formula (13).

Let us remark now that for n = 0

(14) ElJ/=i,+/o
r = 0

and for 1 ̂  n g s

n n n

(15) Z Ïj/Wo   + /o +  Z öa-i)s+4+ Z /0--1)s+4
t=0 4=1 8=1

O'-Ds + n-«

Z
9=0

Formula (14) is obvious. To prove (15) we shall reason by induction. For n = 1

Zt;       Z     ¿J.
f=l \ 4=0

To

we have from (12) and (13)

T°jf+ T)f=d0+f0 + du.1)s+1 + /0-1)s+1 + Tj[JÍ\)

and thus (15) is true for n — 1. Suppose now that (15) is valid for l,2,---,n (n < s);

we shall show that the formula holds also for n + 1. In fact, by (13)

T"j+1f= T)+\äQ + ... + d~(J_1)s) + T"jd(J_l)s+i + - + Tjaa.lu+H

+   "0"-l)s + «+l + /(j-l)s + n+l •

If we add Tj1"1"1/to (15) we deduce that formula (15) remains valid for n + 1.

Hence (15) is true for all ne{l,---,s}.

Now for each 1 ^ j ^ r and each 0 ^ n ^ s, let

A(j,n) = {z11| (T°j + ... + T-})f(z)/(n + 1) fl > a} n£,

Then fs = [J,,^, 0Ú„ÉS A(j,n). If n = 0, we have on A(j,0) (see (14))

« < I   Z T)f(z) I = ||/(z) || = || d0(z) || + ||/0(z) I ^ a + ||/0(z) ||
t = 0
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almost everywhere; if 1 1% n 1% s, we have on A(j,n) (see (15) and (2))

(n + l)a < ||   i T'jf(z) || g (n + l)a + \\f0(z) || +  ¿ ||/0-1)s+?(z) |
(=0 q=l

almost everywhere. Thus on Fs, Z^o)s+s||/«(z)|| >0 almost everywhere; hence

2^J01)sTS || dq(z) || = a (use (6)) and formula (11) follows then immediately from

(7). The proof of the theorem will then be completed if we prove the following

(see also [5]):

Proposition 1. Let g,h be two positive functions belonging to ¿£PR for some

1 ^ p < co, a a strictly positive number, A = {z|g(z) + h(z) > a} and YeS

such that AczY. Suppose that: (1.1) h(z) = 0 if z $A; (1.2) a — g is integrable

on Y and

^(a-g(z))dp(z)S^h(z)dp(z).

(16) ap(Y) ̂  J\s(z) + h(z))dp(z) < co.

Then

From (1.2) and (1.1) we deduce (h is obviously integrable since A has finite

measure)

f (a - g(z))dp(z) g f h(z)dp(z).
Jy Jy

Hence

(17) jjig(z) + h(z)-a)dp(z)^0.

Now let 0 < b< a and B = {z | g(z) + h(z) > b}. Clearly Y-BczY- A. For

z e B we have a — (g(z) + h(z)) ^ a — b and for z £ A we have a—(g(z) + h(z)) ^ 0.

It follows that

(a - b)p(Y- B)ú\     (a- (g(z) + h(z))dp(z) ̂  Í     (a-(g(z) + h(z))dp(z).
Jy-b Jy-a

The last integral is finite since on Y — A, a — (g + h) = a — g and since  (by

(1.2)) a — g is integrable on Y — A. Thus p(Y — B) is finite. Since p(B) is ob-

viously finite, we deduce that p(Y) is finite, and (16) follows immediately from

(17).
From Theorem 1 we deduce the following two consequences:

Corollary 1.   Let Te9. For each feY and each a > 0 define

E*(a) = {z | sup ||(r0 + T1 + - + T")f(z)/(n + 1) || > a}.
neN

Then

ap(E*(á))ú f      \\f(z) || dp(z)< oo.
Je* (A)
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Corollary 1 follows from Theorem 1 if we take r = 1, T0 = I, Tx = T and

£ = E*(a).

Corollary 2. Let (T¡)]e^.rj be a decreasing sequence of projections be-

longing to 3). For each fe 'f and each a > 0 define

H*(a) - {z | sup( ||/(z) ||, || TJ(z) ||, -, fl Tr/(z) || ) > a}
Then

ap(H*(ä))^\        |/(z)||a>(z)<co.

It is clear that (T,)je{01j rj (where T0 = /) satisfies the conditions (9)and

(10) and that Gf(a) tz H}(a). We now have H*f(a) = Gf(a) u Gx U ••• U Gr where

Gj = {z| I T}/(z) || > a} for all ;e{l,•••,?•}. For eachje{\, —,r] we have, almost

everywhere on Gj,

lim ||(/+ T)+- + Tttj)f(z) ||/(n + l)= lim \\f(z) + nTjf(z)\\/(n +1)= ¡7}/(z)| >a;
neJV n 6 JV

hence (except for a set of measure zero) G¡ c G*(a). Thus Corollary 2 is an im-

mediate consequence of Theorem 1.

Corollary 1 gives the classical maximal ergodic theorem (see [2; 39; 22; 20;

13; 14; 5; 6]). From Corollary 1 and the Theorem of the Appendix we deduce

the corresponding pointwise ergodic theorem:

Corollary 3. Let Te3> and suppose that the space E is reflexive. There

is then a projection Tme3> such that, for eachfef, the sequence

((To+ri+... + n/(2)/(n + 1))i)eN

converges almost everywhere to Taof(z).

Corollary 2 gives in particular a maximal theorem for martingales (see [30;

37; 10; 11; 31]). Using Corollary 2 and the Theorem of the Appendix we deduce

the following:

Corollary 4. Let (T„)neN be a decreasing sequence of projections belonging

to S> and suppose that the space E is reflexive. There is then a projection Txe3

such that, for each fe 'f, the sequence

(Tnf(z))nsN

converges almost everywhere to ^/(z).

The Theorem of the Appendix can be used here, since (T„)neN is obviously a

system of almost invariant integrals (with respect to the semi-group spanned by

/ and by the family (T„)neJV) in SE and every space L\, 1 ^ p < co (see also [27]).

In particular Corollary 4 contains (when the space £ is reflexive) the point-

wise convergence theorem concerning the (abstract) decreasing martingale (see

[11 ; 15 ; 31 ; 7; 36]). However, if for each n e N the operator T„ is the conditional
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expectation with respect to lFn, where (&„)n e N is a decreasing sequence of tribes

contained in ê, then the conclusion of Corollary 4 remains valid without suppos-

ing £ reflexive; in fact it is enough to remark that, by Corollary 4, (T„f(z))MeN

converges almost everywhere for each simple function fe ífE, to apply Corollary

2, and (see the Appendix) to use the Banach theorem (see also [7 ; 36]).

Remarks. (1) We use Corollary 2 to show that, for each/e Y, sup„ eiV|| fn/(z)||

is finite almost everywhere. This is obvious if feáfE. ' If fe áCE, with

1 < p < co, we remark that (for each reN*) we have

ap(H*(a)) z% f       || f(z) I dp(z) ̂  ¡fl^H^a))11"'
J H*(a)

where 1/p + l/p' = 1. We deduce then that ap(H*f(a))Up z% \\f\\p and hence that

p(H*(a)) S \\f\\p/a". (2) It is easy to see that Theorem 1 remains also valid for

an "infinite sequence of operators."

Corollary 5. Let (Tn)neN be an increasing sequence of projections belonging

to 9 and suppose that the space E is reflexive. There is then a projection Txe9

such that, for eachfeY, the sequence

(TJ(z))neN

converges almost everywhere to Tœf(z).

Using Corollary 2 (see also the Remark (1) above) we deduce that for each

feY, sup„ , N || TJ(z) || is finite almost everywhere.

Since the space LE is reflexive (see [34] or [24]) it follows (use [1] of Eber-

lein's ergodic theorem(5)) that the sequence (T„)neN convegres strongly, in

L\, to a projection Tx. Obviously TnTx = TKTn = T„ for each neN. Let

X= \J„eNTn(L2E) and Y= (I - TJ(L2E); then X + Yis dense in L2.

Let now fe X + Y; then /= ü + v with üe X and ve Y and hence, for each

neN, TJ= T„u + Tnv. If ü belongs to TP(L2E) then T„u = Tpü for n ^ p; on the

other hand, for each neN, T„v = T„Tmv = 0. Hence (Tnf(z))„£N converges al-

most everywhere to a limit for each fe X + Y. Using the Banach theorem (see

the Appendix) we deduce that (Tnf(z))nsN converges almost everywhere for each

fe L\. Now SE is contained and dense in every LE, 1 ^ q < co ; using once more

the Banach theorem we deduce that (Tnf(z))neN converges, almost everywhere,

for every feY.

By an argument used in the proof of the Theorem in the Appendix we see that

(the restriction to SE of) Tx belongs to 9 and that for each fe Y, Txf is equal

almost everywhere to the limit of (T„f(z))nsN.

Corollary 5 contains (when the space £ is reflexive) a pointwise convergence

theorem concerning the (abstract) increasing martingale. However if for each

neN the operator T„ is the conditional expectation with respect to S„, where

(5) We apply Eberlein's ergodic theorem to the decreasing sequence of projections (/— T„)nsn.
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(On e ¡v is an increasing sequence of tribes contained in S then the conclusion of

Corollary 5 remains valid without supposing £ reflexive (see the discussion

following Corollary 4 above).

Under the hypotheses of Corollary 5 for each/e JS?|, 1 < p < oo, the sequence

(TJ)neS converges to Txf in ¿£PE (use the fact that LE is reflexive and [1] or

Eberlein's ergodic theorem); moreover if ^i(Z) is finite, then for each/e jS?¿ the

sequence (T„f)nsN converges to Tœf in ¿?E. These results remain valid without

supposing £ reflexive in the case when the operators (T„)n£N axe the conditional

expectations corresponding to an increasing sequence of tribes contained in S.

2. Another maximal theorem. Theorem 2 below gives again as immediate

consequences a maximal ergodic theorem and a maximal theorem for martingales.

Although the proofs of Theorem 1 and Theorem 2 are based on the same idea

(see also [5 ; 6]), the proof of Theorem 2 is perhaps shorter. We wish to remark

however that Theorem 1 gives (at least in certain cases) sharper direct estimates.

Let (T„)neN be a sequence of operators belonging to 3; we suppose below

that T0 = L Let now (anJ)„ eN,je{o,..-,»} De a matrix of numbers such that | aa\ ^ B

for all neN and je {0,--.,n}.

For every jeN, ieN such that j ^ i we shall define (see the paragraph on

notations and terminology) an operator T(J ;). We write T(Jl) = T¡ if j = i. Suppose

now that j > i and that T(j_1 0 has been defined ; we write then T(j¡i) = TUJ)TU_ t ().

Consider now the condition

(18) »  Z    Z au}TUtM œg C    ¿|f(
II   ¡ = 1    J=¡ I ¡ = 1

for each n¡tl and gi,---,g„e^E (for each ie{l,---,n}, \\g¡\\ is the mapping

For each neN define

T<"> =   Z anJTim.
1=0

We may now state and prove the :

Theorem 2. Ler (T}), (anJ) and (T(n)) be as above and suppose that con-

dition (18) is satisfied. For eachfe'V and each a > 0 deTrne

K*(a) = (z | sup|| Twf(z) || > (C + B)a).

Then for each set F eê verifying (except for sets of measure zero) the relations

Gf(a) <=F<= Gf(a) U K*s(a) we have

J>ap(F)^        f(z)   dp(z)<œ.
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Let/e Y and a > 0. For each neN define

A(n) ={z 11| T^f(z) [| >(C + B)a};

obviously |J„ ,NA(n) = K*f(a).

We have (see the paragraph on notations and terminology)

T(0)/= a00d0 + a00f0

and hence

(C + £)a<£a + |a00| ||/0(z)||

almost everywhere on ,4(0); hence ||/0(z) || # 0 almost everywhere on ,4(0). For

n e N, n = 1 we have (we write T(J ;) =0 if i > j £ï 1)

T<">/ =   2 aniTUfi)f=aMf+ 2 a„,rai)/

n j n n

=   2 a„; 2 T(Jii)di_1  +   2 a,,//,- +  2 aB/j
j=i      ¡=i j=o y=o

n n n n

=   22 a^ji^i +  2 anjdj +  2 anj/y
1 = 1 ¡ = i i = o j=o

n n nu

=   22 a^Ty^Jj-, +  2 anj-d; +  2 ani/y
1 = 1    7=1' i=0 / = o

and hence, from (18) and (2)

(C + B)a<Ca+Ba+ 2 |anj-| ||//z) ||
7=0

almost everywhere on A(n); hence 2"=0 \\fj(z) || ^ 0 almost everywhere on A(n).

Since neN was arbitrary we obtain 2; e N ||/,(z) || ̂ 0 almost everywhere on K*(a).

From (2) and (4) wededuce that ||/0(z)|| 5- 0 on Gf(a); hence 2jei¥|//z) || ^0

almost everywhere on the set F.

For each n e N let

F„={z|   ¿J/,(z) 1*0} OF.

Remark that the sequence (£„)„ eJV is increasing and that (except for sets of measure

zero) F = (J„eNF„.By (6) we have, for each neN, 2j"=01|d}(z)| = a almost

everywhere on F„; by (7) we have

(19) f  (a - || d0(z) ||) dp(z) < f  ¡f0(z) || dp(z)
J Fn Jz

for each neN. But (19) implies
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j (a - || d0(z) \\)dp(z) Í j \\f0(z) || dp(z)

and the desired conclusion follows from Proposition 1 above.

Corollary 6. (6.1) If(Tj)jeN(T0 = I) is a decreasing sequence of projections

belonging to 3, anj = 0 if j ¥= n and ann = 1, then condition (18) is verified with

C = 1. (6.2) // Tj = Te 3 for all / # 0 and anJ = l/(n + 1) for all (n,j), then

condition (18) is verified with C = 1.

Part II

1. An almost everywhere convergence theorem for increasing sequences of projec-

tions. Throughout this section we shall suppose the Banach space E reflexive.

Let H <=. LE; we shall say that the set H is uniformly integrable if:

(20) for every e > 0 there is a set Z(e) e S of finite measure such that

i        ¡f(z)\\dp(z)^E      for all fe H ;
J CZ(e)

(21) for each e > 0 there is ne > 0 such that A e S and p(A) ^ ne imply

f \\f(z) I dp(z) ̂  g       for all/eÄ.

With this definition we may state the following:

Proposition 2. If H c LE is a uniformly integrable bounded set then H is

weakly relatively compact.

We shall not prove here this result. It can be obtained using for instance, the

method of proof of Theorem 1 of [18, pp. 400-403].

We shall now state and prove :

Theorem 3. Let (Tn)„ eN be an increasing sequence of projections belonging

to 3 and (f„)„sN a sequence of functions belonging to ir. Suppose that

T„/„+i = f„for all neN. (3.1) Assume that fneSeEfor all neN, supneJV||/„ \x

is finite and the set of elements of the sequence (f„)„sn is uniformly integrable.

Then the sequence (f„(z))„eN converges almost everywhere to a function

fm e£CE andTnfx=f„ for aline N. (3.2) Assume that, for some \<p<co,fne&E

for all neN and supneN\\f„ ||p is finite. Then the sequence (fn(z))„eN conver-

ges almost everywhere to a function fœe£PE and T„fœ = /„for all neN.

Remark (as it can be easily seen by induction) that for all neN and m > n

we have

(22) Tjm = fn.

Assume now that/,, e JifE for all neN, sup„ e n||/„|| x is finite and the set of ele-

ments of the sequence (/„)„ e N is uniformly integrable. By Proposition 2, the
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sequence (fn)„eN has a weak cluster point (for the topology o(LE,(LE)'))

fx e LE. Since each Tn, neN, is also weakly continuous (see [4, p. 103]) we deduce

frcm (22) T„fx =/„ for all neN. It follows then from Corollary 5, that the

sequence (f„(z))„ eJV converges almost everywhere to the function (we use here

the notations of Corollary 5) Txfx e 3?\. (Since the elements of the sequence

(f„)„ e n are uniformly integrable it follows that (/„)„ e N converges also in £CE to

Txfx; whence T00/00=/00.)

Assume that, for some 1 <p< oo,fneJí?E for all neN and sup„ eJV||/n||p is

finite. Since the space LE is reflexive (see [34] or [24]), the sequence (/„)„ e N has a

weak cluster point (for the topology o(L"E, (L£)')) faoeLpE. As above we deduce

T„foo = fn f°r all neN. It follows then from Corollary 5 that the sequence

(fn(z))n e n converges almost everywhere to the function (we use here the notations

of Corollary 5) Tmfxe£?pE. (Using [1] or Eberlein's ergodic theorem (see foot-

note 5) we deduce that (/„)„ eJV converges in &pE to Txfx; whence Tnf„=/„.)

Remarks. (1) As it was remarked in the proof of Theorem 3, the sequence

(fn)„ e ¡v converges to /„ also in LE or LE respectively. (2) In a particular form

Theorem 3 is obtained in [7; 36].

2. Abstract measures on product spaces. Let X be a set ÍF a tribe of parts of X

and Xx = Y\s<eNXs, where Xs = X for all seN. For each neN, denote by

X" the product set JJs e {o.---,n)Xs an(l by &*tne trlDe spanned by the set of all

parts of X" of the form JT, s {0 ... „}AS where As e F for all s e {0,..., n}.

For each neN denote by pr{0 ... „^ the projection of Xe0 onto X".

It is obvious that, for every neN,

PtJo,-,n)   (*") = {prfo'.-v.}   (B)\BeF"}

is a tribe (namely the tribe spanned by the parts of Xœ of the form HseN^s»

where Ase^ ii se{0,---,n} and A,= X if s $ {0, •••,«}).

Let ^ = U» e n Pr{o!---,n} (^"); taen ■? is a clan ( = boolean algebra). Denote

by ^T the tribe spanned by eë.

Consider now a mapping (¡> of <€ into R having the following two properties

(for each n e N we denote by <¡>n the restriction of (p to the tribe pr^ • • ,„} (-F")) '■

(23) 0 = <p(A) = MX™) < co       for all A e V;

(24) For each neN, (¡>n is countably additive.

We shall introduce now the following definition:

(25) We say that the object {X,^} has the property (CAE) if every mapping

4>ofS into R having the properties (23) and (24) admits a countably additive

extension to 2T.

We shall use below the following:

Proposition 3.   If X is a Polish space ( = metrizable, complete for some
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distance compatible with its topology and of countable type) and !F the tribe

of Bor el parts of X then {X,^} has the property (CAE).

For a proof of this known result see for instance [23; 31] (see also [3; 28]).

Let now £ be a Banach space. Let \// be a mapping of ^ into £ (as above we

denote with ij/„ the restriction of \j/ to the tribe pr^... „} (J5""), for each neN).

Consider now the following conditions concerning the mapping \¡i:

(26) i¡/„ is countably additive, for each neN;

(27) i//„ has finite total variation o„, for each neN (see the Remark below);

(28) sup„ , Nvn(A) is finite for each A e ^ (here the supremum is taken over

all n e N such that A e px(0\.. „} (J5"")).

Remark. If ^ is a tribe and h a mapping of % into a Banach space £ then the

total variation o of n is defined (on °U) as follows: for Ae°U we write

X)(A) = sup Z || h(A¡) ||, where the supremum is taken over all finite families (A¡)

of disjoint parts of A belonging to °U. We say that h has finite total variation

if x>(A) is finite for all A e ,JU. If h is countably additive and has finite total varia-

tion then rj is also countably additive.

We shall prove now:

Proposition 4. Suppose that {X,^} has the property (CAE) and let\¡/ be

a mapping of & into a Banach space E having the properties (26), (27) and

(28). Then \¡j has a (unique) countably additive extension to 3" and this exten-

sion has finite total variation.

Let A eft. There is then p e N such that A e pxj0l... pj (^rp); hence o„04) is de-

fined for all n~2ip. Remark that the sequence (v„(A))n^p is increasing and bounded

and define

(29) o°°(/l) =      lim    vn(A).
n -* oo ,n ^ p

It is obvious that rj°°(y4) does not depend on p and that u00^) S; || \¡)(A) ||. Also

v„° ( =the restriction of n00 to the tribe px^1... „} (&")) is a countably additive

mapping [19, p. 170].

Since d00^00) is finite o°° has, by (CAE), a (unique) countably additive exten-

sion to 9~\ we shall denote this extension by the same letter(6). Define now

a semi-distance d on F by the equations d(A,B) = v°°((A — B) U(B — A)) for

all A, BeT; for the topology defined by this semi-distance 'S is dense in ST

[19, p. 56-57]. For Ae¥, Be<g we have \\i¡/(A) - i¡/(B)\\ ̂\\\¡/(A - A r\B)\\

+ \\¡i(B-Ar\ B) I ^ ^(A -AnB) + o"(B -AnB) = d(A,B). It follows that
if/ can be extended by continuity to 3~; denote its extension to £T by the same

letter. The extension \¡/ verifies again the relation

(6) Once   ü°° is extended to &", the final conclusion of the proposition can be easily ob-

tained (use for instance [32] or [33]). However, for completeness we give a direct argument below-
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(30) I KA)-^(B) || úd(A,B)

for all A e F, B eF. In particular (let B = 0 in formula (30)) \\\¡/(A) || = v^A)

for all 4 e F. Thus to complete the proof of our proposition it is enough to show

that \¡i is additive on F. Since the "intersection" and the "complement" are

continuous functions [19, p. 168] and since ^ is dense in if, this follows from

the additivity of the restriction of \p to c€. Hence the proposition is completely

proved.

3. The almost everywhere convergence theorem for abstract increasing martin-

gales. Let £ be a Banach space of countable type, dual of a Banach space. We shall

take below X = £ and J5" = the tribe of all Borel parts of £. For each neN,

we shall denote by pr„ the projection of X°° onto X„ = £. With these notations

we may state and prove the following:

Proposition 5. Let a be a positive measure on F of finite total mass. Sup-

pose that: (5.1) prne3?1E(XCD, 3T, a.) for each neN; (5.2) (pr„)neJV is an increas-

ing martingale with respect to the sequence of tribes (pr\¿t-..t„} (^*)),eJf;

(5.3) sup„ 6jv [| pr„j| ! is finite. Then (pr„)„e/v converges almost everywhere.

For each neN and Aepr{¿\.. „j (¡Fn) define

i>n(A) =     pr„(x)d<x(x);
'A

then \j/n is a countably additive mapping of pr{"0|...i„}(.^~',)into£. It is obvious

that i/í„ has finite total variation n„ and that n„f4) = supm eJV||prm ||j for all

Aepr{0l...¡n](^").

For every neN and Aepr{0>*..^(F") we have

^n+i(A)=    prn+1(x)da(x) =     prn(x)da.(x) = i¡/„(A)
Ja Ja

(we use (5.2)); whence i¡/n+1 is an extension of \¡i„ to pr {01...in+i}(Fr''+1). We

may now define a mapping \¡/ of *€ into £ as follows : for ylepr^ f.. jn}(^") we

write i^(^) = ty„(Ä). It is easy to verify that \¡/„ is the restriction of \¡/ to

pT{öx... „}(F"), for each neiV, and that i¡/ has the properties (26), (27), (28). By

Propositions 3 and 4 \¡/ has a (unique) countably additive extension to IF (we

shall denote this extension by the same letter); moreover this extension has

finite total variation, o°°.

Define y — a + o00; for each neN denote by yn, a„ the restrictions of y, a to

Pr{"o!--Mit (^") respectively.

Denote by c the density of \¡i with respect to y : \¡/ = c • y ; for every neN denote

by c„ the density of \¡/„ with respect to y„ : \¡in = c„ • y„ (see [24]). By Corollary 5

(see also the remarks following the proof of Corollary 5) (c„)„ eJV converges almost
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everywhere (with respect to y) as well as in ^'E(X'r',J',y) to a limit cm; whence

we may suppose that c(x) = cœ(x) for each x e X °°.

Denote by a the density of a with respect to y : a = a • y ; for every neN deno te

by a„ the density of a„ with respect to y„ : a„ = a„ • y„. As above we see that

(a„(x))neN converges almost everywhere (with respect toy) to a(x). Remark here

that if B = {x | o(x) = 0} then a(B) = fsa(x)dy(x) = 0; whence a(x) > 0 almost

everywhere with respect to a.

For every neN and Aepr^*..._„}(&") we have

W^) = J   Pr„(x)da„(x) = J   pxn(x)an(x)dy„(x);

we deduce pr„(x)a„(x) = c„(x) almost everywhere with respect to y„ and hence

almost everywhere with respect to y ; since y ^ a we deduce that pr„(x)a„(x) = c„(x)

almost everywhere with respect to a. Since (c„(x))neiV converges almost every-

where, with respect to a, and (a„(x))„ E N converges almost everywhere, with res-

pect to a, to a strictly positive function a(x), it follows that (pr„(x))n , N converges

almost everywhere, with respect to a. Hence the proposition is completely proved.

Remark. The assumption that the Banach space £ is of countable type,

dual of a Banach space was used in fact in the proof of Proposition 5 only to en-

able us to apply Proposition 4 and the following result : Every countably additive

mapping of 3~ into £ with finite total variation has a Bochner measurable density

with respect to its total variation.

We return now to our measure space (Z, S, p) introduced in the section

on notations and terminology. We denote by £ a Banach space which is either

reflexive or of countable type and dual of a Banach space. Let (<?„)„ eN be an

increasing sequence of tribes contained in S and let S'œ be the tribe spanned

by their union.

Theorem 4. Let (f„)neN be a sequence of functions belonging to S£E. Suppose

that: (4.1) (/„)BeJV is a martingale with respect to (S„)neN; (4.2) sup„ eW||/„||i

is finite. Then there is a function fxe^E (measurable with respect to <fœ)

such that (f„(z))nsN converges almost everywhere to fm(z).

Let us remark that the measurability of /„ with respect to ê'„ is a consequence

of the almost everywhere convergence of the sequence (fn(z))„ s N. The relation

f^eJ^l follows from (4.2) and Fatou's lemma. Also it is obviously enough to

prove the theorem when £ is of countable type and dual of a Banach space.

Finally we may suppose that p(Z) is finite.

Consider the mapping g : z -► (f„(z))n e„ of Z into Xœ (we take X = £

and & = the tribe of all Borel parts of £). Since/„ is, for each neN, Bochner

measurable it follows that g~l(A)eS for all AeT. For every .4e<?" write

a.(A) = p(g~l(A)); then a is a well denned positive measure on 3" of finite tota

mass.
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Let now neN. For each x' e £' (= the dual of £) the function x' ° pr„ is ob-

viously measurable with respect to pr^ö * •■ ,„} (^") ', since £ is of countable type

we deduce that pr„ is Bochner measurable with respect to pr/o!... >n} (•^")-

On the other hand || pr„ j| °g(z) = || px„°g(z) || = ||/„(z)|| for every zeZ; whence

prneJS?¿(XM,^,a) and

f ||pr„(x)||da(x)=|   \\fn(z)\\dp(z).
Jx Jz

Since neN was arbitrary it follows that the sequence (pr„)„ eN verifies the con-

ditions (5.1) and (5.3) of Proposition 5.

We shall show now that (5.2) is also verified. Let neN and Aepx(¿^ ,„}(^").

Then(7) g-\A)eS„ and

pr„+1(x)da(x) = prn+l(g(z))dp(z) = fn+l(z)dp(z)
Ja •'g'í(.A) Je-'U)

fn(z)dp(z)=\        px„(g(z))dp(z) =      pr„(x)da(x);
Jg-'iA) Jg'HA) Ja

whence (px„)neN is a martingale with respect to the sequence (?%,*■••,„} G^"))„ ejv

of tribes.

By Proposition 5 there is a set J^e^ such that a(Jr) = 0 and (pr„(x))„ eJV

converges for x <£ ̂T. It follows that p(g~1(Jr)) = 0 and that (f„(z))neN con-

verges for each z $ g~ 1(^V). Hence the theorem is completely proved.

Remarks. (1) In [7; 36] it is proved, under the hypothesis that £ is reflexive,

that the sequence (f„(z))„ eN oí Theorem 4 converges weakly almost everywhere ;

in [12] it is proved that the sequence (fn(z))„€N converges weakly almost every-

where if, for almost every zeZ, the set {fn(z) | n e N} is weakly relatively com-

pact. The proof of Theorem 4 is suggested by an argument in [26, p. 72-73].

(2) Theorem 4 together with the counter-example constructed in [7] show that

the Banach space L^([0,1], J?, p) (here 3? is the tribe of Lebesgue measurable

parts of [0,1] and p is the Lebesgue measure on áC) is not isomorphic, as a

Banach space, to a dual of a Banach space (see [17; 9]). (3) Let us also remark

that Theorem 4 holds whenever the Banach space £ is such that Proposition 5

is true.

Appendix

Let Jfcz3 be a set of operators and let Jf* be the smallest semi-group (for

multiplication) containing Jf and L Let A be a countable directed set and (Tx)x e A

a family of operators belonging to 3. We have then the following theorem,

analogous for instance to a result in [38]. For completeness, we sketch here a

proof based on the results in [16].

Theorem. Suppose that: (1) £ is reflexive; (2) (Tx)xeA is a system of almost

invariant integrals for Jf* in the normed space SE as well as in some space

(7) We may suppose that, for each ne N,f„ is measurable with respect to £„ c S.
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L| with 1 < p < oo; (3) sup^ eA\\ Txf(z) || is finite almost everywhere, for each

feY. There exists then a projection Tœe9 such that, for each feY, the

family (Txf(z))xeA converges almost everywhere to Tœf(z).

Denote by X the closed vector space of all fe L| such that S/= / for all

SeJif* and by Y the closed vector space spanned by \^jSe #*(! — S)(L"E). Since

LE is reflexive (see [34] or [24]) it follows that LE is the (topological) direct sum

of X and Y (see [8]). Now let Y0 be the vector space spanned by

[Jsex-* (I — S)(SE); obviously Z = X + Y0 is dense in LE.

Let feZ; then f=ü + v with üeX and veY0. Then for each oceA,

Tj= Txii + Txv = ù + Txv. Now v= 2/,= iCi(/ - St)w¡ for some constants

c¡, •••,c„, Sx, ■•■,S„e3t* and w1,---,wneSE. Since (fJae^ is a system of almost

invariant integrals for Jf*, in the normed space SE, it follows that (Txf(z))xeA

converges almost everywhere. Using the Banach theorem (see the remark below)

we deduce that (Txf(z))xeA converges almost everywhere for each /eL/. Now

SE is contained and dense in every ££, 1 _ q < co ; using once more the Banach

theorem we deduce that (Txf(z))xeA converges, almost everywhere, for every

feY.
For each feSE denote by f^/the (almost everywhere) limit of (Txf(z))XBA.

It is easy to see that Tœe9 (use Fatou's lemma) and that for each fe Y, Txf

is equal (almost everywhere) to the limit of (Txf(z))x eA. By direct computation,

or using [16], we see that Tx is a projection.

Remarks. (1) It is obvious that if /e JSP/ the family (Txf)xeA converges to

TJinS£"E. If u(Z) is finite, we deduce that for each /eJSff, 1 =a<co,

(Txf)x eA converges to Tœfin J5ff. (2) The Banach theorem, in the form needed

here, may be proved exactly as in [14, pp. 332-334].
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