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1. Introduction. A well-known theorem, essentially due to Cantor, states

that every topological space X has a "perfect kernel" K; K is the largest dense-in-

itself subset of X, K is closed, and X — K is scattered. Analogues of this situation

occur frequently. Recently the author had occasion to use a "non-locally-separable

kernel" [9, Lemma 7]; and further work on (nonseparable) Borel sets has led

to a need for further generalizations. Hence we here study a rather inclusive class

of kernel constructions^). The main result (Theorem 4 below) is essentially an

extension of the Cantor-Bendixson theorem ; roughly speaking, if X (for simpli-

city) is metric, the complement of its "non-locally-P kernel" is the union of a

countable family of closed sets, each locally P, and having other desirable proper-

ties^). We also obtain (Theorem 7) a useful criterion for this kernel to be empty.

The results are applied to give extensions of two well-known theorems: one, due

to Banach, about sets which are locally of first category, and the other, due to

Montgomery, about sets which are locally Borel. We also apply them to charac-

terize two classes of metric spaces: those which are both absolutely Gs and

absolutely Fa, and those of which every subspace is both absolutely Gô and ab-

solutely Fa. Other applications to the theory of Borel sets will be made in a sub-

sequent paper. Our main interest is in metric spaces, but most of the results are

formulated more generally since the proofs are no simpler in the metric case.

The author is indebted to the referee for several helpful suggestions.

Notation. Let P be a class (or "property", not necessarily topological) of

topological spaces. We shall assume throughout that P is "hereditary" in the

sense that if X e P then, for every closed subspace A of X, A e P. If every subspace

of (XeP) is also a member of P, we say that P is completely hereditary. For

example, P might be the class of all compact spaces, or of all absolutely Borel

metric spaces, or of all spaces of (covering) dimension ;£ n. Relevant examples
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(2) Not every kernel of importance is included, as for instance the "dimensional kernel"

(see [5, p. 186] and the beginning of §4 below). A more general class of kernels is described in

[4, pp. 164-166]. For a quite different method of kernel construction, see [3].

(3) The "classical" Cantor-Bendixson theorem has one further feature which cannot be

extended, namely that the perfect kernel of a separable metric space X can be obtained by

countably many operations, i.e., in the notation of §2 below, one can take a* to be countable.

This feature will persist when X has a countable base, but not in general (even if X is metric).
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of completely hereditary classes are : (1) all spaces of weight less than a given

cardinal; (2) all metric spaces of dimension :g n; (3) all subspaces of measure 0

of a fixed (complete) measure space. If si is any class of spaces or sets, we define

a completely hereditary class, denoted by (si), as follows: (si) = {X| X c A

for some Aesi).

A neighborhood of a point x in a space X is any set whose interior contains x.

A neighborhood in X is a neighborhood of some point of X. A space X is locally

P if each xeX has a neighborhood belonging to P. Clearly.

(1.1) If Pis completely hereditary, or if X is regular, and if X is locally P,

then each xe X has arbitrarily small neighborhoods belonging to P.

We say that X is nowhere locally P if no neighborhood in X belongs to P.

Thus, if P is completely hereditary, this is equivalent to requiring that no nonempty

open subset of X belongs to P.

In a metric space X, with metric p, U(x, S) denotes the neighborhood

{y\yeX,p(x,y)<ô},

where xeX and ô > 0.

2. Existence and elementary properties of kernels.

Theorem 1. For any (hereditary) class P, given any space X there exists a

closed subset K = K(P, X) of X such that (i) K is nowhere locally P, (ii) whenever

H is a closed subset of X which is nowhere locally P,H <= X.

Thus K(P, X) is the largest closed subset of X which is nowhere locally P; we

call it the "non-locally-P kernel of X(4).

Proof. Define transfinite sequences {Fx}, {Gx}, of subsets of X as follows:

Suppose Fp Gß defined for all ordinals ß < a. Then

(a) iia = O,Fx = X,Gx = 0;

(b) if a is a limit ordinal, Fx = f]{Fß \ ß < a}, Gx = 0 ;

(c) if a = y + 1, put Gx = set of all xeFy such that some neighborhood of x in

Fy belongs to P, and define Fx = Fy — Ga.

Clearly F0 => Fx => • • •, and Gx is open relative to Fy in case (c), so that Fx is closed

relative to Fr Thus in all cases Fx is closed in X. The decreasing transfinite se-

quence {Fx} must become ultimately constant; for some a* we thus have Fx,

= Fx.+1 = ••• = K, say(3). If some x e K has a neighborhood in K which belongs

to P, then x e Gx,+1 and therefore x£Fx,+1 = K, which is impossible, proving (i).

If H is closed and nowhere locally P, we show by transfinite induction that

H cz Fx. Assume this true for all ß < a. In cases (a) and (b) it trivially follows

that H <= Fx. In case (c), suppose xeHr\Gx; then x has a neighborhood U in Fy

such that U e P. Since H is a closed subset of Fy, U n H is a neighborhood of x

in H and belongs to P, contrary to our hypothesis on H. Thus H r\Gx = 0,

proving H er Fx. Hence H c Fx, = K.

(4) The proof which follows is essentially that in [4, p. 166], but is given in full as it is needed

for reference later.
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Corollary. If further P is completely hereditary, we may omit the require-

ment in (ii) that H be closed. (That is, K is now the largest nowhere locally P

subset of X.)

This is clear from the proof; alternatively, one easily sees that if if is nowhere

locally P (where P is completely hereditary) then so is H. The requirement of

complete hereditariness is essential for this corollary, as the following example

shows. Let X be the unit interval, P the class of all compact spaces; there is no

largest nowhere locally compact subset of X (as one sees by first observing that

both it and its complement would have to be dense).

We shall refer to the sets Fx, Gx constructed above (in the proof of Theorem 1)

as FX(P, X), GX(P, X). When the family P can be understood from the context,

we abbreviate them to Fa(X), GX(X), and abbreviate K(P, X) to K(X). The follo-

wing properties are then easily verified by transfinite induction.

(2.1) FX(X) is a closed subset of X, and Fx(Fß(X)) = Fß+x(X).

(2.2) If Y is a closed subset of X, FX(Y) c Y nFx(X).

(2.3) If P is completely hereditary and Y <=X, then Fx(Y) <= Y n FX(X).

(2.4) If either P is completely hereditary or X is regular, and if Y is an open

subset of X, then Fx(Y)=Yr>FX(X).

From these properties the next assertions follow immediately.

(2.5) K(X) is a closed subset of X.

(2.6) K(K(X)) = K(X).
(2.7) If Y is a closed subset of X,  K(X) = K( Y).

If P is completely hereditary, then

(2.T) K(X) Z3 K(Y) if X => Y.

(2.8) If Y is an open subset of X, K(Y) = Y nK(X) providing that either P

is completely hereditary or X is regular. In particular, K(X — K(X)) = 0.

The above properties of kernels are characteristic. We have :

Theorem 2. Suppose that a mapping K (of 2s in 2s), defined for all sub-

spaces X of a fixed space S, satisfies (2.5)-(2.8). Then there exists a hereditary

family P such that, for all X c S, K(X) = K(P, X). If further (2.7') is satisfied,

P may be taken to be completely hereditary.

Take P to be the family of all X <= S for which K(X) = 0 ; this is hereditary,

by (2.7). Write H(X) = K(P,X) for each X c S; we verify that H(X) = K(X).

If V = X - K(X), then V is open in X, and K(V) = 0 by (2.8); as H(X) is nowhere

locally P, we must have V n H(X) = 0, proving H(X) cz K(X). To prove equality

we have only to show that the closed subset K(X) of X is nowhere locally P.

If this is false, there exists A <= S whose interior U (in S) meets K(X) and which

is such that K(A nK(X)) = 0. A straightforward computation, using (2.8) and

(2.6), now shows that U O K(X) = K(U n K(X)) c K(A n K(X)) = 0, a contra-

diction. Finally, if (2.7) is strengthened to (2.7'), P is evidently completely here-

ditary.
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We mention three further easily verified properties which will be used later :

(2.9) If Y is a subspace of a space X, and if Q is any hereditary class of spaces,

then the class P = {E | E n Y e Q} is hereditary, and K(Q, Y) = Y n K(P, X).

(2.10) If si, SS are families of sets such that, for each A e si, A n X is a subset

of some ßef, then K((X), X) => K(f&), *)•

(2.11) If ja^ denotes the family {4nl \Aesi), then X((ja/),X) = K((six),X).

Remarks. On taking si - y' = family of all 1-point subsets of X, we see that

K((Sr°),X) is the ordinary "perfect kernel" of X. Thus, from (2.10), the perfect

kernel of X is the largest of the kernels K((£8), X) for which SB covers X.

Again, given any closed A <= X, let P = (X — A) = family of all subsets of

X — A ; clearly X(P, X) = .4 here, so that every closed subset of X arises as a

kernel for some completely hereditary class.

The analog of (2.8) for closed (instead of open) sets U would be false; in fact

it is false for ordinary perfect kernels. Moreover, when P is not required to be

completely hereditary, the requirement in (2.8) that X be regular cannot be

weakened to requiring X merely to be Hausdorff. This is shown by the following

example, based on a suggestion of the referee. Let X be a Hausdorff space with a

nonempty open subset Y such that no neighborhood in Y is closed in X; for

instance [la] provides such a space. Let P be the family of all closed subsets of X.

Then K(X) = 0, but K(Y)=YJ= YC\K(X). It would be interesting to know

whether regularity is needed for the special case K(X — K(X)) = 0 of (2.8).

The Tj axiom would not suffice, as the following example shows.

Let X = {(x, y) | either y S: 0 or y is irrational } c R2, and let

Vn = {(x,y)\x>n,y>0} (n = l,2,-).

Topologize X by taking a basis of neighborhoods of (x, v) to consist of all sets of

the form X n U(x, v) U V„, where U(x, y) is an ordinary plane neighborhood

of (x, y). Then X is a 7\ space, with topology coarser than the subspace-of-plane

topology. Let P be the family of all subsets E of X which intersect every line

x = constant in a set which is closed in the ordinary plane topology. One sees

without difficulty that P is hereditary, that K(P,X) is the subset of X where

y SO, and that K(X - K(P, X)) = X - K(P, X)^0.

Theorem 3. A necessary and sufficient condition that K(P, X) — 0 is that,

for each nonempty closed A cz X, there is some neighborhood in A belonging to P.

If K(P, X) # 0, the condition is violated when A = K(P, X). Conversely, if

K(P, X) = 0 and a closed set A violates the condition, then A a K(P, X) and so

A = 0.

Corollary. If P is completely hereditary, we may omit the requirement

that A be closed.

This is clear from the proof. Note, however, that if E c X has some neighbor-
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hood belonging to P, it does not now follow that E has the same property.

(Example : P = class of all countable sets, X = real line, E = set of rational

numbers.)

3. Paracompact spaces. It is convenient to introduce the following terminology.

If a subset £ of a space X is the intersection of an open subset of X with a closed

subset of X (or, equivalently, is the difference between two open, or two closed,

sets), E will be called an "FG set" (in X).

A family {Ex|Xe A} of subsets of X is discrete (in X) providing each xeX

has a neighborhood meeting Ex for at most one Xe A. Clearly, if {Ex} is discrete,

then so is {En}.

Lemma 1. If {.B^AeA} is a discrete system of FG subsets of a space X,

then [JEX is an FG set.

We have Ex = Fx(~\ Gx where Fx is closed and Gx is open. Put Ax =

\J{Eß | p * X}, F = (J Ex, G = [j{Gx - Ax) ; because {Ex} is discrete, Ax and F

are closed, while of course G is open. It is easily verified that \^JEX = F n G.

Theorem 4. Let Xbea hereditarily paracompact space, and P any hereditary

class(5). Then X — K(P,X) is expressible as the union of a countable family

stf = {An\ n = 1,2,-"} of FG sets, each of which is locally P, in such a way

thatK((rf),X) = K(P,X).

We first prove a special case of the theorem as a lemma.

Lemma 2.   Theorem 4 is true when K(P, X) = 0.

In this case, the proof of Theorem 1 shows that Fa(X) = 0 for some ordinal a.

The proof will be by transfinite induction over a ; thus we may assume that the

lemma is valid for all hereditarily paracompact spaces X' for which Fß(X') = 0

for some ß < a.

First suppose that a is a limit ordinal. Then f] {Fß(X) | ß < a} = FX(X) = 0.

The open covering {X — Fß(X)\ß < a} of X has a c-discrete refinement

{FnA|/l6AB, n = 1,2,■•■}, the system {FnJl|AeA„} being, for each n, a discrete

system of open sets(6). Each VnX is disjoint from some Fß(X), and from (2.4)

we have Fß(VnX) = VnX O Fß(X) = 0. From the induction hypothesis we can write

V„x = UdnX where sinX = {^4nAm| m = 1,2,•••}, each AnXm being FG and lo-

cally P (in V„x and therefore also in X), and where K((jtfnX), VnX) = 0. Put

Anm = U^"^>" I ̂  e ^"} ' fr°m Lemma 1 this is an FG set, and it is clearly locally P.

We have only to verify that, on taking ¿á — {Anm\ n,m = 1,2,•■•}, we have

K((stf),X) = 0. If if is any nonempty closed set, if meets some V„x; because

(5) That is, every subspace (and not merely every closed subspace) of X is paracompact.

Every perfectly normal paracompact space is hereditarily paracompact [2, p. 643].

(6) See [9, p. 979].
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K((sinX), VnX) — 0, there is some neighborhood in H n V„x which is a subset of

some AnXm c A„mesi; and the result follows from Theorem 3.

The case a = 0 being trivial, we may now assume a = ß + 1. Then each

x e Fß(X) has an open neighborhood in Fß(X) whose closure belongs to P. The

resulting covering of Fß(X) has a tr-discrete refinement {U„x} by sets UnÀ open in

Fß(X), and therefore FG in X; for fixed n, the sets U„x (say 2 e A„) form a system

discrete in Fß(X) and therefore also in X. Put B„ = [J {i/n^ | A e A„} ; this is closed

and locally P, and the system SB = {B„\ n = 1,2,---} covers Fß(X). Put W =

X-Fß(X);by (2.4), Fß(W)=W nFß(X) = 0, so by the induction hypothesis

we have W = (Ji? where T = {C„ | n = 1,2, •••}, each C„ being FG in IF (and so

in X) and locally P, and where K(C¡f), W) = 0. Put si = SB U<^; we have only

to verify that K((si), X) = 0. Again we show that each closed nonempty subset

H oí X has some neighborhood (in H) contained in some A e si. If H c Ff(X),

then H meets some U„x, and U„x n í/ is a neighborhood in H contained in

J3„ e J1. In the remaining case H meets W; and, because K(C^), IF) = 0, ií n If

has a neighborhood contained in some C„, and this provides a neighborhood in H

contained in Cn e si.

To prove Theorem 4 from the lemma, put Y= X — K(P, X). Then Y is open ;

hence, from (2.8), K(P, Y) = 0. The lemma gives Y=[Jsi, where ¿a/ =

{-4„| n = 1,2,---}, each /!„ being FG (in Y, and so in X) and locally P, and where

K((.flO, Y) = 0. Now Yr\K((si),X) = K((si),Y) = 0, from (2.8) again; hence

K((si), X) c K(P, X). On the other hand, K(P, X) is closed and no neighborhood

in it can be a subset of any A„; thus K(P, X) <= K((si), X), and the theorem is

proved.

If we assume a little more about X we can require more of the sets An, as the

next theorem shows.

Theorem 4'. If X is paracompact and perfectly normal, and P is any

hereditary class, then X — K(P,X) is expressible as the union of a countable

family si = {A„\ n = 1,2,•■•} of locally P sets, each of which is closed and

expressible as the union of a discrete system of closed sets belonging to P, and

where K((si), X) = K(P, X).

To deduce Theorem 4', let the FG sets produced by Theorem 4 be denoted by

B„, n = 1,2, •■•; thus B„ = C„ O G„ where C„ is closed and G„ is open. Using the

perfect normality of X, we write G„ = [J{Fnm [ m = 1,2, •••}, where F„m is closed

and interior to F„im+i. Now C„ C\F„m is closed and locally P; by paracompact-

ness (using a «r-discrete refinement of a suitable covering) we obtain

CnnFnm = \J{AnmpX\leA„mp,p = l,2,-},

where {AnmpX | X e A„mp} is a discrete system (in Cn O F„m and so in X) of closed

sets, each belonging to P. We  put  A„mp = \J{AnmpX\ÀeA„mp},
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^ = {A„mp\ n,m,p= 1,2,-},

and have only to verify that K((stf), X) = K(P, X). As before, on writing Y =

X-K(P,X), it will be enough to prove that K((¿tf),Y)=0. If if is a nonempty

subset of Y, then by Theorem 4 there is some neighborhood H nU (U being

open) such that if n U cz B„. Choose y e H O U; then yeCnC\ Fnm for some m ;

a neighborhood of y in if O U will be contained in C„ C\Fn m+1, and a smaller

neighborhood in if will thus be contained in some A„mpX cz A„mpesé, as required

(Theorem 3, Corollary).

There is an important special case in which the requirement that K((sf), X)

= K(P, X) is fulfilled automatically:

Theorem 5. If X is a complete metric space and stf = {An\n = 1,2, ••■} is any

countable family of closed locally P sets whose union contains X— K(P, X),

thenK((s¿),X) = K(P,X).

Write K(P,X) = K,K((sf),X) = L; trivially K cz L. If there is a point

x e L — K, it has an open neighborhood U such that D C\ K = 0. Then (with the

notation C1(Y) for Y) we have C\(U nL) <= \^JA„, so by Baire's theorem there

exists a nonempty set W O C\(U n L), where If is open, such that W n C1(C7 n L)

<= 4„ for some n. Then 17 n t/ n L is a neighborhood in L which is a subset of

A,„ contradicting L = K((j/,) X).

As the proof shows, the assumption (in Theorem 5) that X is complete metric

could be weakened to the assumption that every nonempty closed subset of X

is of the second category (in itself). (This is a genuine weakening ; see [5, p. 423]

for an example.) This weaker property can in fact be characterized in terms of

kernels, as follows.

Theorem 6. If X is any perfectly normal space, the following statements

are equivalent:

(i)   Every nonempty closed subset of X is of the second category (in itself).

(ii)  Every nonempty Gô subset of X is of the second category (in itself).

(iii) Whenever s/ is a countable family of closed sets whose union is X,

K((O,X) = 0.

The implication (ii)=>(i) is trivial; and (i)=>(iii) by the same argument as

that used to prove Theorem 5. To prove (iii) => (ii), let if be a nonempty G5 set,

and suppose if <= (J An (n = 1,2, •••) where each A„ is closed (in X) and nowhere

dense in H. We also have X — if = \^JB„ (n = 1,2, •••) where B„ is closed in X.

Let ¿á be the family of all sets A„ and B„; clearly K((s#), X) => if 5¿ 0.

Remark. The spaces of which every nonempty Fa subset is of second category

will be considered later (Theorem 11).

Theorem 7. If X is a complete metric space (or, more generally, is perfectly
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normal and paracompact and satisfies condition (i) of Theorem 6), then K(P, X)

= 0 if and only if X is the union of a countable family of closed locally P sets.

From Theorems 4, 5 and 6.

4. The theorems of Banach and Montgomery. There are a number of rather

obvious applications of Theorem 4, for instance the result (obtained by taking

P = class of metrizable spaces of covering dimension £j n) that every metric

space X can be decomposed into a closed set K, in which every neighborhood

has dimension > n, and the complementary open set, which has dimension _: n.

Thus K is similar to, but not identical with, the "dimensional kernel" of X. The

situation here is somewhat trivial, because here K = Fx. Another illustration is

the Cantor-Bendixson theorem expressing every separable metric space as the

union of a perfect (i.e., closed and dense-in-itself) set K and a countable scattered

set (obtained by taking P=(£r°)y the class of 1-point sets). An application which

lies deeper is the following extension (Theorem 8 below) of a well-known theorem

of Banach [1], which we first derive (in slightly generalized form) as a lemma.

Lemma 3. If X is a subset of a hereditarily paracompact space Y, and each

xeX has a neighborhood in X which is of first category in Y, then X is of first

category in Y.

The hypothesis gives, for each x e X, an open set U(x) in Y such that U(x) O X

is of first category in Y. Let G = [J {U(x) | x e X} ; G is open and paracompact,

so the covering {17(x)} of G has a cr-discrete open refinement

{VnX\XeA„, » = 1,2,-},

the system {V„x\Xe A„} being, for each n, discrete in G. Each set X C\ VnX is of

first category in Y, so expressible as U{A¿m I m = 1>2, •••}, where no Ä„Xm (closure

in Y) contains any neighborhood in Y. Write Bnm = (J {AnXm | X e A„}. It is easily

verified that Bnm also contains no neighborhood in Y (else it would have to contain

a neighborhood in G); and X = JJ{Bnm| n,m = 1,2, •••} of first category in Y.

Corollary. // Y is hereditarily paracompact and X is the set of points of Y

which have first category neighborhoods in Y, then X is of first category in Y.

Theorem 8. Let si be any family of subsets of a hereditarily paracompact

space Y; let \^)si = X. A necessary and sufficient condition that X be of first

category in Y is that K((si), X) and each A e si be of first category in Y.

The necessity is trivial. To prove sufficiency, apply Theorem 4 to X, with

P = (si); we obtain X - K((si), X) ={J{B„ | n = 1,2, ■••} where each point of

each Bn has a neighborhood in Bn which is contained in some Aesi, and which is

therefore of first category in Y. By Lemma 3, Bn is of first category in Y; and X,

as the union of the countably many first category sets B„ and K((si), X), is also

of first category in Y.
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Remark. Theorem 8 includes Lemma 3 as a special case; for when X is the

union of a family sé of sets, each open in X, we clearly have K((sé), X) = 0.

Corollary. A necessary and sufficient condition that a subset X of a heredi-

tarily paracompact space Y be of first category in Y, is that, for each nonempty

(relatively) closed subset A of X, there exists a neighborhood in A which is of

first category in Y.

Again only the sufficiency needs proof. Let P = family of all first category

subsets of Y. By Theorem 3, the condition implies that K(P, X) = 0. Hence, by

Theorem 4, X = \Jsé where sé = {An\ n = 1,2,•••}, and where K((sé),X) = 0

and each A„ is locally of first category in Y. By Lemma 3, A„ is of first category

in  Y; hence, by Theorem 8, so is X.

As another application of the theory we give a similar extension of a well-known

theorem of Montgomery [6,!p. 527]. Again the first step is to derive a slight exten-

sion of Montgomery's theorem as a lemma.

Lemma 4. If X is a subset of a perfectly normal paracompact space Y, and

each xeX has a neighborhood in X which is a Borel subset of Y of additive

class £ (multiplicative class £, ~¿. 1), then X is a Borel subset of Y of {the same

classC).

(Note that ¿; must be independent of x e X here.)

Assume that the lemma is valid for all smaller £ than the given one, and suppose

first that <ü > 1. There are two cases to consider:

(i) Additive class £. Each x e X has an open neighborhood U(x) in Y such

that U(x) n X is of (additive) class £. Without loss we may replace Y by

[J {U(x) | x e X} ; let {Vx | X e A} be a locally finite open refinement of the covering

{U(x) | x e X} of Y. Each Vx O X is then of additive class £ in Y, and so is ex-

pressible as (J {FXn | n = 1,2, • • •} where FXn is of multiplicative class n„, 0 < n„ < Ç,

and where FXI cz FX2 c •••. By repeating the sets FXn, if necessary, we may arrange

that n„ is independent of X. Put if„ = (J {Fx„ | X e A} ; from the local finiteness of

{Vx}, H„ is locally of multiplicative class n„ in Y. Thus, by the hypothesis of in-

duction, if„ is of multiplicative class n„ in Y, and X = {jHn, of additive class £,

as required.

(ii) Multiplicative class £. We define U(x), Vx as before and now have VX(~\X

= (~}{GX„\ n = 1,2,-"} where Vx => GX1 => GX2 => •■• and GXn is of additive class

n„ in Y, where 0 < n„ < Ç, and where we may suppose nn independent of X, as

before. Put H„ = (J {GA„ | X e A} ; if „ is locally, and therefore globally, of additive

class J7„. Now the fact that {Vx} is locally finite gives X = Ç]Hn, of multiplicative

class ¿;.

(7) Here f denotes a countable ordinal. For the notation and elementary properties of Borel

sets, see [5]. Note that, if rj < f, each Borel set of (additive or multiplicative) class r¡ is of both

additive and multiplicative class I (because of perfect normality).
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All that remains is to check the (trivial) case of additive class 0 (i.e., open sets)

and the cases { = 1, where one sees that the above arguments still apply with slight

modifications. In fact, for multiplicative class 1 (the G¿ case) the assumptions

on Yean be weakened from perfect normality and paracompactness ; it suffices that

Y be hereditarily pointwise paracompact.

Theorem 9. Let Ç be a countable ordinal, let si be any family of subsets of

a perfectly normal paracompact space Y, such that each Aesi is Borel of

additive class Ç (multiplicative class Ç > 0) in Y, and let {^Jsi = X. A necessary

and sufficient condition for X to be Borel of additive class t, (multiplicative

class £ > 0) in Y is that K((si),X) be Borel in Y of this class.

Again, Theorem 9 contains the lemma as a special case, for when the sets

A e si are open in X, K((si),X) = 0.

Only the sufficiency needs proof; and, the case of additive class 0 being trivial,

we assume ¿j > 0 throughout. For additive class £,, the theorem follows from

Theorem 4 by an argument very similar to the proof of Theorem 8 ; unfortunately

the case of multiplicative class £ does not seem to follow in this way. Hence we

give a direct argument, which applies to both cases, and which is similar to the

proof of Theorem 4(8).

It is enough to prove that X - K((si), X) is Borel of the required class. We

replace X by X - K((si),X) and si by {A - K((si),X)\Aesi}; in view of

(2.8) and (2.11) this means that we may without loss assume K((si),X) = 0. Thus

we have FX(X) = 0 for some ordinal a. We use transfinite induction over a, keeping

£ fixed, and assume the theorem known for all spaces X' for which Fß(X') = 0

for some ß < a..

First suppose that a is a limit ordinal. Then Ç\ {Fß(X) | ß < a} = FX(X) = 0, so

that each xeX has an open neighborhood U(x) in X which is disjoint from

Fß(X) for some ß<a.. From (2.4), Fß(U(x)) = 0. Also U(x) = \J{AnU(x)\Aesi},

where each A n U(x) is Borel of class í in Y (because it is open in A and £ > 0).

From the induction hypothesis it follows that U(x) is Borel of class f in Y. By

Lemma 4, so is X.

The case a = 0 being trivial (X = 0), the only remaining case is a = ß + 1.

Here Fß+1(X) = 0, so Fß(X) = Gß+1(X), and hence each xeFß(X) has an open

neighborhood V(x) in X such that V(x) n Fß(X) <= some ^(x) e si. Because

V(x) is open and Fß(X) is closed (in X), V(x) n Fß(X) n A(x)—that is, V(x)

n Fß(X)—is Borel of class £ in Y. Hence again Lemma 4 shows that Fß(X) is

Borel of class £ in Y. Write W = X - Fß(X); by (2.4), we have Fß(W) = 0. Since

W = \J{W nA\ Aesi}, where W n A is Borel of class £ in Y (for W is open

in X), the induction hypothesis shows that W is Borel of class Ç in Y. Hence so is

WuFß(X)=X.

(8) It would be possible to obtain a common generalization of Theorems 4 and 9, but its

formulation would apparently have to be very unwieldy.
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Corollary. A necessary and sufficient condition that a subspace X of a per-

fectly normal paracompact space Y be Borel of additive class Ç (multiplicative

class £ > 0) is that, for each nonempty (relatively) closed subset A of X, there

exists a neighborhood in A which is Borel of additive class £ (multiplicative

class £, > 0) in Y.

The deduction is essentially the same as that of the corollary to Theorem 8.

We remark that in Theorem 9, its corollary, and Lemma 4, the assertions fail

for multiplicative class 0 (closed sets). Of course, closed sets can be regarded as

being both of additive and multiplicative class 1 (i.e., both F„ and Gs).

5. Fa-zni-G5 sets. As is well known, a (not necessarily separable) metric space

Xis an absolute Gs (i.e., Gô in every metrizable space containing X) if and only if

X can be given a complete metric. It was shown in [10] that X is an absolute Fa

if and only if it is cr-locally-compact (i.e., expressible as the union of a countable

family of locally compact sets)(9). Thus every locally compact space is both an

absolute Fa and an absolute Gö. We shall now characterize these "absolute F„

and G¿" sets, showing that they are not far from being locally compact.

Theorem 10. The following statements about a metric space X are equivalent.

(1) X is both an absolute F„ and an absolute Gô.

(2) The non-locally-compact kernel of X is empty.

(3) Each nonempty closed subset of X is locally compact at at least one point.

(4) X is expressible as the union of a countable family sé = {A„ | n = 1,2, •••}

of closed locally compact sets A„ such that Ax cz A2cz ■•• and K((sé), X) = 0.

(5) X is expressible as the union of an arbitrary family sé of sets, each of

which is both an absolute Fa and an absolute Gô, such that K((sé), X) = 0.

First we show (1)=>(4). Assume (1); then X, as an absolute Fa, is [10] ex-

pressible as U{Bp| p = 1,2, •••} where Bp is locally compact and hence open in

Bp. Thus Bp = U(Cpg| q = 1,2, •••} where Cpq is closed and therefore also locally

compact. The union of two closed locally compact sets is locally compact; hence

A„ = \J{Cpq\ p + q z% n} is closed and locally compact, and clearly At cz A2 cz ■■■

and [jAn = X. X, as an absolute Gs, may be supposed complete; hence, by

Theorem 6, K((sé), X) = 0.

Next, (1) => (2). Assume (1); then (4) follows, and X is the union of a countable

family of closed locally-P sets, where P is the class of all compact spaces. As

before, X may be supposed complete; hence, by Theorem 7, K(P, X) = 0.

The equivalence of (2) and (3) follows from Theorem 3.

(9) The referee points out that it follows that a metric space X will be F„ in every Hausdorff

space in which it is imbedded, if and only if it is a separable absolute Fa, i.e., is ff-compact. It is

easy to see that an arbitrary T\ space is Fa in every T\ space in which it is imbedded, if and only

if it is countable. The empty set is the only T¡ space (i = 1, 2, 3, 4) which is G¡ in every T¡ space

in which it is embedded.
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(2) => (4). By Theorem 5, X is the union of a countable family

á? = {B„| B-l,2,.«}

of closed locally compact sets such that K((3§), X) = K(P, X) = 0. Let

An = [j{Bm\mztn}; property (2.10) gives K((sé), X) cz K(lß), X) = 0, and (4)

follows.

Trivially (4) => (5). Finally, (5) => (1) by Theorem 9. These implications together

establish the theorem.

Finally we characterize those (metric) spaces all of whose subsets are of the

kind described in Theorem 10; they turn out to coincide with a very well-known

class of spaces (the scattered spaces) and also to coincide with the spaces all of

whose subsets are of the kind described in Theorem 6.

Theorem 11. The following statements about a metric space X are équi-

valent10).

(1) Every subset of X is absolutely both Fa and G¡.

(2) X is an absolute Gô and every subset of X is an absolute Borel set.

(3) X is an absolute Gs and is a-discrete.

(4) X is the union of a countable family sé ofclosed sets A„ (n = 1,2, •••) such

that A^cz A2cz ■■•, An is discrete, and K((sé), X) = 0.

(5) X is the union of a family sé of sets such that, for all A ese, each subset

of A is absolutely both F„ and Gs, and such that K((sé), X) = 0.

(6) The perfect kernel of X is empty.

(7) X contains no subset homeomorphic to the space of rational numbers.

(8) Every nonempty subset of X has an isolated point.

(9) Every nonempty closed subset of X has an isolated point.

(10) Every nonempty subset of X is of the second category (in itself).

(11) Every nonempty F„ subset of X is of the second category (in itself).

Proof. Trivially (1) => (2). In proving (2) => (6), we may assume X complete;

if its perfect kernel K is not 0, a well-known theorem of W. H. Young shows

that K has a subset homeomorphic to the Cantor set ; this contains a non-Borel

set, contradicting (2). Next, (6)=>(4); for, if (6) holds, Theorem 4' enables us

to write X = {jBn (n = l,2,•••) where B„ is closed and discrete and where

K((3S),X) = 0, @ denoting {Bn \ n = 1,2, •••}. We take A„ = Bj U ••• UB„ and

use (2.10). To prove (4) => (3), we observe that if (4) holds then, by the corollary

to Theorem 9, X is an absolute G6. If (3) holds, every subset of X is a-discrete

and therefore [10] an absolute F„. Its complement is likewise F„ in X; so every

subset of X is Gô in the absolute G6 set X, and is therefore itself absolutely Gd.

Thus (3) => (1), and the first four statements are equivalent to (6).

(10) See [7] for other equivalent properties. The equivalence of (6), (7), (8), (9) is, of course,

well known.
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The implication (4) => (5) is trivial ; and (5) => (1) by Theorem 9, in view of (2.7').

The equivalence of (6), (8) and (9) is a well-known special case of Theorem 3

and its corollary. Obviously (6) => (7) ; conversely, if the perfect kernel K of

X is not empty, one easily constructs (by a straightforward iteration) a countable

dense-in-itself subset Ä of X; and R is homeomorphic to the space of rational

numbers^1). Thus (7)=>(6); and the first nine statements are equivalent.

Trivially (8) => (10) => (11); we complete the proof of the theorem by proving

(11) => (6). Suppose the perfect kernel K of X is not empty. For each n (= 1,2,—)

let A„ be a maximal subset of K each two (distinct) points of which have distance

_ 1/n. Then A„ is discrete and closed (in K and so in X). Let B =\^JA„; B is

dense in K, and clearly B is a nonempty Fa subset of X. We show that B is not

of second category (in itself) by showing that no A„ contains any neighborhood

in B. In fact, given x e An and e > 0, then (because K is dense-in-itself) there

exists y e K such that 0 < p (x, y) < min (s, 1/n), and there exists zeB so

close to v that 0 < p(x, z) < min (e, 1/n) also. Thus z$An, since otherwise two

distinct points of A„ have distance < 1/n. But zeBnU(x,e), proving that

A„ contains no neighborhood in B. This completes the proof of the theorem.

We remark that if we alter (11) by replacing "Fff" by "Gd", we obtain the

spaces of Theorem 6, which may be "pathological". It can be shown that if we

delete from (2) and (3) the requirement that X be an absolute G5, they remain

equivalent; the author hopes to publish the proof elsewhere.
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