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Letp = {p„} be a sequence of real numbers. Then pis said to be totally monotone

if and only if all of the successive forward differences are nonnegative; i.e.,

A"pk ̂  Ofor k, n = 0,1,2, •••, where Apk = pk- pk+x, A"pk = A"~1pk - A""lftk+l.

There are several equivalent necessary and sufficient conditions for a sequence

to be totally monotone. These are listed in §1. However, these conditions are

often quite difficult to apply to a given sequence or class of sequences.

It is the purpose of this paper to establish a sufficient condition for a sequence

to be totally monotone, and show that, for a fairly large class of sequences, the

condition is more easily applied than those listed in §1.

1. Some conditions for total monotonicity. The first phrasing is merely the

continuous analogue to that for sequences, and is referred to in [11, p. 145] as a

completely monotonie function. However, a function satisfying the condition

(F) stated below will be called a totally monotone function.

Let/(t) be an analytic function of i > 0 such that/(«) = p„.

Then the sequence p is totally monotone if and only if

(F) (-l)n/(n)(0 = 0

for i>0, « = 0,1,2,..., and/(0) 1/(0+).

Hausdorff [6] established the following condition.

Let p denote a sequence of real numbers. Then p is totally

monotone if and only if

(M) p„ =   f «"¿¿<f>,
"O

where tj)(u) is a nonnegative, nondecreasing function of

bounded variation over the interval [0,1] with r/>(0+)

= (f)(0), and, for 0 < « < 1, <p(u) = [(¡>(u + 0) + <p(u - 0)]/2.

The function tp is usually normalized so that (p(V) = 1, and (¡> is called the mass

function corresponding to the sequence p.
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H. S. Wall [10] in 1940 proved the following continued fraction condition

for total monotonicity.

A sequence p is totally monotone if and only if there exist real numbers g0,

gi, g2, ■■■ with 0 g ;, ¿ 1, n - 0,1,2, —, such that

Po - pxx + p2x2 - p3x3 +-g0/\ 4- gyX/l + (1 - gy)g2x/l

+ (1 - £2)S3*/1 4- -,

it being agreed that the continued fraction shall terminate with the first identically

vanishing quotient.

In 1921 Hausdorff [5] established the following sufficient condition for total

monotonicity.

Let f(t) be an analytic function for  t > 0. Write f(t) as

(L) e'w, where a(t) = log f(t). If (- l)V(n) (r) = 0   for t ^ 0   and

<t(0) ̂  a(0 4-), then (- l)"/(n) (t) ^ 0.

Rephrasing the above condition leads to the following result, which is listed,

since it will be referred to explicitly later.

Lemma 1. Let p be a nonnegative sequence such [that Apn = pna„, where

a = {a„} is a totally monotone sequence, n = 0,1,2, —• Then p is totally

monotone.

Equivalently, let p(t) ^ 0 be an analytic function for t > 0 and such that

(— l)p'(t) = p(t)f(t). Iff(t) is a totally monotone function, then p(t) is a totally

monotone function.

2. Some sets of totally monotone sequences. It is the purpose of this section

to lay the groundwork for the sufficient condition for total monotonicity that is

to be utilized in the next section.

Let T denote the set of totally monotone sequences, L = {p | p e T and

A"logpfc = 0 for b = 1,2,3,— ; fc = 0,1,2, —}, and Q = {p\peT and
W^+i}eT}.

In defining L and Q it is the purpose to have them be subsets of T. It is clear

that L is the set of sequences which correspond to the functions satisfying con-

dition (L) of §1. The following properties of L and Q are easily established.

(i)  Log is nonempty.

(ii) L and Q are commutative semigroups with respect to sequence multipli-

cation.

Property (ii) is obvious, and (i) is easy to show, since the intersection contains

the Cesàro and Holder generating sequences of all positive orders.

The set T consists of two kinds of sequences : those of the form {c, 0,0, • • •}, c S; 0

and those with no  zero  entries. Let N = {p\p = {c,0,0, ■■■},c ̂ 0}. Define a
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family of quotient operations on  T~JV = {p|peT and p $ N} as follows :

qt(ßk) = toJPk+i>"><ln(ßk) = qA<ln-i(ßk))- Let Qn denote the set of totally

monotone sequences whose first n "quotients" are not less than 1; i.e., peQ„

implies qrÍPk) = L fe = 0,1,2 •••; r = l, —,n.  From the definition  of the Q„,

T = 61 = 62 =»•••• Let Q„=f)?.tQi.
(iii)    Qy is a proper subset of T.

(iv) The operator q„ is commutative; i.e., q„iqmipk)) = qmiq„ipk)), m, n

= 0,1,2,-.

(v)     ßi = ß2.

(vi)    Q is a proper subset of ß3.

(vii)   L = Qœ.

(viii) peQx if and only if q„ipk) is totally monotone for each n.

(ix)    Leg.

(x) Let p be a sequence such that {Pk/Pk+i} is totally monotone. Then

peT if and only if pk^pk+1.

(xi)    There exists an integer m > 2 such that Qm + 1 is a proper subset of Qm.

Properties (iii) and (iv) are obvious. To prove (v), first note that Qy = T~N.

Then, from [10, (5.11)], we have iApk/pk) < iA2pk Apk) which can be rewritten

in the form pkpk+2 — ipk+1)2 > 0; i.e., q2ipk)> 1. Then property (v) follows,

since Q2czQy.

For (vi), consider the sequence pk = 1 + e~\ It is easy to show that

q3ipk) ^ 1. However, if we let/(i) = (1 + e"')/(l + e-'"1), then (- l)/'"(i) < 0

for 0 < t < - 1 + log(2 + 73), and thus p$Q.

To prove (vii), note that Alogp* = logipk/pk+1) = logq^) and, by induction,

that A"+1logpt = logq„ipk). Therefore An+1logpk ^ 0 if and only if q„ipk) ^ 1.

Proof of (viii). Let peQ^. Then Aq„ipk) = qnipk+1)[qn+yipk) - 1] ^ 0, and,

in general,

Ara„(pt) ='Z   (r T ') [Ar-'->qnipk+j+y)\[Aj{qn + yipk) - 1}] ¡> 0.

Conversely, qnipk) totally monotone for each n implies Aq„ipk) S: 0. But

Aqn(pfc) = g„(pfc + 1)[a„ + 1(pt)-1]. Therefore qB + 1(pk)^l; i.e., peô„+i for

each n.

Property (ix) follows directly from (vii) and (viii), (x) is straightforward, and,

for (xi), if we assume the contrary, we arrive at a contradiction of (ix).

For the purpose of this paper, properties (ix) and (x) are the most fruitful.

Property (x) gives a sufficient condition for a sequence to be totally monotone,

and (ix) says that this condition is sufficient for a class of sequences at least as

large as those satisfying condition (L).

In applying this condition we shall use the procedure outlined in the following

theorem.
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Theorem 1. Let p = {p„} be a real positive sequence, f(t) a function of

class Cœ for i>0 such that f(k) = pk, k-0,1,2, —, g(t) =f(t)/f(t + 1),
h(t) = (-V)g'(t)/g(t). Iflimt-ioog(t)^l,g(t)>Oandh(f) is totally monotone

for t > 0, then p is a totally monotone sequence.

To prove the theorem, since g(t) > 0 and h(t) is totally monotone, then g(t)

will be totally monotone by Lemma 1. Hence f(t) j in i. Since lim(_œ g(t) ^ 1,

then f(t)/f(t + 1) è I- Therefore, by property (x), p is totally monotone.

Before proceeding to the applications we prove a lemma, which will be used

repeatedly.

Lemma 2. Let p„ = (« + a + ct)(n + b)/(n + a) (n + b + a), a, b > 0. Then p

is totally monotone if and only if

(A) a 1 0 and b ^ a

or

(B) a < 0, b < a and b + a > 0.

Proof of sufficiency. Let/(i) = (t + a + a)(i + b)/(t + a)(t + b + a). Then, if

*a = r_ n f'® c     1    i _J_!_L
/(»)       i + ai+b + a       i + a + a       i + b'

the mass function coi responding to g(t) is

^ ï      ""       "fc+I « fl+a     «* . .    ^.

</)(«) = — + -;-r—, 0 < « < 1.
rv a       b + a        a + ab ~    ~

For 0 < « < 1,

¿7«

= «0_1 (l-u")(l -«6_fl).

Examination of conditions (A) and (B) shows that either condition implies

d<t>/du 1 0 for 0 < « < 1. Therefore, by condition (M) of §1, g(t) is totally

monotone, and/(i) is totally monotone by Lemma 1.

Proof of necessity. Assume that (A) and (B) are not satisfied. Then we have

the following possibilities to consider:

(a) b < a and a ^ 0,

(b) a < 0 and b^a,

(c) a < 0 and b + a ^ 0, or

(d) b<a and b + agO.

It is clear that/(i) cannot be totally monotone if there exists a value of i > 0

such that g(t) < 0. We may rewrite g(t) in the form
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_ a(fe-a)(2f 4- b + a + a)

8{) ~ (t + a)(t + b + a)(t + a + a)(t + b) '

By inspection, each of the conditions (a) through (d) makes g(t) negative for

some positive t.

3. Applications. Let x denote a sequence, A an infinite matrix for which

A„(x) = Hka„kxk is defined. A is said to be regular if x„ -+ / implies An(x) -» /,

/finite. For two regular matrices A and B, B is said to be totally stronger than A

(written B t.s. A) if, for each sequence x for which A„(x) -* I, then B„(x) -> /

( | /1 = oo). If A and B are regular matrices for which A„(x) -> / implies

B„(x) -> /, / finite, but there exists a sequence x such .4„(x) -> 4- oo but B„(x) +->4- oo,

then we say that B is not totally stronger than A (written B n.t.s. A). The definition

of not totally stronger is also meant to include the case where A„(x) -> — 00 and

B„(x)+* — 00. In all cases where one is determining the total relative strength

of two matrices A and B, one must first have the condition that B is stronger than

A; i.e., A„(x) -* I implies B„(x) -> / for / finite.

If Hß and Hk denote the Hausdorff matrices generated by the sequences p and X,

and if X„ # 0 for any n, then the statement Hß t.s. Hx reduces to showing that the

sequence {p„/Xn} is totally monotone and that p0 = X0.

Let Hß and Hx be two Hausdorff matrices which are equivalent; that is, Hß is

stronger than Hx and Hx is stronger than Hß. Then, to show that //„ n.t.s. Hx it is

sufficient to show that {p„/X„} is not totally monotone.

For the other terminology used in this section, the reader should consult [1;3;

or 7], and for the basic properties of Hausdorff matrices, see [4, XI].

Let H", Fx, C" denote the methods generated, respectively, by the sequences

(n 4- 1)~", a"(n 4- a)~a and F(a + a)F(n + a)/[r(a)r(n 4- a 4- a)], for a > 0,

a > - 1. H'is the Holder method of order a, F*a is the Gamma method of order

a, and C"for a = 1, reduces to the Cesàro method of order a.

H* and C\ have been compared totally in [1], and H", Cy, Fx have been com-

pared totally in [7]. It is the purpose of this section to examine the total relative

strength of the C* method, and then compare it with the H" and C* methods.

Theorem 2. (i)   For ß > a, a + a > 0,   Cßa t.s. Ca.

(ii)    For a <0, a+ a>0,   a < b, Cxbt.s. Cxa.

(iii)    For a > 0, 0 < a < b, C" t.s. C°b.

Proof of (i). Let

r(a 4- ß)F(n + a)   F(a)F(n + a + a)

ßn " r(fl)r(fi 4- a + ß)F(a + a)F(n 4- a) '

Then

pn   _(n + a + ß)

pn+i     (n4-a + oc) '

and p is totally monotone since ß > a, a + a > 0.
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Parts (ii) and (iii) are proved using Lemma 2.

Theorem 3. (i)   For - 1 < a, ß < 0, a + a + ß > 0, CxaCß t.s. Ca+ß.

(ii)     For - 1 < a,  p\ aß < 0, a + min (a,/?) > 0,  Cx+ßt.s. CxCß.

(iii)   For a, ß, a > 0, C'Cß t.s. Cx+ß.

Proof of (ii). Let

_ r(a + a + ß)Tjn + a)       r(a)r(n + a + a)       r(a)r(n + a + ß)

Mn ~ r(a)r(n + a + a + /?)   '   T(a + a)r(n + a)       T(a + B)T{n + a) '

Then

pn       (n + a + a + ß) in + a)

pn+l     in + a + a)(n + a + ß) '

and p is totally monotone by Lemma 2. (i) and (iii) are proved similarly. Theorem

3 generalizes [2, Theorem 1].

Theorem 4.   (i)   For - 1 < a < 0, a + a > 0, T"a t.s. Cx.

(ii)     For 0 < a < 1, a > 0, C* i.s. T£.

(iii)   For a > 1, a > 0, r£ r.s. C".

Proof of (i) and (ii). Let

a'        Tin + a + a)T(a)
Pn in + a)*   T(a + a)r(n + a) '

p„ in + a + 1 Y1 /    n 4- a/» + a + 1 \* /    n 4- a    \

\   n + a    / \ n + a + a /

Using the procedure outlined in Theorem 1, let

it + a + 1)*
git) =

(í + a + a)(i + a)0[-i

Then

h{t) =   - S'it) =_1_     £-1_a_
v g(i) i + a + a       t + a       t + a + i'

and n(i) has as mass function

u°+x      (a-l)ua     aua+1 n^    ^.
0(u)   = —— + i-'--—r , 0 ^ u z% I

a+ a a a + 1

For 0 < u < 1,

* =«fl+a-1+(a-lK_1-aufl= ua_1ni(u),
du

where m(u) = ua + (a - 1) - au. dm/du = aiu"-1 - 1).   If   - 1 < a < 0   or
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a > 1, dm/du < 0. Therefore  m(u) { in  u.  But m(l) = 0. Hence <f> is totally

monotone, and the results follow from Theorem 1.

For 0 < a < 1 we consider l/p„. Using the same procedure as above we can

show that the corresponding mass function is totally monotone and therefore

{l/p„} is totally monotone by Theorem 1.

Theorem 5.

(i)     For - 1 < a < 0, b > 1, C£ t.s. H".

(ii)    For 0<a< 1, b> 1, C*b t.s. H".

(iii)    For a> 1, 0<a < 1, H" t.s. C".

Let

r(b + a)r(« + a)      («+l)a

Let

g(t)

^  ~~    r(b)T(n + b + a) 1

(t+l)a(i+b + a)

(t + 2)«(t + a)    '

»0)-<-i)£g>-  «  +   l
g(t)       t + 2      t + a       i + 1       t + b + a'

a"2     «" ub+*  n^,    ^,.
<Ku)  = -=- +-ecu - -r-—, O^u^L

2        a b + a

For 0 < « < 1,

-^ = au-f«*-1-«-«"^-1
¿¿u

= ua_1 [au1_a(u - 1) + 1 -«"]

= « a-l [(l-«*)-a«1_ai(l-«)].

Proof of (i). Since a < 0, clearly dip /du > 0 and «(r) is a totally monotone

mass function.

Proof of (ii). Since 0 < a < 1, 1 > a«1-" > 0. Since b > 1 and 0 < u < 1,

1-«6>1 — «>0. Therefore 1 — ub > a«1-a!(l — w) and thus d<p/du > 0 for

0<w < 1.

Proof of (iii). From the construction of h(t) it follows that the corresponding

«-function for l/p„ is simply — h(t).

Now consider the corresponding mass function — (/>(«) for a > 1, with b

replaced by a.

d(~4>)      ..„     ...     ..«-i,
¿¿u

= a(l-«)-«a_1 (!-«").

Since a > 1, 0 < « < 1, a > u"-1 > 0. Since 0<a<l, 1 - « > 1 - «"> 0.

Therefore a(l — «) > «a_1(l — a") and — 4>(u) is the mass function of a totally

monotone function.
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Combining the results of Theorems 2, 4, and 5 with the statements R(i), (ii),

and (iii) of [9, p. 397], we have the following list.

Let 0 < a, a' < 1, b > 1. Then,

for 0 < a z% (a + l)/2 <|1 + a zi a' < 1,

r; t.s. c6at.s. Hat.s. tx. t.s. cxa. t.s. c¡ t.s. r*t.s. cx;

for 0 < a g (a + l)/2 < 1,

(R) Cxa t.s. Txa t.s. C"y t.s. C6at.s. H't.s. T£;

and, for a > 1, 2fc S: a + 1,

r^t.s. //"t.s. c;t.s. cits. r*t.s. cxb.

4. The exponential method. Basu in [3] denotes by J" the Hausdorff matrix

corresponding to the generating sequence exp(— an112), a > 0. He shows that

the total strength of Jx increases with a and compares Jx totally with the Holder

method Hx. It is the purpose of this section to consider similar problems for the

more general method Jx, where Jx is the Hausdorff method with generating

sequence exp(— an"), a>0, 0 < a < 1.

From [4, pp. 269-270] we have the results that Jx is totally regular and the proof

of the following.

Theorem 6. Let 0 < a < 1. Then, for 0 < a < ß, J*a t.s. Jß.

Theorem 7. For a>0, 0 < a < d < 1, Jxn.t.s. J¿and Jfn.t.s. Jxa.

Proof. Let p(t) = exp [a(id - t°)]. Since 0 < a < d < 1, td - t" < 0 for

0 < / < 1 and td — f > 0 for t > 1. Therefore, neither pit) nor its reciprocal is

totally monotone.

Theorem 8. Let 0 < a < 1, a,ß,c> 0. Then, for ß ^ aT(l - a)a0"1(ce)"fl,

Proof.   Let

and oit) = log pit). Then

ir-t-cre""'"

(- 1K(0 = ^
Í + c

If one shows that (— 1)<t'(0 is a totally monotone function for t ^ 1, then

p(i) will be totally monotone for i^l; i.e., A"p(fc) ̂  0 for /c = l,2, ■••;

n = 0,1,2, •-.. By [8, Theorem 8, p. 523] it then follows that p(n) is a totally

monotone sequence.

For

(- l)<r'(i + 1) =—%■-~-, (i>0)
v      '   v it + l)i-°      t + 1 + c *•

the corresponding mass function is
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au
l + c

where

For 0 < « < 1,

tp'(u) =

and tj)'(u) will be nonnegative if

<p(u) = aßx(u) - ——,
l + c

*"> - wh¡r I" (,os W »'■

aß (log I)""

0 < u < 1,

F(l - a)
au ,

(* I)" «r(i - a)
aß

The minimum value of the left-hand side of the above inequality, for 0 < u < 1,

occurs at u = e~ulc). Hence </>'(") will be nonnegative, provided

(ale)' «r(i - a) .

i.e.,

0 =

"    -       a)3

ar(l-a)a''-1

(ce)tt

Theorem 4 (ii) of [3, p. 305] is a special case] of the above theorem with

c = 1, a = 1/2.

Comparing Theorem 8 above with list (R) of §3 for a > 1, we see that the

jf method, with the appropriate restriction in ß, is totally stronger than all of the

the other methods listed. However, for 0 < a < 1, it is immediately apparent

that we need to discuss the total relative strengths of Jf and C* for 0 < c < 1.

Let

= He 4- n 4- ¡x)r(c)      ßn.

^"      F(c 4- a)r(n + c) '

Using the method of Theorem 1 of this paper, let

Then

and

F(c + t + a)F(c)     „.

JW " F(c + a)F(t + c)

git)

h«) = (-i)^ = aß

fit)
fit + 1)

1

(i 4- c 4- a)    '

1

(f-rl)1-" t + c      t + c + a



318 B. E. RHOADES [May

The mass function corresponding to n(i + 1) for all t ^ 1 is

m = aßixtiu) - z2(«)] - [^ -l^y\\ »     0 g « á 1,

where
1 ■*" Í       1 ra

x» = 7r^r(T^aTJ/-1{'ogT} *. /-1.2.

(log |) «(log 1)

For 0 < « < 1,

1\~* /.      1 Va 1

*'(«) = a/J
_   T(l - a) T(l - a)2i-«_|

(21-" - a) - uc(l - u")

tT + u"

« (log 4) "'
21-« T(l - a)

Since 0 < a < 1, 0 < c < 1, 0 < m < 1, 21_a - m ̂  1 - a". Therefore <p'(«)

will be nonnegative, provided

9.1-«rri - ^    =     '2i-T(l - a)

i.e.,

KT, 21~T(l - a)

al

But the left hand side of the above inequality occured in the proof of Theorem 8,

and its minimum occurs at u = e~(c/a). Therefore the condition

j9^21-T(l -a)a"-\ceya

is sufficient to guarantee that <j>iu) is a totally monotone mass function and

hence that p(i) is totally monotone for t ^ 1. As in the proof of Theorem 8 it

then follows that pit) is totally monotone. We have therefore proved the following

theorem.

Theorem 9.   Let 0 < a < 1,   0 < c < 1,   0 < a < 1,   ß > 0.    Then,   for

ß ^ 21_T(1 - a)a"-\cey", Jf Us. C*.

The proof of Theorem 8, in addition to generalizing [3, Theorem 4] is also

substantially simpler. However, it cannot be used to prove Theorem 9 because

of the presence of the logarithmic derivative of the gamma function. The proof of

Theorem 9 can be used to prove a weaker form of Theorem 8. Thus, Theorem 9

may not be the best possible result for the comparison it deals with.
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Theorems 8 and 9 have a restrictive condition involving the parameters.

Therefore it would appear that, for some values of the parameters, total com-

parison is not possible. Since the sequences corresponding to the methods Jßa/V*

and Ja/Cac both tend to zero, it is clear that a comparison such as T" t.s. Jf or

C" t.s. Jßa is impossible. It remains, therefore, to determine if there are values of

the parameters for which jf n.t.s. V" and Jßa n.t.s. C"c. The latter relationship is

quite difficult to deal with, so we conclude with the following theorem.

Theorem 10.   Let a,   ß,   c > 0,   0 < a < 1.   Then, for

ß < aa""1(2 - a)2-"lAca(\ - a)]"1, J{ n.t.s. T°c.

The theorem is proved in the same way as [3, Theorem 5] and therefore the

proof will be omitted here.

I wish to express my thanks to M. S. Ramanujan who sent me his unpublished

results dealing with the total relative strengths of some of the methods of this

paper. The results communicated to me were the statements of the following

theorems: 2 for a positive, 3 (iii), 4, and 8 and 10 with a = 1/2.
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